A realization of the uncertainty uniformity principle in a grouting model

A method of a realization of the uncertainty uniformity principle in grouting model calculations is described.

Gespeichert in:
Bibliographische Detailangaben
Datum:2012
Hauptverfasser: Demchuk, M., Saiyouri, N.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут кібернетики ім. В.М. Глушкова НАН України 2012
Schriftenreihe:Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/48877
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:A realization of the uncertainty uniformity principle in a grouting model / M. Demchuk, N. Saiyouri // Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки: зб. наук. пр. — Кам’янець-Подільський: Кам'янець-Подільськ. нац. ун-т, 2012. — Вип. 7. — С. 77-92. — Бібліогр.: 20 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-48877
record_format dspace
spelling irk-123456789-488772013-09-06T03:05:36Z A realization of the uncertainty uniformity principle in a grouting model Demchuk, M. Saiyouri, N. A method of a realization of the uncertainty uniformity principle in grouting model calculations is described. Описаний спосіб реалізації принципу рівномірності похибки в розрахунках згідно моделі нагнітання. 2012 Article A realization of the uncertainty uniformity principle in a grouting model / M. Demchuk, N. Saiyouri // Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки: зб. наук. пр. — Кам’янець-Подільський: Кам'янець-Подільськ. нац. ун-т, 2012. — Вип. 7. — С. 77-92. — Бібліогр.: 20 назв. — англ. XXXX-0059 http://dspace.nbuv.gov.ua/handle/123456789/48877 624.048-033.26:621.651 en Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки Інститут кібернетики ім. В.М. Глушкова НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description A method of a realization of the uncertainty uniformity principle in grouting model calculations is described.
format Article
author Demchuk, M.
Saiyouri, N.
spellingShingle Demchuk, M.
Saiyouri, N.
A realization of the uncertainty uniformity principle in a grouting model
Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки
author_facet Demchuk, M.
Saiyouri, N.
author_sort Demchuk, M.
title A realization of the uncertainty uniformity principle in a grouting model
title_short A realization of the uncertainty uniformity principle in a grouting model
title_full A realization of the uncertainty uniformity principle in a grouting model
title_fullStr A realization of the uncertainty uniformity principle in a grouting model
title_full_unstemmed A realization of the uncertainty uniformity principle in a grouting model
title_sort realization of the uncertainty uniformity principle in a grouting model
publisher Інститут кібернетики ім. В.М. Глушкова НАН України
publishDate 2012
url http://dspace.nbuv.gov.ua/handle/123456789/48877
citation_txt A realization of the uncertainty uniformity principle in a grouting model / M. Demchuk, N. Saiyouri // Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки: зб. наук. пр. — Кам’янець-Подільський: Кам'янець-Подільськ. нац. ун-т, 2012. — Вип. 7. — С. 77-92. — Бібліогр.: 20 назв. — англ.
series Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки
work_keys_str_mv AT demchukm arealizationoftheuncertaintyuniformityprincipleinagroutingmodel
AT saiyourin arealizationoftheuncertaintyuniformityprincipleinagroutingmodel
AT demchukm realizationoftheuncertaintyuniformityprincipleinagroutingmodel
AT saiyourin realizationoftheuncertaintyuniformityprincipleinagroutingmodel
first_indexed 2025-07-04T09:38:50Z
last_indexed 2025-07-04T09:38:50Z
_version_ 1836708718860828672
fulltext Серія: Фізико-математичні науки. Випуск 7 77 UDC 624.048-033.26:621.651 Mykola Demchuk*, Master of Science, Nadia Saiyouri**, Doctor of Ecole Centrale de Paris *National University of Water Management and Natural Resources Use, Rivne, **Research Institute of Civil and Mechanical Engineering (GeM), Nantes, France A REALIZATION OF THE UNCERTAINTY UNIFORMITY PRINCIPLE IN A GROUTING MODEL A method of a realization of the uncertainty uniformity prin- ciple in grouting model calculations is described. Key words: method error, numerical solution analysis, uncer- tainty uniformity principle, high gradient region. Introduction. Before creations of foundations on weak soil plots, to make better elastic properties of soil tracts the grouting operations are per- formed. In this technique a cement grout is injected under high pressure (10— 30 bars) into a dry porous medium or water saturated one. The aim is reached after the grout hardening. The infiltrate is composed of particles that can be responsible for the phenomenon called the deep bed filtration or the depth filtration. Depending on particle and pore throat sizes two limiting cases are distinguished in the description of this phenomenon. In the first case, large particles are trapped by small pore throats. Whereas in the second case, small particles deposit over large pore bodies and large pore throats that result in a gradual reduction of pore throat sizes [19, p. 1637]. Grouting is rather costly and time consuming. Its regime is deter- mined by the concentration distribution evolution [12, p. 