On evolution equations for marginal correlation operators

This paper is devoted to the problem of the description of nonequilibrium correlations of quantum many-particle systems. A non-perturbative solution of the Cauchy problem of the nonlinear quantum BBGKY hierarchy for marginal correlation operators is constructed as an expansion over particle clusters...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2011
Автори: Gerasimenko, V.I., Polishchuk, D.O.
Формат: Стаття
Мова:English
Опубліковано: Інститут кібернетики ім. В.М. Глушкова НАН України 2011
Назва видання:Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/48794
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On evolution equations for marginal correlation operators / V.I. Gerasimenko, D.O. Polishchuk // Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки: зб. наук. пр. — Кам’янець-Подільський: Кам'янець-Подільськ. нац. ун-т, 2011. — Вип. 5. — С. 44-60. — Бібліогр.: 17 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-48794
record_format dspace
spelling irk-123456789-487942013-09-04T03:02:29Z On evolution equations for marginal correlation operators Gerasimenko, V.I. Polishchuk, D.O. This paper is devoted to the problem of the description of nonequilibrium correlations of quantum many-particle systems. A non-perturbative solution of the Cauchy problem of the nonlinear quantum BBGKY hierarchy for marginal correlation operators is constructed as an expansion over particle clusters which evolution is governed by the corresponding-order cumulant of the nonlinear groups of operators generated by the von Neumann hierarchy. Робота присвячена проблемі опису нерівноважних кореляцій квантових багаточастинкових систем. Побудовано розв'язок задачі Коші нелінійної квантової ієрархії рівнянь ББГКІ у формі розкладу по групах частинок, еволюція яких описується відповідного порядку кумулянтом груп нелінійних операторів ієрархії рівнянь фон Неймана. 2011 Article On evolution equations for marginal correlation operators / V.I. Gerasimenko, D.O. Polishchuk // Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки: зб. наук. пр. — Кам’янець-Подільський: Кам'янець-Подільськ. нац. ун-т, 2011. — Вип. 5. — С. 44-60. — Бібліогр.: 17 назв. — англ. XXXX-0059 http://dspace.nbuv.gov.ua/handle/123456789/48794 517.9+531.19+530.145 en Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки Інститут кібернетики ім. В.М. Глушкова НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description This paper is devoted to the problem of the description of nonequilibrium correlations of quantum many-particle systems. A non-perturbative solution of the Cauchy problem of the nonlinear quantum BBGKY hierarchy for marginal correlation operators is constructed as an expansion over particle clusters which evolution is governed by the corresponding-order cumulant of the nonlinear groups of operators generated by the von Neumann hierarchy.
format Article
author Gerasimenko, V.I.
Polishchuk, D.O.
spellingShingle Gerasimenko, V.I.
Polishchuk, D.O.
On evolution equations for marginal correlation operators
Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки
author_facet Gerasimenko, V.I.
Polishchuk, D.O.
author_sort Gerasimenko, V.I.
title On evolution equations for marginal correlation operators
title_short On evolution equations for marginal correlation operators
title_full On evolution equations for marginal correlation operators
title_fullStr On evolution equations for marginal correlation operators
title_full_unstemmed On evolution equations for marginal correlation operators
title_sort on evolution equations for marginal correlation operators
publisher Інститут кібернетики ім. В.М. Глушкова НАН України
publishDate 2011
url http://dspace.nbuv.gov.ua/handle/123456789/48794
citation_txt On evolution equations for marginal correlation operators / V.I. Gerasimenko, D.O. Polishchuk // Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки: зб. наук. пр. — Кам’янець-Подільський: Кам'янець-Подільськ. нац. ун-т, 2011. — Вип. 5. — С. 44-60. — Бібліогр.: 17 назв. — англ.
series Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки
work_keys_str_mv AT gerasimenkovi onevolutionequationsformarginalcorrelationoperators
AT polishchukdo onevolutionequationsformarginalcorrelationoperators
first_indexed 2025-07-04T09:31:45Z
last_indexed 2025-07-04T09:31:45Z
_version_ 1836708276896530432
fulltext Математичне та комп’ютерне моделювання 44 5. Яковлев С. В. Биологическая очистка производственных сточных вод: Про- цессы, аппараты и сооружения / С. В. Яковлев, И. В. Скирдов, В. Н. Швецов и др. ; под ред. С. В. Яковлева. — М. : Стройиздат, 1985. — 208 с. 6. Огняник Н. С. Основы изучения загрязнения геологической среды легки- ми нефтепродуктами / Н. С. Огняник, Н. К. Парамонов, А. Л. Брикс, И. С. Пашковский, Д. В. Коннов. — К. : А.П.Н., 2006. — 278 с. 7. Бомба А. Я. Моделювання процесів очищення стічної води на каркасно- засипних фільтрах з урахуванням зворотного впливу / А. Я. Бомба, І. М. Присяжнюк, А. П. Сафоник // Фізико-математичне моделювання та інформаційні технології. — 2007. — Вип. 6. — C. 101—108. 8. Бомба А. Я. Нелінійні сингулярно-збурені задачі типу "конвекція — ди- фузія" / А. Я. Бомба, С. В. Барановський, І. М. Присяжнюк. — Рівне : НУВГП, 2008. — 252 с. The mathematical model of process of aerobic sewage treatment in the porous environment which considers interaction of bacteria, organic and biologically not oxidising substances is constructed. The offered algorithm of the decision corresponding modelling nonlinear singular the indignant problem of type «convection-diffusion-mass exchange» with time delay Key words: nonlinear problems, process of aerobic clearing, filtering, singular indignations, asymptotic, time delay. Отримано: 06.03.2011 УДК 517.9+531.19+530.145 V. I. Gerasimenko*, Doctor of phys.-math. sci., D. O. Polishchuk**, PhD student *Institute of Mathematics of NAS of Ukraine, Kyiv, **Taras Shevchenko National University of Kyiv ON EVOLUTION EQUATIONSFOR MARGINAL CORRELATION OPERATORS This paper is devoted to the problem of the description of nonequilibrium correlations of quantum many-particle systems. A non-perturbative solution of the Cauchy problem of the nonlinear quantum BBGKY hierarchy for marginal correlation operators is constructed as an expansion over particle clusters which evolution is governed by the corresponding-order cumulant of the nonlinear groups of operators generated by the von Neumann hierarchy. Key words: nonlinear quantum BBGKY hierarchy, von Neumann hierarchy, correlation operator, quantum many-particle system. Introduction. The importance of the mathematical description of correlations in numerous problems of the modern statistical mechanics is well-known. Among them in particular, we refer to such fundamental © V. I. Gerasimenko, D. O. Polishchuk, 2011 Серія: Фізико-математичні науки. Випуск 5 45 problem as the problem of a description of collective behavior of interacting particles by quantum kinetic equations [1—8]. Owing to the intrinsic complexity and richness of these problems, primarily it is necessary to develop an adequate mathematical theory of underlying evolution equations.The goal of the paper is to derive rigorously the evolution equations for marginal correlation operators that give an equivalent approach to the description of the evolution of states in comparison with marginal density operators governed by the quantum BBGKY hierarchy and to construct a solution of the corresponding Cauchy problem. The von Neumann hierarchy. We consider a quantum system of a non-fixed, i.e. arbitrary but finite, number of identical (spinless) particles with unit mass 1m  in the space , 1   , that obey the Maxwell- Boltzmann statistics. Let 0= nn   be the Fock space over the Hilbert space  , where the n -particle Hilbert space n n   is a tensor product of n Hilbert spaces  and we adopt the usual convention that 0 = . The Hamiltonian nH of the n -particle system is a self- adjoint operator with the domain  n nH       1 2 1 2 1 1 , , = = = n n n i i i H K i i i     (1) where  K i is the operator of a kinetic energy of the i particle and  1 2,i i is the operator of a two-body interaction potential. In particular on functions n that belong to the subspace      2 2 0 n n nL H L    of infinitely differentiable symmetric functions with compact supports the operator  K i acts according to the formula:   2 2 =n q ni K i     , where 2 is a Planck constant, and for the operator  we have:    1 21 2, ,=n i i ni i q q   , respectively. We assume that the function  1 2 ,i iq q is symmetric with respect to permutations of arguments and it is translation-invariant bounded function. States of a system of the Maxwell-Boltzmann particles belong to the space    1 1 0= = nn  L L of sequences  0 1, , , ,= nf f f f  of trace-class operators    11, ,n n nf f n  L and 0f  , that satisfy Математичне та комп’ютерне моделювання 46 the symmetry condition:    11, , = , ,n n nf n f i i for arbitrary    1, , 1, ,ni i n  , equipped with the norm      1 1 1, , 0 0 1, , , = = = Trn n n nn n f f f n      L L  where 1, ,Tr n are partial traces over 1, ,n particles [12]. We denote by  1 0 L the everywhere dense set in  1 L of finite sequences of degenerate operators with infinitely differentiable kernels with compact supports. We describe states of a system by means of sequences      0 1= ( , ,1 , , ,1, ,ng t g g t g t n  ,  1)  L of the correlation operators   , 1ng t n  . The evolution of all possible states is determined by the initial-value problem of the von Neumann hierarchy     , ,s d g t Y Y g t dt   (2)     0 , 0, , 1, =s st g t Y g Y s  (3) where the following notations are used:               1 2 1 1 2 2 1 2: int 1 2 1 2 , , , , ,P | | | | = s s Y X X i X i X X X Y g t Y g t Y i i g t X g t X           (4) 1 2:P =Y X X  is the sum over all possible partitions P of the set  1, ,Y s  into two nonempty mutually disjoint subsets 1X Y and 2X Y , the operator  s defined on  1 0 sL by the formula      ,s s s s s i Y H f f H      (5) is the generator of the von Neumann equation [13] and the operator  int is defined by        int 1 2 1 2 1 2, , , .s s s i i i f i i f f i i       (6) Hereafter we use the following notations:     1 |, , |PX X is a set, elements of which are ||P mutually disjoint subsets  1, ,iX Y s   of the partition | 1: | =P P iiY X  , i.e.     1 |, , |PX X P  . In view of these notations we state that   Y is the set consisting of one element Серія: Фізико-математичні науки. Випуск 5 47  1, ,=Y s of the partition  = 1P P and    = 1Y . We introduce the declasterization mapping     1 |: , , |PX X Y   , by the following formula:     1 |: , , |PX X Y   . For example, let  1, ,X s n   , then for the set   , \Y X Y it holds:   , \ =Y X Y X . On the space  1 nL we also introduce the mapping:  n nt t f    , which is generated by the solution of the von Neumann equation of n particles [13]   = . i i tH tHn n n n nt f e f e     (7) This mapping is an isometric strongly continuous group that preserves positivity and self-adjointness of operators [12]. On    1 0 n n   L the infinitesimal generator of group (7) is determined by operator (5). A solution of the Cauchy problem (2)—(3) is given by the following expansion [9—10]            1 : , ; 0 , , , 0, , 1,P P P = P = i i i i s iX Y X X g t Y t Y g t X X g X s         A (8) where :P = i iY X  is the sum over all possible partitions P of the set  1, ,Y s  into ||P nonempty mutually disjoint subsets iX Y , the evolution operator  ||P tA is the ||P th -order cumulant of groups of operators (7) defined by the formula                   1 1 : , , =| , , , 1 1 ! , '|P | 1P P 'P | ' 'P = P k k k k X X ZP kZ Z t X X t Z                    A  (9) Here    1 , , =| 'P : | k kP X X Z       is the sum over all possible partitions 'P of the set     1 |, , |PX X into '|P | nonempty mutually disjoint subsets     |, ,1 |k PZ X X  . For operators (8) the estimate holds Математичне та комп’ютерне моделювання 48    1 3! ,cs s s s g t s e L (10) where      11 11 | : | max 0 , , 0 | | | = | | | c i P i P X XP Y X X X g g                         L L . If      1 1 00 , 1n n ng n   L L , expansion (8) is a strong (classical) solution of the Cauchy problem (2)—(3) and for arbitrary initial data    10 , 1n ng n L , it is a weak (generalized) solution. In case of the absence of correlations between particles at initial time, i.e. the initial data satisfying the a chaos condition, the sequence of correlation operators has the form     10 = 0, 0,1 ,0, .g g  (11) The corresponding solution of the initial-value problem of the von Neumann hierarchy is given by the expansion      1 1 , = , 0, , = s s s i g t Y t Y g iA (12) where  s tA is the sth -order cumulant defined by        | 1 : , = 1 | | 1 ! , . | | | = i i i P s X i P Y X X Pi t Y P t X        A (13) We note that correlations created in evolutionary process of a system are described by formula (12) and determined by the corresponding-order cumulant of the groups of operators (7) of the von Neumann equations. Marginal correlation operators and marginal density operators. We introduce the marginal correlation operators by the series    1, , 0 ,1, , ,1, , , 1, != 1 = rs s s n s n n G t s T g t s n s n         (14) where the sequence  ,1, , , 0s ng t s n n    , is a solution of the Cauchy problem of the von Neumann hierarchy (2). Traditionally marginal correlation operators are introduced by means of the cluster expansions of the marginal density operators   , 1sF t s  , governed by the quantum BBGKY hierarchy [11]     : , = , , 1,| | = i i i i s X i P Y X X P F t Y G t X s     (15) Серія: Фізико-математичні науки. Випуск 5 49 where : = i iP Y X  is the sum over all possible partitions P of the set  1, ,Y s  into ||P nonempty mutually disjoint subsets iX Y . Hereupon solutions of cluster expansions (15)        | 1 : , = 1 | | 1 ! , , | | | = i i i i P s X i P Y X X P G t Y P F t X       (16) are interpreted as the operators that describe correlations of many-particle systems. Thus, marginal correlation operators (16) are cumulants (semi- invariants) of the marginal density operators. The marginal ( s -particle) density operators (15) are determined by the Cauchy problem of the quantum BBGKY hierarchy [11]           1 int 1, , , 1 ,= Trs s s s s i Y d F t Y Y F t Y i s F t dt         (17)     0 0 , 1. = =s st F t F s  (18) If      1 1 00 = = n nnF    L L and e  , then for t a unique solution of the Cauchy problem (17)—(18) of the quantum BBGKY hierarchy exists and is given by the expansion [9; 15]      1, , 1 0 1 , = ,{ }, \ 0, , 1, != rs s s n n s n n F t Y T t Y X Y F X s n        A (19) where the  1 n th -order cumulant  1 n tA of groups of operators (7) is defined by               1 1 : , \ | ,{ }, \ = 1 1 ! , , P = | P P i i i i n P Y X Y X iX X t Y X Y t X             A  (20) where P is the sum over all possible partitions P of the set   , \Y X Y into ||P nonempty mutually disjoint subsets   , \iX Y X Y . Formally, the evolution equations for marginal correlation operators are derived from the quantum BBGKY hierarchy for marginal density operators (15) on basis of expression (16). Then the evolution of all possible states of quantum many-particle systems obeying the Maxwell-Boltzmann statistics with the Hamiltonian (1) can be described within the framework of marginal correlation operators governed by the nonlinear quantum BBGKY hierarchy        1 int, , 1= rs s i Y d G t Y Y G t T i s dt        Математичне та комп’ютерне моделювання 50         1 2 1 2 1 2 1 1 2 : , 1 = , ; 1 ( , , 1 , , ),| | | |s X X P Y s X X i X s X G t Y s G t X G t X          (21)     0 , 0, , 1. = =s st G t Y G Y s  (22) In equation (21) the operator   |Y G t is generator of the von Neumann hierarchy (2) defined by formula (4), i.e.                1 2 1 2 1 1 2 2 int 1 2 1 2 : , , , ,| | | | = s s X X P Y X X i X i X Y G t Y G t Y i i G t X G t X              (23) where the operators  s and  int are defined by (5) and (6) respectively, 1 2: =P Y X X   is the sum over all possible partitions P of the set  1, ,Y s  into two nonempty mutually disjoint subsets 1X Y and 2X Y , and 1 2 1 2 :( , 1)= , ; 1 P Y s X X i X s X       is the sum over all possible partitions of the set  , 1Y s  into two mutually disjoint subsets 1X and 2X such that ith particle belongs to the subset 1X and  1s th particle belongs to 2X . As far as we know hierarchy (21) was introduced by M. M. Bogolyubov [11] and in the papers of J. Yvon [16] and M. S. Green [17] for systems of classical particles. Another method of the justification of evolution equations for marginal correlation operators consists in their derivation from the von Neumann hierarchy for correlation operators (2) on basis of definition (14). We emphasize that the evolution of marginal correlation operators of both finitely and infinitely many quantum particles is described by initial- value problem of the nonlinear quantum BBGKY hierarchy (21). For finitely many particles the nonlinear quantum BBGKY hierarchy is equivalent to the von Neumann hierarchy (2). A non-perturbative solution of the nonlinear quantum BBGKY hierarchy. To construct a non-perturbative solution of the Cauchy problem (21)—(22) of the nonlinear quantum BBGKY hierarchy we first consider its structure for physically motivated example of initial data, namely, initial data satisfying a chaos property    1 ,10 , 0,1 , 1, =s st G t Y G s  (24) where ,1s is a Kronecker symbol. Chaos property (24) means the absence of state correlations in a system at the initial time. Серія: Фізико-математичні науки. Випуск 5 51 According to definition (14) and solution expansion (12), in the case under consideration the following relation between the marginal correlation operators and correlation operators is true    1 10, = 0, .G i g i (25) Taking into account the form (12) of a solution of the initial-value problem of the von Neumann hierarchy (2) in case of initial data (11), for expansion (14) we obtain      1, , 1 0 1 1 , = ,1, , 0, , != = r s n s s s n s n n i G t Y T t s n g i n        A (26) where  s n tA is the  s n th -order cumulant (13). In consequence of relation (25) we finally derive      1, , 1 0 1 1 , , 0, . != = = r s n s s s n s n n i G