1195]. Therefore, a calculation of this evolution using mathematical modeling is important. A grouting model is only a simplified version of a real system containing a porous medium and an infiltrate. It is constructed to simulate the excita- tion-response relations of the modeled system [11, p. 11]. In article [3, p. 61—63] it was argued that under condition 8 LV t a   (1) where V is the fluid particle velocity, La is the coefficient of the longitu- dinal dispersion of the cement concentration in the fluid phase during an injection of the grout in the water saturated porous medium, and t is the injection duration, the peculiarities of a solute propagation in a porous medium can be neglected, and grouting can be modeled by a problem with a free moving boundary (1) is usually satisfied in fieldworks [3, p. 72; 4, p. 123]. Therefore, if a grouting model does not belong to the class of © Mykola Demchuk, Nadia Saiyouri, 2012 Математичне та комп’ютерне моделювання 78 problems with free moving boundaries, then it can be referred to the class of problems about pollution propagations. Articles [5, p. 46; 12, p. 1215— 1216; 15, p. 5—6; 16, p. 230—233] deal with modeling of the standard laboratory test described in the next section. In several papers [1, p. 675; 2, p. 269; 3, p. 63; 13, p. 670—671; 14, p. 1042—1043; 18, p. 166; 20, p. 211—212] a cement grout propagation in a porous medium is examined in configurations more realistic during in situ grouting. In part of them [14, p. 1048; 18, p. 166] it is indicated that the deep bed filtration is not a do- minant phenomenon. Existing models of a cement grout propagation in a porous medium use different sets of simplifying assumptions. In models [5, p. 48—50; 14, p. 1040—1041; 15, p. 2—3; 16, p. 228—230; 18, p. 165—168; 20, p. 212—214] the ground skeleton is regarded as absolutely rigid, while in models [1, p. 675—685; 2, p. 269—271; 3, p. 63—65; 12, p. 1211—1215; 13, p. 669—670] it is assumed to be deformable. In models [1, p. 675— 685; 2, p. 269—271; 3, p. 63—65; 20, p. 212—214] peculiarities of a so- lute propagation in a porous medium are neglected, in model [18, p. 165— 168] the hydromechanical dispersion and diffusion are neglected, and in models [15, p. 2—3; 5, p. 48—50] the deep bed filtration is not taken into account. In models [14, p. 1040—1041; 16, p. 228—230] the first limiting case is assumed in the depth filtration description, while in models [12, p. 121—1215; 13, p. 669—670; 18, p. 165—168] the second one is as- sumed. A comparison of model calculations with laboratory measurements and calculation consistency checks justify the set of assumptions used in a model formulation. Amounts of information they provide depend upon values of uncertainties in compared quantities [5, p. 46—47]. There are three types of numerical calculation errors: the error due to uncertainties in input data, the round off error, and the error of a calculation method [8, p. 11]. If input data are fixed, then the error of the first type is zero. If the finite difference scheme according to which the calculations are performed is conditionally stable, then the round off error is negligible. This property of the scheme is usually verified during a numerical solution analysis. Models [1, p. 675—685; 2, p. 269—271; 3, p. 63—65], and [20, p. 212— 214] belong to the class of problems with free moving boundaries. Condi- tion (1) implies high injection pressure values that are difficult to achieve in laboratory conditions. Therefore, calculations according to models of this type have not been compared with laboratory measurements yet. In each case considered in papers [2, p. 282—286; 3, p. 69—74], and [20, p. 218—221] the error of a numerical method of a calculation of the final injection front position was estimated using the assumption that a contri- bution of the uncertainty in this position due to the uncertainty in the Серія: Фізико-математичні науки. Випуск 7 79 choice of a method of a free surface interpolation on each time layer to this error is negligible. In paper [4, p. 128—129] it is shown that results of calculations presented in [2, p. 282—286; 3, p. 69—74], and [20, p. 218— 221] are consistent. Since these calculations were performed on scanty grids, this consistency check provides a small amount of information. In article [1, p. 675—685] the model solutions were found analytically. Since in the models belonging to the class of problems about pollution propaga- tions [5, p. 48—50; 12, p. 1219—1222; 13, p. 672; 14, p. 1045—1046; 15, p. 6; 16, p. 238; 18, p. 169—171] the sought functions contain high gra- dient regions, according to the uncertainty uniformity principle [10, p. 35] to estimate the approximation errors properly in these models calculations on time layers should be performed on non-uniform grids with smaller space increments inside these regions and larger ones outside them. Posi- tions of these high gradient regions are changing with time and not known in advance. Therefore, in these models calculation errors are not estimated. Instead, in papers [13, p. 675—676; 14, p. 1042], to prove that the chosen numerical methods are precise enough, the numerical solutions of bench- mark problems obtained by these methods were compared with their pre- cise analytical solutions. In paper [18, p. 168] in the limiting case of a small variation of porosity due to the depth filtration the analytical solu- tion of the model was obtained. To justify the numerical procedure used in [18, p. 169—171] this analytical solution was compared with numerical solutions of the model [18, p. 166—168] valid for signifi- cant as well as small variations of porosity due to the deep bed filtra- tion. The numerical methods used in papers [12, p. 1224; 16, p. 235] were validated in earlier articles. In article [15, p. 5], to circumvent numerical oscillations appearing near relatively sharp concentration fronts, the space and time increments were chosen to satisfy Courant and Peclet number restrictions. Calculations according to model [5, p. 48—50] have not been presented yet. The aim of this work is to develop a method of a proper treatment of high gradient regions in sought functions during numerical calculations according to model [5, p. 48—50]. Uniaxial injection test. The injection tests are performed in vertical col- umns of height 0,75 m and 0,08 m in diameter filled with Loire sand (0,70 m). Loire sand characteristics are available in [17, p. 1—7]. The sand is put in place in the column by layers and a compaction method is used to get a fixed density. The injection is performed at a constant pumping rate  31,5 6 impq E m s  after the sand has been saturated with water. The column is open at the top. The material properties are given in Table 1. Математичне та комп’ютерне моделювання 80 Three pressure transducers are positioned along the column and one at the bottom of the column (injection point). They are spaced out 0,2 m apart. The whole concentration field is not experimentally available, and only the grout front position can be obtained. It is detected by the acous- tic emission (AE) using transducers coupled with three wave guides which cross the sand column. They are horizontally placed at the same height as the pressure transducers. An increase of the acoustic activity is observed when the grout reaches the wave guide. Consequently, the grout front position is able to be detected at different times and locations in the sand column. The technique of AE is validated by performing in- jection tests in transparent columns. In this case, the grout propagation is visually followed, to ensure that the AE detection really occurred when the grout arrived at the wave guide. During injection tests the volume and the weight of injected grout, the pumping pressure, and the pumping rate are also recorded. Table 1 Material properties Porosity 0,335 Grout density 1370 3 kg m Grout viscosity 3 2, 9 10  Pa s Intrinsic permeability 11 1,17 10  2 m Diffusion coefficient 10 1, 0 10  2 m s Longitudinal dispersion coefficient 2 2, 0 10  m Compressibility coefficient 8 3, 0 10  1 Pa  Water viscosity 3 1,1 10  Pa s Figures (1a), (1b), and (1c) show the acoustic activity recorded by AE versus time for three transducers c1, c2, and c3 associated with the wave guides. Transducers c1, c2, and c3 detect the grout front at moments of time 1 100 st  , 2 250 st  , and 3 400 st  respectively. Since they are spaced out 0,2 m apart, the fluid particle velocity can be estimated as 30, 2 150 1,33 10 V m s m s   . (2) Using data from Table 1 one can estimate 8 11La V s . Comparing this value with 1t , 2t , and 3t we can conclude that condition (1) is not satisfied. Figure (1d) shows the evolution of the experimental injection pressure with time. It exhibits oscillations due to vibrations of the pump during the injection. Серія: Фізико-математичні науки. Випуск 7 81 Fig. 1. (a), (b), (c) Grout propagation followed by transducers c1, c2, c3. (d) Evolution of the experimental injection pressure with time A grouting model belonging to the class of problems about pollu- tion propagations. We assume that the coordinate origin is chosen at the injection point and that the coordinate axis is directed upward. In this work we use the following notations.  is a small positive parameter, 0 and 1 are large positive parameters. They are introduced in the model to conform initial conditions with boundary conditions, and their values will be obtained later in the result of the analysis of the numerical solutions.  ,I L  is an interval (a set of points  x :  ,x L  ).  0,TI I T  is a rectangle (a set of points  ,x t :  x I ,  0,t T ), ,1TA is the bottom side of TI (a set of points  , t :  0,t T ), ,2TA is the top side of TI (a set of points  , L t :  0,t T ),  ,p x t and  ,c x t denote the pore fluid pres- sure and the grout concentration respectively. K is the permeability of the medium, m is the medium porosity,  is the fluid phase density, g is the acceleration of free fall, 1 and impc are the grout viscosity and the grout concentration inside the injector respectively, 2 is the water viscosity. La is the longitudinal dispersion coefficient, *D is the diffusion coefficient, Математичне та комп’ютерне моделювання 82  1 2 2impc c      , * h LD a V D  ,  V K p x g m      .  