t Y T t X G i n      A (27) If    1 1 1 ( ) 0 2G e  L   , series (27) converges, since for cumulants (13) the estimate holds [9]      1 1! .n n n n t f n e f  L L A    From the structure of series (27) it is clear that in case of absence of correlations at initial instant in a system the correlations generated by the dynamics of quantum many-particle systems are completely governed by cumulants (9) of groups of operators (7). Thus, the cumulant structure of solution (8) of the von Neumann hierarchy (2) induces the cumulant structure of solution expansion (27) of the initial-value problem of the quantum nonlinear BBGKY hierarchy for marginal correlation operators. The evolution equations which satisfy expression (27) are derived similarly to the derivation of hierarchy (21). We point out that in case of chaos initial data solution expansion (19) of the quantum BBGKY hierarchy (17) for marginal density operators differs from solution expansion (27) of the nonlinear quantum BBGKY hierarchy (21) for marginal correlation operators only by the order of the cumulants of the groups of operators of the von Neumann equations [10; 15]      1, , 1 1 0 1 1 , = ,{ }, \ 0, , != = r s n s s s n n n i F t Y T t Y X Y F i n      A (28) where  1 n tA is the  1 n th -order cumulant [20]. The structure of a solution expansion. The direct method of the construction of a solution of the nonlinear quantum BBGKY hierarchy (21) in the form of non-perturbative expansion consists in its derivation on the basis Математичне та комп’ютерне моделювання 52 of expansions (16) from non-perturbative solution (19) of initial-value problem of the quantum BBGKY hierarchy (17)—(18). Following stated above approach, we derive a formula for a solution of the quantum nonlinear BBGKY hierarchy for marginal correlation operators in case of general initial data on the basis of definition (14) and non-perturbative solution (8) of initial- value problem of the von Neumann hierarchy (2)—(3). With this aim on  1 n nf  L we introduce an analogue of the annihilation operator      1 11, , 1, , , 1 , 1,=Trs ss f s f s s s    a (29) and, therefore we have        1, , 0 1 1, , = 1, , . != Tr n s s n s n s n e f s f s n n          a According to definition (14) of the marginal correlation operators, i.e.    = ,G t e g ta where the sequence  g t is a solution of the von Neumann hierarchy for correlation operators defined by group (8), i.e.   ( ) = 0 ,|g t t g and to the equality:    0 = 0g e Ga , we finally derive     = 0 .|G t e t e Ga a (30) To set down formula (29) in componentwise form we observe, that the following equality holds               | 2 1 | 1 1 1 0 | 2 1, , 0 01 1 | 1 | 2 | 1 1 1 1 1 (0) = ! !! ! ! ! ! 0, , 1, , 0, , 1, , . | | 1 P P | | = | = = | | | | | Tr i P P k i Xi kX P kk P s n s n k k k P P P X k k P PX k e G X k kk k k k k k k G X s n s n k k G X s n k k s n k                                          a (31) Then according to formulas (29) and (8), for 1,s  we have             1, , 0 : (1, , = | 1 | 1 , = ! , , , 0 , = ) | | | | r i i i i s s s n n P s n X P P i XX P G t Y T n t X X e G X                aA Серія: Фізико-математичні науки. Випуск 5 53 where  ||P tA is ||P th -order cumulant (9), and as a result for sequence (29) we obtain      1, , 0 0 1 ! ,1, , = 1 ! ! != = Tr n k s s s n n k n G t s n k n k             | 1 | : (1, , = , , ,| | ) i i P P P s n k X t X X        A     | 2 1 | 1 | 2 0 01 1 | 1 | 2 | 1 !! ! ! ! ! | | | = = | | | P P kk P k k P P P kk k k k k k k             (32)     1 1 1 | 1 1 1 0, , 1, , 0, , 1, , . | PP X k k P PX k G X s n k s n k G X s n k s n                   Consequently the solution expansion of the nonlinear quantum BBGKY hierarchy has the following structure       1, , 1 0 1 , ; , 1, , 0 , != = Trs s s n n n G t Y U t Y s s n G n         (33) where we introduce the notion of the  1n th -order reduced cumulant  1 nU t of nonlinear groups of operators (8)                        | 2 11 | 1 1 1 1 1 0 : ( 1, , , 1, , = | 1 | | 2 0 01 | 1 | 2 | 1 1 1 1 ; , 1, , 0 ! 1 ! ! , , , !! ! ! ! 0, , 1, , 0, , | | = ) | | | = = | | | | | = ! i i P P P P n n k k P s s s n k X P P kk P k k P P P X k k P PX k U t Y s s n G n k n k t X X kk k k k k k k G X s n k s n k G X s n k                                                 A  1, , s n   (34) We give simplest examples of reduced nonlinear cumulants (33):                1 | | : (1, , = ; 0 = ; 0 = , , , 0, ,| 1 | | | ) P | | i i i P P X ii P s X X U t Y G t Y G t X X G X        A Математичне та комп’ютерне моделювання 54             2 | 1 | : ( , 1)= ; , 1 0 , , , 0,| | | |i i i i P P X i P Y s X X P U t Y s G t X X G X          A            | 1 | : 1, , = | 1 ,1 , , , 0, 0, , 1 . | | | | | | | = i i i j i i j P P P s X P X i X j X Pj X X t X X G X G X s              A We remark that in case of solution expansion (19) of the quantum BBGKY hierarchy, an analog of reduced cumulant (33) is the reduced cumulant of groups of operators (7) defined by formula [12]         1 0 ! ; , 1, , 1 . ! != n k n s n k k n U t Y s s n t k n k          Reduced cumulants of nonlinear groups of operators. We indicate some properties of reduced nonlinear cumulants (33) of groups of operators (8). According to formula (32) and properties of cumulants (9), namely   ,10 =n nIA , the following equality holds                 1 1 0 ,0 0; , 1, , | 0 = ! 1 0, 1, , 0,1, , = ! ! 