f x   is the function that tends to the function   0, 0, 1 2, 0, 1, 0, if x x if x if x       (3) with    [6, p. 677]. S is the area of the interface between the injec- tor and the porous medium, L is the tube length,     ,0 1 2 0 21L f L        ,     0,0 1 2 0 21 f          ,     ,0 1 0 1 1 ,01L Lx L V V f x x df x dx        , 0 impV q S m . In recent paper [5, p. 48—50] the mathematical model of the labora- tory experiment described in the previous section with boundary condi- tions conforming to initial ones has been formulated. In it the ground ske- leton is regarded as absolutely rigid and the deep bed filtration is not taken into account. This model is the following system of two partial differential equations valid for such values x and t that  , Tx t I  hm c t mV c x mD c x x           , (4)      0pm p t V p x K p x g x              (5) with such initial conditions valid if 0t  and x I     1 0 1 1p g L x mV x f x K      , (6)   01 impc f x c    (7) and boundary conditions     1 0 1 11p x mV f x x df x dx K g            , (8)   01impс c f     (9) where   ,1, Tx t A and   1 0 1 1p mV L f L K   , (10)       0 ,0 * *imp L L Lc x c df x dx a V D a V D       (11) where   ,2, Tx t A . In this model at any moment of time t such that 00 t L V  the in- jection front position is determined by high gradient regions of cement concentration and pore fluid pressure space distributions. The positions of Серія: Фізико-математичні науки. Випуск 7 83 these regions are changing with time and are not known in advance. Therefore, in this work we are looking for each numerical space distribu- tion evolution in the form of the sum of two functions. The first one is modeling the evolution of the respective distribution high gradient region, while the second one does not have such region. Although condition (1) is not satisfied according to estimations made in the second section, the solu- tion of the injection test model with a free moving boundary can provide a good start for the model function construction. A grouting model with a free moving boundary. In this section we develop a mathematical model with a free moving boundary of the standard laboratory test described in the second section for the injection duration T such that 0T L V . We assume that the grout penetrates the water saturated sand filling the tube a distance 0 0x V t from the injection point by the mo- ment of time t . We chose the upward direction as positive direction of 3x axis and place the coordinate origin in the center of the bottom tube side. We assume that by the moment of time t the sand in the bottom part of the tube  3 00 x V t  is saturated with cement grout, while the sand in the upper part of the tube  0 3V t x L  is saturated with water. Since the solution of this model is used for a model function construction, we assume that water and grout densities are identical and equal  . In this section we use the following notations.  is a circle (a set of points  1 2, x x : 2 2 1 2x x R  ) where R is the tube radius.    1 00, Q t V t  is a cylinder (a set of points  1 2 3, , x x x :  1 2, x x  ,  3 00, x V t ), 1S is the bottom base of  1Q t (a set of points  1 2 3, , x x x :  1 2, x x  , 3 0x  ), 2S is the side surface of  1Q t (a set of points  1 2 3, , x x x : 2 2 2 1 2x x R  ,  3 00, x V t ),    2 0 ,Q t V t L  is a cylinder (a set of points  1 2 3, , x x x :  1 2, x x  ,  3 0 ,x V t L ), 3S is the top base of  1Q t or the bottom base of  2Q t (a set of points  1 2 3, , x x x :  1 2, x x  , 3 0x V t ), 4S is the side surface of  2Q t (a set of points  1 2 3, , x x x : 2 2 2 1 2x x R  ,  3 0 , x V t L ), 5S is the top base of  2Q t (a set of points  1 2 3, , x x x :  1 2, x x  , 3x L ). The ground skeleton is regarded as absolutely rigid. Therefore, at any moment of time t such that 00 t L V  the head function  1 1 1 2 3 3, , , ,h p x x x t g x  (12) Математичне та комп’ютерне моделювання 84 where 1p is the grout pressure satisfies at any point  1 2 3, , x x x such that    1 2 3 1, , x x x Q t the following equation [7, p. 38] 2 2 2 2 2 2 1 1 1 1 2 1 3 0h h x h x h x           (13) and satisfies on the boundary of  1Q t the following conditions: 1 1 01 1n S m Vh K g          , 2 1 2 0 n S h    , 3 1 01 3n S m Vh K g           . (14) In equations (14) ni  is external with respect to the interior of  1Q t and normal to iS unit vector where 1,3i  . At the same moment of time t the head function  2 2 1 2 3 3, , ,h p x x x t g x  (15) where 2p is the water pressure satisfies at any point  1 2 3, , x x x such that    1 2 3 2, , x x x Q t the following equation [7, p. 38] 2 2 2 2 2 2 2 2 1 2 2 2 3 0h h x h x h x         (16) and satisfies on the boundary of  2Q t the following conditions: 3 2 02 3l S m Vh K g         , 4 2 4 0 l S h    , 5 2 02 5l S m Vh K g          , 5S h L . (17) In equations (17) li  is external with respect to the interior of  2Q t and normal to iS unit vector where 3,5i  . In addition, we assume that at any moment of time t the pore fluid pressure is continuous on 3S     3 3 1 3 2 3S S h x h x   . (18) Definition 1. The classical solution of the system of the boundary problems (13), (14), (16)–(18) is a pair of functions  1 1 2 3, , ,h x x x t and  2 1 2 3, , ,h x x x t with the following properties. 1. If    1 2 3 1, , x x x Q t     1 2 3 2, , x x x Q t , then all derivatives of function  1 1 2 3, , ,h x x x t   2 1 2 3, , ,h x x x t with respect to variables 1x , 2x , and 3x up to the second order at any fixed t such that 00 t L V  are continues. Серія: Фізико-математичні науки. Випуск 7 85 2. If    1 2 3 1, , x x x Q t     1 2 3 2, , x x x Q t , then function  1 1 2 3, , ,h x x x t   2 1 2 3, , ,h x x x t and all its first derivatives with respect to variables 1x , 2x , and 3x at any fixed t such that 00 t L V  are continues. 3. If    1 2 3 1, , x x x Q t     1 2 3 2, , x x x Q t , then function  1 1 2 3, , ,h x x x t   2 1 2 3, , ,h x x x t satisfies equation (13) ((16)) at any fixed t such that 00 t L V  . 4. At any fixed t such that 00 t L V  function  1 1 2 3, , ,h x x x t satis- fies the first equation, the second one, and the third one of equations (14) on 1S , 2S , and 3S respectively. 5. At any fixed t such that 00 t L V  function  2 1 2 3, , ,h x x x t satis- fies the first equation and the second one of equations (17) on 3S and 4S respectively. 6. At any fixed t such that 00 t L V  function  2 1 2 3, , ,h x x x t satis- fies the third equation and the fourth one of equations (17) on 5S . 7. At any fixed t such that 00 t L V  functions  1 2 3, , ,ih x x x t where 1,2i  satisfy equation (18) on 3S . Theorem 1. If the classical solution of boundary problem system (13), (14), (16)–(18) exists, then it is unique. Proof. Let us assume that there are two classical solutions of boundary problem system (13), (14), (16)—(18)  1 2 3, , ,ih x x x t and  1 2 3, , ,ih x x x t where 1,2i  . To prove that  1 2 3, , ,ih x x x t   1 2 3, , ,ih x x x t where 1, 2i  , we denote their difference in the following way    1 2 3 1 2 3, , , , , ,i i iw h x x x t h x x x t   , 1,2i  . (19) If two functions  1 2 3, ,u x x x ,  1 2 3, ,v x x x , and all their first derivatives are continuous on  iQ t , and all their second derivatives are continuous on  iQ t where 1i  or 2i  , then the following Green’s formula holds [9, p. 291]           3 1 i i i j j jQ t Q t t u vd u x v x d u v n d                 . (20) Here  i t is the piecewise-smooth boundary of  iQ t , 1 2 3d dx dx dx  is a volume element, d is an area element. Substituting iw where 1i  or 2i  in (20) instead of u and v , we get Математичне та комп’ютерне моделювання 86          3 2 1 i i i i i i j i i jQ t Q t t w w d w x d w w n d               . (21) Since 1 1 0h h    in  1Q t and 2 2 0h h    in  2Q t , the left hand side of equation (21) equals zero. Since the normal derivative of 1w is equal to zero on surface iS where 1,3i  , and the normal derivative of 2w is equal to zero on surface jS where 3,5j  , the surface integral in the right hand side of equation (21) is equal to zero. Therefore, from equa- tion (21) it follows that          2 2 2 1 2 3 0 i i i i Q t w x w x w x d         . An integral of a sum of squares can be equal to zero only if each of addi- tives is equal to zero: 1 0iw x   , 2 0iw x   , 3 0iw x   . (22) (22) implies that i iw c in  iQ t where ic is a constant and 1,2i  . Since 2 0w  on 5S , 2c is equal to zero. From equations (18) and (19) it follows that on 3S the following equality holds 1 2c c . Therefore, 1c equals zero. Thus, we proved that 0iw  where 1, 2i  . The theorem is proved. Theorem 2. If 00 t L V  , then the pair of functions      0 1 0 2 1 1 2 3 0 3 0 0, , , 1 mV mV h x x x t V t x L V t V t K g K g                , (23)    2 1 2 3 3 0 2, , ,h x x x t L x mV K g L    (24) is the classical solution of boundary problem system (13), (14), (16)— (18). In (23) and (24)  1 2 3 1, ,x x x Q and  1 2 3 2, ,x x x Q respectively. Proof. From equations (23) and (24) it follows that functions  1 1 2 3, , ,h x x x t and  2 1 2 3, , ,h x x x t satisfy the first two properties from definition 1. Substituting the right hand side of equation (23) in equations (13), (14), and (18) instead of  1 1 2 3, , ,h x x x t and the right hand side of equation (24) in equations (16)–(18) instead of  2 1 2 3, , ,h x x x t , it is easy to check that functions  1 1 2 3, , ,h x x x t and  2 1 2 3, , ,h x x x t satisfy proper- ties 3—7 from definition 1. Thus, the pair of functions  1 1 2 3, , ,h x x x t and  2 1 2 3, , ,h x x x t is the classical solution of boundary problem system (13), (14), (16)—(18). The theorem is proved. Серія: Фізико-математичні науки. Випуск 7 87 From equations (12) and (23) it follows that if 00 t L V  and    1 2 3 1, ,x x x Q t , then      1 0 2 0 1 0 3 0p L V t g mV K g mV K x V t         . (25) In its turn, from equations (15) and (24) it follows that if 00 t L V  and    1 2 3 2, ,x x x Q t , then   2 2 0 3p mV K g L x    . (26) In this model it is assumed that at any moment of time t such that 00 t L V  the cement concentration is equal to impc in  1Q t and equals zero in  2Q t . Therefore, assuming 3x x the solution of this model can be written in the form           1 0 2 1, , , ,p x t p x t x V t p x t p x t    , (27)     0, 1 impc x t x V t c    (28) where  0x V t  is calculated according to