0,1, , , = n n k s n k s n n U Y s s n G n s n k G s n k n k G s n                    A (35) and hence the marginal correlation operators determined by series (32) satisfy initial data (22). In case of 0n  for  1 0f  L in the sense of the norm convergence of the space  1 sL the infinitesimal generator of first-order reduced cumulant (33) coincides with generator (23) of the von Neumann hierarchy (2)         1 0 1 ; | = | , 1,lim s t U t Y f f Y Y f s t   where the operator  |Y f is defined by formula (23). In case of 1=n for second-order reduced cumulant (33) in the same sense we obtain the following equality   1 2 0 1 ; , 1limTrs t U t Y s f t    Серія: Фізико-математичні науки. Випуск 5 55     1 int 1, 1 , , 1Trs s i Y i s f t Y s             1 2 1 2 1 2 1 2 :( , 1)= , ; 1 , , ,| | | |X X P Y s X X i X s X f t X f t X        where notations are used as above for hierarchy (21), and for 2n  as a consequence of the fact that we consider a system of particles interacting by a two-body potential, it holds   1, , 1 0 1 ; , 1, , | = 0.limrs s n n t T U t Y s s n f t       In case of initial data satisfying a chaos property, i.e.  1(0) 0, (0,1),0,G G  , for the  1 n th -order reduced cumulant we have         1) 1 1 1 ; , 1, , | 0 ,1, , 0, ,( = s n n s n i U t Y s s n G t s n G i         A i.e. the only summand that gives contribution to the result is the one with 0=k and |=|P s n , since otherwise there is at least one operator  0sG with 2s  in the last product. For the  1 n th -order reduced cumulant (33) the following inequality holds       1 3 1 ; , 1, , | 2 ! ! 2 , s n s n n s n U t Y s s n f n s e c         L (36) where    | 1: 1, , = , , , 1, ,1 max max | c i P i P s n k X k k k s n k s n            1 1 1 1 1 | | | | 1 1 | | 1 | | , , .| | | || | P P X k k X kP P X k k X k f f                        L L  To prove this inequality we first remark that for cumulant (9) the following estimate holds         1 1 | | 1 |, , , | ! .| | | | P P P n n nn t X X f P e f  LL A    (37) Indeed, we have               1 1 | ' | 1 | ': , , = , , , | 1 ! | | | | P k k P P n n P X X Z t X X f P       L A  Математичне та комп’ютерне моделювання 56             1 1 | ' 1 , | |, 1 !, | = k P k n nZ nk lZ P n t Z f f s P l l        L L      where  | |,s P l are the Stirling numbers of second kind and we use the isometric property of the groups   , 1n t n  . Estimate (36) holds as a consequence of the inequality    | | 1 | |, 1 ! | | ! . | | = s P P l P l l P e  Then owing to estimate (36), for the (1 )n th -order reduced cumulant (33) we have          1 1 | 2 11 1 | | 1 1 | 1 1 1 | | 1 1 | 0 :(1, , = 0 1 1 | 2 0 | 1 | 2 | 1 0 ; , 1, , | ! ! | |! !( )! ! ! ! ... ! ! ! | | | | | | | = ) = | = | | | = i i P P P P P P n s n n k P k P s n k X k k P X k k X k k X k kP P P X k n k U t Y s s n f n k P e k n k k k k k f f k k k n                                               L L L        | | 1 | : 1, , = | | ! . ! 2 |c i i P P P s n k X P e n k       As result of using of the definition of the Stirling numbers of second kind  ,s s n k l  and the inequalities             | | 1 0 : (1, , = 2 1 0 1 3( 3 0 ! | | ! ! ! , ! ! ! 2 ! ! 2 , ! 2 = ) = = ) = s ! i i n P k P s n k X n s n k l k l n s ns n k k n P e n k n s n k l l e n k n s n k e n s e n k                            we obtain estimate (36). Thus, according to estimate (36), for initial data from the space  1 nL series (32) converges provided that      1 13 1 max 0 2n nn G e    L    , and the following inequality holds Серія: Фізико-математичні науки. Випуск 5 57      1 32 ! 2 . s s s G t s e L   (38) A solution of the Cauchy problem of the nonlinear quantum BBGKY hierarchy for marginal correlation operators (21) is determined by the following one-parametric mapping    | = | ,t t f e t e f    a a (39) which is defined on the space  1 L owing estimate (38), and has the group property        1 2 2 1 1 2| | = | | = | .t t f t t f t t f     Indeed, according to definition (29) and taking to attention the group property of the mapping ( | )t  , we obtain                 1 2 1 2 1 2 1 2 1 2 1 2 | = | = | | = | | = | | = | | . t t f e t t e f e t t e f e t e e t e f e t e t f t t f         a a a a a a a a a a           To construct the generator of the strong continuous group  , |t Y  we differentiate it in the sense of the norm convergence on the space  1 sL                0 0 1, , 00 ; | | 1 | | | ! = = == Tr st t s s n stn d d t Y f e t e f Y dt dt X t e f e e f Y n             a a a a a      where  | f is a generator of the von Neumann hierarchy (2) defined by formula (4) on the subspaces    1 1 0 , 1s s s  L L , or in the componentwise form in case of a two-body interaction potential            1 int 1, 1 , 1 = Tr s s s i Y e e f Y Y f i s f Y s            a a   (40)    1 2 1 2 1 2 1 2 :( , 1)= , ; 1 ,X X P Y s X X i X s X f X f X        where we use notations as above for formula (21). Formula (40) describes the structure of the infinitesimal generator of mapping (39) in the general case of many-body interaction potentials. Thus, for abstract initial-value problem for hierarchy (22) in the space  1 L the following theorem is true. Математичне та комп’ютерне моделювання 58 If    1 13 1 max (0) < 2n n n G e   L   , then for t a solution of the initial-value problem (22)—(23) of the nonlinear quantum BBGKY hierarchy is determined by expansion (32). If    1 1 0(0)n n nG   L L it is a strong (classical) solution and for arbitrary initial data  1(0)n nG  L it is a weak (generalized) solution. The proof of the theorem is similarly to the prove of an existence theorem for the von Neumann hierarchy [10]. Conclusion. In the paper the origin of the microscopic description of non-equilibrium correlations of quantum many-particle systems obeying the Maxwell-Boltzmann statistics has been considered. The nonlinear quantum BBGKY hierarchy (22) for marginal correlation operators was introduced. It gives an alternative approach to the description of the state evolution of quantum infinite-particle systems in comparison with quantum BBGKY hierarchy for marginal density operators. The evolution of both finitely and infinitely many quantum particles is described by initial-value problem of the nonlinear quantum BBGKY hierarchy (21) and for finitely many particles the nonlinear quantum BBGKY hierarchy is equivalent to the von Neumann hierarchy(2). A non-perturbative solution of the nonlinear quantum BBGKY hierarchy is constructed in the form of expansion (32) over particle clusters which evolution is governed by corresponding-order cumulant (33) of the nonlinear groups of operators generated by solution (8) of the von Neumann hierarchy (2). We established that in case of absence of correlations at initial time the correlations generated by the dynamics of quantum