equation (3) and  1 ,p x t ,  2 ,p x t are calculated according to equations (25) and (26) respectively. Model function construction. During an injection a transition zone separates the domain in which the cement concentration is equal to impc from the zero concentration one. The concentration is monotonic conti- nuous function inside this transition zone. If condition (1) is satisfied, then this zone is narrow with respect to the first domain [3, p. 61–63]. In this case, assuming that the sand column is sufficiently high, this zone can be treated as a sharp boundary between fluid in which the concentration equals impc and zero concentration one. As it was shown in the second section, condition (1) is not satisfied in the modeled test. This condition is derived, analyzing the analytical solution of the following partial differen- tial equation valid for 0 x   and 0t  2 2D c x V c x c t         (29) where D and V are positive constants with the following initial and boundary conditions valid for 0 x   and 0t  :  ,0 0c x  ,  , 0c t  ,   00,c t c (30) where 0c is a positive constant. Equations (29), (30) do not contain the acceleration of free fall. Comparing equation (29) and equation (4) one can assume (assumption #1) that the gravity force causes the shift of the injec- tion front velocity V equal to K g  . Therefore, to construct the Математичне та комп’ютерне моделювання 88 function modeling the pore fluid pressure high gradient region evolution, we need to substitute   1pf x V t   instead of  0x V t  in equation (27) where here and bellow 1 0 effV V K g   , p is a large constant, eff is defined below. In addition, we need to substitute      1 1 2 1 1 1 ,effp L V t g mV K g mV K x V t         (31) where effV is defined below and    2 1wp mV K g L x    (32) instead of  1 ,p x t and  2 ,p x t respectively in equation (27). In its turn, to construct the function modeling the cement concentration high gradient region evolution, we need to substitute   1cf x V t   where c is a large constant instead of  0x V t  in equation (28). To estimate the model calculation error properly we need to use two methods to find the numerical solution of problem (4)—(11). In the first one the problem (4)— (11) is discretized at once, while in the second one we are looking for the numerical solution in the form      (0) (1), , ,p x t p x t p x t  ,      (0) (1), , , ,c x t c x t c x t  where            (0) 1 1 2 1, , , ,pp x t p x t f x V t p x t p x t       , (33)     (0) 1, 1 c impс x t f x V t с       . (34) Performing calculations by the second method we assume (assumption №2) that calculation results obtained when  1 2 2eff    and  0 1 2effV V V  do not sufficiently deviate from ones obtained when 1 2eff    and 0 1effV V V  . Functions  (0) ,p x t and  (0) ,c x t are modeling high gradient region evolutions of pore fluid pressure and cement concentration respectively. In equation (33)  1 ,p x t and  2 ,p x t are calculated according to equations (31) and (32) respectively. Analyzing the analytical solution of problem (29), (30) it was shown in [3, p. 62] that the transition zone width is equal to 2 8Dt . Using data from Table 1 and estimation (2) one can estimate h LD a V . Since 1 8 LVt a , 2 8 LVt a , 3 8 LVt a where 1 100t s , 2 250t s , 3 400t s and, taking into account that problem (29), (30) is a rough model of the injection test at hand, we assume that the half of the transition zone width, which we denote Серія: Фізико-математичні науки. Випуск 7 89  , is given by the following expression 8 La  . We define the half of the transition zone width as the solution of the following equation  1 1 r cf e    (35) where r is such that ln(2)r  , and a method of its numerical determina- tion is described at the end of this section. Performing calculations by the second method we assume that if the order of magnitude of the value of p in the right hand side of equation (33) is the same as the order of mag- nitude of the value of с in the right hand side of equation (34), then nu- merical solution is not sensitive to the choice of the value of p (assump- tion №3). Therefore, in what follows we assume that p с  . Assuming 8 La  we find the value of с solving equation (35). To find the numerical solution of problem (4)—(11) we cover TI with uniform grid  , , , , 0, ; N M i j ix t x i h i N       , 0, jt j j M   where  h L N  and T M  . Performing an analysis of numerical solutions of problem (4)—(11) one can use the following measure of a difference between two space dis- tributions of the cement concentration or the pore fluid pressure  1 ,f x t and  2 ,f x t at a chosen moment of time t        1 2 0, , ,max x L t f x t f x t    . We denote the measure of the difference between the space distribu- tion of the cement concentration (the pore fluid pressure) at a given mo- ment of time obtained by the second method on grid 1 22 ,2N N and the one obtained by the second method on grid 1 2,N N as 1 с  1 p . We denote the measure of the difference between the space distribution of the cement concentration (the pore fluid pressure) at a given moment of time obtained by the first method on grid 1 22 ,2N N and the one obtained by the second method on the same grid 1 22 ,2N N as 2 с  2 p . An approximation error of the discretized problem depends not only on the grid increment, but also on high order derivatives of the sought for function. For instance, substi- tuting the central difference formula instead of a function partial derivative in a nodal point  ,i jx t of ,N M and assuming that h is sufficiently small, the following approximate equality holds Математичне та комп’ютерне моделювання 90         32 3 , ,, , , 2 6 i j i ji j i jf x h t f x h tf x t f x th x h x          where    , , i i j j x x f x t f x t x x       ,    3 3 3 3 , , i i j j x x f x t f x t x x       . If the sought function contains high gradient region, then its high or- der derivatives are large in this region. Ideally, if the value of r is chosen correctly, then functions  (1) ,с x t and  (1) ,p x t do not contain such re- gions. Therefore, 1 с and 1 p are minimal at such value of r . It follows from equations (27), (28) that across the high gradient re- gion the value of the cement concentration in the fluid phase varies from impc to zero and the value of the derivative of the fluid pore pressure with respect to space coordinate varies approximately from 1 0g mV K   to 2 0g mV K   . The high gradient region of the numerical solution obtained by the first method on a uniform grid is dispersed. We give it the following explanation. If a nodal point ix x , jt t where 0 i N  and 0 j M  belongs to the high gradient region, then the calculation of the first derivative of the cement concentration with respect to the space coordinate and the calculation of the second derivative of the pore fluid pressure with respect to the space coordi- nate at this point according to the following formulas       , , , 2j i j i jc x t x c x h t c x h t h      ,         2 2 2, , 2 , ,j i j i j i jp x t x p x h t p x t p x h t h        give values smaller than respective real ones. Therefore, according to Taylor expansion the numerical cement concentration function and the numerical first derivative of the pore fluid pressure with respect to the space coordinate reach their limiting values at a distance from the nodal point larger than real one. If the value of r used in calculations is close to real one, then the high gradient region of the numerical solution obtained by the second method on a uniform grid is sharp. Therefore, in numerical experiments we need to use the value of r at which the ratios 2 1 с с  and 2 1 p p  are maximal. Conclusions. The method of the proper treatment of high gradient regions in sought functions during numerical calculations according to model [5, p. 48—50] is developed. Серія: Фізико-математичні науки. Випуск 7 91 Afterwards, the analysis of numerical solutions of model [5, p. 48— 50] will be performed. The values of constants 0 , 1 , c , p ,  , and r will be chosen, the calculation error will be estimated, and assumptions № 1—3 will be checked as a result of this analysis. The calculations ac- cording to the models with free moving boundaries will be performed on relatively dense grids. The investigation will be conducted to check the hypothesis that in a model of the real scale cement grout injection in sand (condition (1) is satisfied) the deep bed filtration can be neglected. References 1. Веригин Н. Н. Нагнетание вяжущих растворов в горные породы в целях повышения прочности и водонепроницаемости оснований гидротехниче- ских сооружений / Н. Н. Веригин // Изв. Акад. Наук СССР, отд. техн. на- ук, 1952. — № 5. — C. 674–687. 2. Власюк А. П. Застосування числових конформних відображень до розв’язання крайової задачі з рухомою межею для рівняння параболічно- го типу у криволінійному чотирикутнику / А. П. Власюк, М. Б. Демчук, М. М. Обезюк // Вісн. Нац. ун-ту водн. госп-ва та природокористув, 2007. — Вип. 4 (40), ч. 3. — С. 268–286. 3. Демчук М. Б. Математичне моделювання процесу нагнітання в’яжучого розчину в пористе середовище / М. Б. Демчук // Математичне та комп’ютерне моделювання. Сер. фіз.-мат. науки : зб. наук. пр. — Кам’янець-Подільський : Кам’янець-Подільський національний універси- тет імені Івана Огієнка, 2010. — Вип. 4. — С. 61–75. 4. Демчук М. Б. Про моделі промислового циркулярного нагнітання цемен- тного розчину в сухий ґрунт / М. Б. Демчук // Искусственный интеллект. — 2011. — № 2. — С. 122–130. 5. Демчук М. Б. Узгоджена модель нагнітання цементного розчину в наси- чене пористе середовище / М. Б. Демчук // Наукові записки НАУКМА. Серія: комп’ютерні науки. — 2011. — Т. 125. — С. 46–51. 6. Корн Г. Справочник по математике для научных работников и инженеров / Г. Корн, Т. Корн. — М. : Наука, 1968. — 720 с. 7. Полубаринова-Кочина П. Я. Теория движения грунтових вод / П. Я. По- лубаринова-Кочина. — М. : Наука, 1977. — 664 с. 8. Рябенький В. С. Введение в вычислительную математику / В. С. Рябень- кий. — Физматлит, 2000. — 294 с. 9. Тихонов А. Н. Уравнения математической физики / А. Н. Тихонов, А. А. Самарский. — М. : Государственное издательство технико- теоретической литературы, 1953. — 679 с. 10. Федоренко Р. П. Введение в вычислительную физику / Р. П. Федоренко. — М. : Издательство Московского физико-технического института, 1994. — 526 с. 11. Bear J. Introduction to modeling of transport phenomena in porous media / J. Bear, Y. Bachmat. — Dordrecht : Kluwer Academic Publishers, 1990. — 553 p. 12. Bouchelaghem F. Mathematical and numerical filtration-advection-dispersion model of miscible grout propagation in saturated porous media / F. Bouchelag- Математичне та комп’ютерне моделювання 92 hem, L. Vulliet // International journal for numerical and analytical methods in Geomechanics, 2001. — Vol. 25, № 12. — P. 1195–1227. 