many-particle systems (27) are completely determined by cumulants (9) of groups of operators (7). Thus, the cumulant structure of solution (8) of the von Neumann hierarchy (2) induces the cumulant structure of solution expansion (32) of initial-value problem of the nonlinear quantum BBGKY hierarchy (22). We emphasize that intensional Banach spaces for the description of states of infinite-particle systems, which are suitable for the description of the kinetic evolution or equilibrium states, are different from the exploit spaces [12; 14]. Therefore marginal correlation operators from the space  1 L describe finitely many quantum particles. In order to describe the evolution of infinitely many particles we have to construct solutions for initial data from more general Banach spaces than the space of sequences of trace class operators. For example, it can be the space of sequences of bounded translation invariant operators which contains the marginal density operators of equilibrium states. In that case every term of the Серія: Фізико-математичні науки. Випуск 5 59 solution expansion of the nonlinear quantum BBGKY hierarchy (22) contains the divergent traces, which can be renormalized due to the cumulant structure of solution expansion (33). References: 1. Arnold A. Mathematical properties of quantum evolution equations / A. Arnold // Lecture Notes in Math. — 2008. — Vol. 1946. — P. 45—100. 2. Erdös L. Derivation of the cubic nonlinear Schrodinger equation from quantum dynamics of many-body systems / L. Erdös, B. Schlein, H.-T. Yau // Invent. Math. — 2007. — Vol. 167. — P. 515—614. 3. Erdös L. Derivation of the Gross-Pitaevskii Equation for the Dynamics of Bose-Einstein Condensate / L. Erdös, B. Schlein, H.-T. Yau // Ann. Math. — 2010. — Vol. 172. — P. 291—370. 4. Fröhlich J. Mean-field and classical limit of many-body Schrodinger dynamics for bosons / J. Fröhlich, S. Graffi, S. Schwarz // Commun. Math. Phys. — 2007. — Vol. 271. — P. 681—697. 5. Pezzotti F. Mean-field limit and semiclassical expansion of quantum particle system / F. Pezzotti, M. Pulvirenti // Ann. Henri Poincar. — 2009. — Vol. 10. — P. 145—187. 6. Saint-Raymond L. Kinetic models for superuids: a review of mathematical results / L. Saint-Raymond // C. R. Physique. — 2004. — Vol. 5. — P. 65—75. 7. Gerasimenko V. I. A description of the evolution of quantum states bymeans of the kinetic equation / V. I. Gerasimenko, Zh. A. Tsvir //. J. Phys. A: Math. Theor. — 2010. — Vol. 43. 8. Gerasimenko V. I. Heisenberg picture of quantum kinetic evolution in mean- field limit / V. I. Gerasimenko // Kinet. Relat. Models. — 2011. — Vol. 4. — P. 385—399. 9. Gerasimenko V. I. Evolution of correlations of quantum many-particle systems / V. I. Gerasimenko, V. O. Shtyk // J. Stat. Mech. Theory Exp. — 2010. — Vol. 3. — P. 24. 10. Gerasimenko V. I. Dynamics of correlations of Bose and Fermi particles / V. I. Gerasimenko, D. O. Polishchuk // Math. Meth. Appl. Sci. — 2011. — Vol. 34. — P. 76—93. 11. Боголюбов M. M. Лекції з квантової статистики. Проблеми статистичної механіки квантових систем / M. M. Боголюбов. — К. : Рад. школа, 1949. 12. Petrina D. Ya. Mathematical Foundations of Quantum Statistical Mechanics. Continuous Systems / D. Ya. Petrina. — Dordrecht : Kluwer, 1995. 13. Dautray R. Mathematical Analysis and Numerical Methods for Science and Technology / R. Dautray, J. L. Lions. — Berlin : Springer, 1992. 14. Cercignani C. Many-Particle Dynamics and Kinetic Equations / C. Cercignani, V. I. Gerasimenko, D. Ya. Petrina. — Dordrecht : Kluwer, 1997. 15. Polishchuk D. O. BBGKY hierarchy and dynamics of correlations / D. O. Po- lishchuk // Ukrainian J. Phys. — 2010. — Vol. 55. — P. 593-598. 16. Yvon J. Actualites Scientifiques et Industrielles / J. Yvon. — Paris : Hermann, 1935. — Vol. 49. 17. Green M. S. Boltzmann equation from the statistical mechanical point of view / M. S. Green // J. Chem. Phys. — 1956. — Vol. 25. — P. 836—855. Математичне та комп’ютерне моделювання 60 Робота присвячена проблемі опису нерівноважних кореляцій квантових багаточастинкових систем. Побудовано розв'язок задачі Коші нелінійної квантової ієрархії рівнянь ББГКІ у формі розкладу по групах частинок, еволюція яких описується відповідного порядку кумулянтом груп нелінійних операторів ієрархії рівнянь фон Неймана. Ключові слова: нелінійна квантова ієрархія ББГКІ, ієрархія фон Неймана, кореляційний оператор, квантові багаточастинкові системи. Отримано: 06.05.2011 УДК 517.5 В. О. Гнатюк, канд. фіз-мат. наук, Ю. В. Гнатюк, канд. фіз-мат. наук Кам’янець-Подільський національний університет імені Івана Огієнка, м. Кам’нець-Подільський ТЕОРЕМИ ІСНУВАННЯ ЕКСТРЕМАЛЬНОГО ЕЛЕМЕНТА ДЛЯ ЗАДАЧІ НАЙКРАЩОЇ У РОЗУМІННІ ОПУКЛОЇ НЕПЕРЕРВНОЇ ФУНКЦІЇ РІВНОМІРНОЇ АПРОКСИМАЦІЇ НЕПЕРЕРВНОГО КОМПАКНОЗНАЧНОГО ВІДОБРАЖЕННЯ Доведено деякі теореми існування екстремального елемента для задачі найкращої у розумінні опуклої неперервної функції рівномірної апроксимації неперервного компакнозначного відо- браження множинами неперервних однозначних відображень. Ключові слова: найкраща у розумінні опуклої неперервної функції рівномірна апроксимація, компакнозначне відобра- ження, екстремальний елемент, теореми існування. Вступ. У статті для задачі найкращої у розумінні опуклої непе- рервної функції рівномірної апроксимації неперервного компактноз- начного відображення множинами неперервних однозначних відо- бражень доведено деякі теореми існування екстремального елемента, які узагальнюють на випадок цієї задачі відповідні теореми існування екстремального елемента для задачі найкращого у розумінні опуклої функції наближення елемента лінійного нормованого простору опук- лою множиною цього простору, встановлені у праці [1], розглянуто допоміжні твердження, які представляють і самостійний інтерес. Постановка задачі. Нехай S -компакт, X -лінійний над полем дій- сних чисел нормований простір,  ,C S X — лінійний над полем дійс- них чисел нормований простір однозначних відображень g компакта S в X , неперервних на S , з нормою  max s S g g s   ,  K X — су- © В. О. Гнатюк, Ю. В. Гнатюк, 2011 << /ASCII85EncodePages false /AllowTransparency false /AutoPositionEPSFiles true /AutoRotatePages /All /Binding /Left /CalGrayProfile (Gray Gamma 2.2) /CalRGBProfile (sRGB IEC61966-2.1) /CalCMYKProfile (Coated FOGRA27 \050ISO 12647-2:2004\051) /sRGBProfile (sRGB IEC61966-2.1) /CannotEmbedFontPolicy /Warning /CompatibilityLevel 1.3 /CompressObjects /Tags /CompressPages true /ConvertImagesToIndexed true /PassThroughJPEGImages true /CreateJobTicket false /DefaultRenderingIntent /Default /DetectBlends true /DetectCurves 0.1000 /ColorConversionStrategy /sRGB /DoThumbnails false /EmbedAllFonts true /EmbedOpenType false /ParseICCProfilesInComments true /EmbedJobOptions true /DSCReportingLevel 0 /EmitDSCWarnings false /EndPage -1 /ImageMemory 1048576 /LockDistillerParams false /MaxSubsetPct 100 /Optimize true /OPM 1 /ParseDSCComments true /ParseDSCCommentsForDocInfo true /PreserveCopyPage true /PreserveDICMYKValues true /PreserveEPSInfo false /PreserveFlatness false /PreserveHalftoneInfo false /PreserveOPIComments false /PreserveOverprintSettings true /StartPage 1 /SubsetFonts true /TransferFunctionInfo /Apply /UCRandBGInfo /Remove /UsePrologue false /ColorSettingsFile () /AlwaysEmbed [ true ] /NeverEmbed [ true /Arial-Black /Arial-BlackItalic /Arial-BoldItalicMT /Arial-BoldMT /Arial-ItalicMT /ArialMT /ArialNarrow /ArialNarrow-Bold /ArialNarrow-BoldItalic /ArialNarrow-Italic /ArialUnicodeMS /CenturyGothic /CenturyGothic-Bold /CenturyGothic-BoldItalic /CenturyGothic-Italic /CourierNewPS-BoldItalicMT /CourierNewPS-BoldMT /CourierNewPS-ItalicMT /CourierNewPSMT /Georgia /Georgia-Bold /Georgia-BoldItalic /Georgia-Italic /Impact /LucidaConsole /Tahoma /Tahoma-Bold /TimesNewRomanMT-ExtraBold /TimesNewRomanPS-BoldItalicMT /TimesNewRomanPS-BoldMT /TimesNewRomanPS-ItalicMT /TimesNewRomanPSMT /Trebuchet-BoldItalic /TrebuchetMS /TrebuchetMS-Bold /TrebuchetMS-Italic /Verdana /Verdana-Bold /Verdana-BoldItalic /Verdana-Italic ] /AntiAliasColorImages false /CropColorImages false /ColorImageMinResolution 150 /ColorImageMinResolutionPolicy /OK /DownsampleColorImages true /ColorImageDownsampleType /Bicubic /ColorImageResolution 150 /ColorImageDepth -1 /ColorImageMinDownsampleDepth 1 /ColorImageDownsampleThreshold 1.50000 /EncodeColorImages true /ColorImageFilter /DCTEncode /AutoFilterColorImages true /ColorImageAutoFilterStrategy /JPEG /ColorACSImageDict << /QFactor 0.76 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ColorImageDict << /QFactor 0.76 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /JPEG2000ColorACSImageDict << /TileWidth 256 /TileHeight 256 /Quality 15 >> /JPEG2000ColorImageDict << /TileWidth 256 /TileHeight 256 /Quality 15 >> /AntiAliasGrayImages false /CropGrayImages false /GrayImageMinResolution 150 /GrayImageMinResolutionPolicy /OK /DownsampleGrayImages true /GrayImageDownsampleType /Bicubic /GrayImageResolution 150 /GrayImageDepth -1 /GrayImageMinDownsampleDepth 2 /GrayImageDownsampleThreshold 1.50000 /EncodeGrayImages true /GrayImageFilter /DCTEncode /AutoFilterGrayImages true /GrayImageAutoFilterStrategy /JPEG /GrayACSImageDict << /QFactor 0.76 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /GrayImageDict << /QFactor 0.76 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /JPEG2000GrayACSImageDict << /TileWidth 256 /TileHeight 256 /Quality 15 >> /JPEG2000GrayImageDict << /TileWidth 256 /TileHeight 256 /Quality 15 >> /AntiAliasMonoImages false /CropMonoImages false /MonoImageMinResolution 1200 /MonoImageMinResolutionPolicy /OK /DownsampleMonoImages true /MonoImageDownsampleType /Bicubic /MonoImageResolution 1200 /MonoImageDepth -1 /MonoImageDownsampleThreshold 1.50000 /EncodeMonoImages true /MonoImageFilter /CCITTFaxEncode /MonoImageDict << /K -1 >> /AllowPSXObjects true /CheckCompliance [ /PDFX1a:2001 ] /PDFX1aCheck false /PDFX3Check false /PDFXCompliantPDFOnly false /PDFXNoTrimBoxError true /PDFXTrimBoxToMediaBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXSetBleedBoxToMediaBox true /PDFXBleedBoxToTrimBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXOutputIntentProfile (None) /PDFXOutputConditionIdentifier () /PDFXOutputCondition () /PDFXRegistryName () /PDFXTrapped /False /CreateJDFFile false /Description << /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064506390020064506420627064A064A0633002006390631063600200648063706280627063906290020062706440648062B0627062606420020062706440645062A062F062706480644062900200641064A00200645062C062706440627062A002006270644062306390645062706440020062706440645062E062A064406410629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E> /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043f043e04340445043e0434044f044904380020043704300020043d043004340435043604340435043d0020043f044004350433043b04350434002004380020043f04350447043004420020043d04300020043104380437043d0435044100200434043e043a0443043c0435043d04420438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e> /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002> /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002> /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd00630068002000700072006f002000730070006f006c00650068006c0069007600e90020007a006f006200720061007a006f007600e1006e00ed002000610020007400690073006b0020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e> /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e> /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e> /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.) /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e> /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e> /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e> /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003b103be03b903cc03c003b903c303c403b7002003c003c103bf03b203bf03bb03ae002003ba03b103b9002003b503ba03c403cd03c003c903c303b7002003b503c003b903c703b503b903c103b703bc03b103c403b903ba03ce03bd002003b503b303b303c103ac03c603c903bd002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e> /HEB <FEFF05d405e905ea05de05e905d5002005d105d405d205d305e805d505ea002005d005dc05d4002005db05d305d9002005dc05d905e605d505e8002005de05e105de05db05d9002000410064006f006200650020005000440046002005e205d105d505e8002005d405e605d205d4002005d505d405d305e405e105d4002005d005de05d905e005d4002005e905dc002005de05e105de05db05d905dd002005e205e105e705d905d905dd002e002005de05e105de05db05d90020005000440046002005e905e005d505e605e805d5002005e005d905ea05e005d905dd002005dc05e405ea05d905d705d4002005d105d005de05e605e205d505ea0020004100630072006f006200610074002005d5002d00410064006f00620065002000520065006100640065007200200035002e0030002005d505d205e805e105d005d505ea002005de05ea05e705d305de05d505ea002005d905d505ea05e8002e> /HRV (Za stvaranje Adobe PDF dokumenata pogodnih za pouzdani prikaz i ispis poslovnih dokumenata koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.) /HUN <FEFF00410020006800690076006100740061006c006f007300200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d0065006700740065006b0069006e007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200073007a00e1006e0074002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c00200068006f007a006800610074006a00610020006c00e9007400720065002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e> /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.) /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002> /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e> /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b0075007200690065002000740069006e006b006100200070006100740069006b0069006d006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e0074006900200076006500720073006c006f00200064006f006b0075006d0065006e007400750073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e> /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020007000690065006d01130072006f00740069002000640072006f016100610069002000620069007a006e00650073006100200064006f006b0075006d0065006e007400750020006100700073006b006100740065006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e> /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.) /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e> /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f0020006e00690065007a00610077006f0064006e00650067006f002000770079015b0077006900650074006c0061006e00690061002000690020006400720075006b006f00770061006e0069006100200064006f006b0075006d0065006e007400f300770020006600690072006d006f0077007900630068002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e> /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e> /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e007400720075002000760069007a00750061006c0069007a00610072006500610020015f006900200074006900700103007200690072006500610020006c0061002000630061006c006900740061007400650020007300750070006500720069006f0061007201030020006100200064006f00630075006d0065006e00740065006c006f007200200064006500200061006600610063006500720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e> /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e> /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020007000720069006d00650072006e006900680020007a00610020007a0061006e00650073006c006a00690076006f0020006f0067006c00650064006f00760061006e006a006500200069006e0020007400690073006b0061006e006a006500200070006f0073006c006f0076006e0069006800200064006f006b0075006d0065006e0074006f0076002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e> /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e> /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e> /TUR <FEFF005400690063006100720069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900720020015f0065006b0069006c006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e> /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043d0430043404560439043d043e0433043e0020043f0435044004350433043b044f043404430020044204300020043404400443043a0443002004340456043b043e04320438044500200434043e043a0443043c0435043d044204560432002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e> /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f043e04340445043e0434044f04490438044500200434043b044f0020043d0430043404350436043d043e0433043e0020043f0440043e0441043c043e044204400430002004380020043f04350447043004420438002004340435043b043e0432044b044500200434043e043a0443043c0435043d0442043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e> >> /Namespace [ (Adobe) (Common) (1.0) ] /OtherNamespaces [ << /AsReaderSpreads false /CropImagesToFrames true /ErrorControl /WarnAndContinue /FlattenerIgnoreSpreadOverrides false /IncludeGuidesGrids false /IncludeNonPrinting false /IncludeSlug false /Namespace [ (Adobe) (InDesign) (4.0) ] /OmitPlacedBitmaps false /OmitPlacedEPS false /OmitPlacedPDF false /SimulateOverprint /Legacy >> << /AllowImageBreaks true /AllowTableBreaks true /ExpandPage false /HonorBaseURL true /HonorRolloverEffect false /IgnoreHTMLPageBreaks false /IncludeHeaderFooter false /MarginOffset [ 0 0 0 0 ] /MetadataAuthor () /MetadataKeywords () /MetadataSubject () /MetadataTitle () /MetricPageSize [ 0 0 ] /MetricUnit /inch /MobileCompatible 0 /Namespace [ (Adobe) (GoLive) (8.0) ] /OpenZoomToHTMLFontSize false /PageOrientation /Portrait /RemoveBackground false /ShrinkContent true /TreatColorsAs /MainMonitorColors /UseEmbeddedProfiles false /UseHTMLTitleAsMetadata true >> << /AddBleedMarks false /AddColorBars false /AddCropMarks false /AddPageInfo false /AddRegMarks false /BleedOffset [ 0 0 0 0 ] /ConvertColors /ConvertToRGB /DestinationProfileName (sRGB IEC61966-2.1) /DestinationProfileSelector /UseName /Downsample16BitImages true /FlattenerPreset << /PresetSelector /MediumResolution >> /FormElements true /GenerateStructure false /IncludeBookmarks false /IncludeHyperlinks false /IncludeInteractive false /IncludeLayers false /IncludeProfiles true /MarksOffset 6 /MarksWeight 0.250000 /MultimediaHandling /UseObjectSettings /Namespace [ (Adobe) (CreativeSuite) (2.0) ] /PDFXOutputIntentProfileSelector /DocumentCMYK /PageMarksFile /RomanDefault /PreserveEditing true /UntaggedCMYKHandling /UseDocumentProfile /UntaggedRGBHandling /LeaveUntagged /UseDocumentBleed false >> ] >> setdistillerparams << /HWResolution [600 600] /PageSize [419.528 595.276] >> setpagedevice