13. Bouchelaghem F. Two large-scale injection experiments, and assessment of the advection–dispersion–filtration model / F. Bouchelaghem // Géotechnique, 2002. — Vol. 52, № 9. — P. 667–682. 14. Chupin O. Modeling of a semi-real injection test in sand / O. Chupin, N. Saiyouri, P.-Y. Hicher // Computers and Geotechnics. — 2009. — Vol. 36, Issue 6. — P. 1039–1048. 15. Chupin O. Numerical modeling of cement grout injection in saturated porous media / O. Chupin, N. Saiyouri, P.-Y. Hicher [electronic resource] : Proceed- ings of the 16th Engineering Mechanics conference, (University of Washing- ton, Seatle, 2003). — The regime of an accesses to the paper.: www.ce.washington.edu/em03/proceedings/papers/627.pdf. 16. Chupin O. The effects of filtration on the injection of cement-based grouts in sand columns / O. Chupin, N. Saiyouri, P.-Y. Hicher // Transport in porous media, 2008. — Vol. 72, № 2. — P. 227–240. 17. Dano C. Characterization of Loire river sand in the small strain domain using new bender extender elements. / C. Dano, H. Hareb, P.-Y. Hicher [electronic resource] : Proceedings of the 16th Engineering Mechanics conference, (Uni- versity of Washington, Seatle, 2003). — The regime of an accesses to the pa- per.: www.gdsinstrumrnts.com/support/pdf/dano_bender_extender.pdf. 18. Maghous S. A model for in situ grouting with account for particle filtration / S. Maghous, Z. Saada, L. Dormieux, J. Canou, J. C. Dupla // Computers and Geotechnics, 2007. — Vol. 34, Issue 3. — P. 164–174. 19. Sharma M. M. Transport of particulate suspensions in porous media: model formulation / M. M. Sharma, Y. C. Yortsos // American Institute of Chemical Engineers Journal, 1987. — Vol. 33, № 10. — P. 1636–1643. 20. Vlasyuk A. P. Numerical solution of a problem of giving waterside structure foundation strength / A. P. Vlasyuk, M. B. Demchuk // Scientific Bulletin of Chelm. Section of mathematics and computer science, 2007. — № 1. — P. 211–222. Описаний спосіб реалізації принципу рівномірності похибки в ро- зрахунках згідно моделі нагнітання. Ключові слова: похибка методу, аналіз числових розв’язків, принцип рівномірності похибки, область високих градієнтів. Отримано: 02.04.2012 << /ASCII85EncodePages false /AllowTransparency false /AutoPositionEPSFiles true /AutoRotatePages /All /Binding /Left /CalGrayProfile (Gray Gamma 2.2) /CalRGBProfile (sRGB IEC61966-2.1) /CalCMYKProfile (Coated FOGRA27 \050ISO 12647-2:2004\051) /sRGBProfile (sRGB IEC61966-2.1) /CannotEmbedFontPolicy /Warning /CompatibilityLevel 1.3 /CompressObjects /Tags /CompressPages true /ConvertImagesToIndexed true /PassThroughJPEGImages true /CreateJobTicket false /DefaultRenderingIntent /Default /DetectBlends true /DetectCurves 0.1000 /ColorConversionStrategy /sRGB /DoThumbnails false /EmbedAllFonts true /EmbedOpenType false /ParseICCProfilesInComments true /EmbedJobOptions true /DSCReportingLevel 0 /EmitDSCWarnings false /EndPage -1 /ImageMemory 1048576 /LockDistillerParams false /MaxSubsetPct 100 /Optimize true /OPM 1 /ParseDSCComments true /ParseDSCCommentsForDocInfo true /PreserveCopyPage true /PreserveDICMYKValues true /PreserveEPSInfo false /PreserveFlatness false /PreserveHalftoneInfo false /PreserveOPIComments false /PreserveOverprintSettings true /StartPage 1 /SubsetFonts true /TransferFunctionInfo /Apply /UCRandBGInfo /Remove /UsePrologue false /ColorSettingsFile () /AlwaysEmbed [ true ] /NeverEmbed [ true /Arial-Black /Arial-BlackItalic /Arial-BoldItalicMT /Arial-BoldMT /Arial-ItalicMT /ArialMT /ArialNarrow /ArialNarrow-Bold /ArialNarrow-BoldItalic /ArialNarrow-Italic /ArialUnicodeMS /CenturyGothic /CenturyGothic-Bold /CenturyGothic-BoldItalic /CenturyGothic-Italic /CourierNewPS-BoldItalicMT /CourierNewPS-BoldMT /CourierNewPS-ItalicMT /CourierNewPSMT /Georgia /Georgia-Bold /Georgia-BoldItalic /Georgia-Italic /Impact /LucidaConsole /Tahoma /Tahoma-Bold /TimesNewRomanMT-ExtraBold /TimesNewRomanPS-BoldItalicMT /TimesNewRomanPS-BoldMT /TimesNewRomanPS-ItalicMT /TimesNewRomanPSMT /Trebuchet-BoldItalic /TrebuchetMS /TrebuchetMS-Bold /TrebuchetMS-Italic /Verdana /Verdana-Bold /Verdana-BoldItalic /Verdana-Italic ] /AntiAliasColorImages false /CropColorImages false /ColorImageMinResolution 150 /ColorImageMinResolutionPolicy /OK /DownsampleColorImages true /ColorImageDownsampleType /Bicubic /ColorImageResolution 150 /ColorImageDepth -1 /ColorImageMinDownsampleDepth 1 /ColorImageDownsampleThreshold 1.50000 /EncodeColorImages true /ColorImageFilter /DCTEncode /AutoFilterColorImages true /ColorImageAutoFilterStrategy /JPEG /ColorACSImageDict << /QFactor 0.76 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ColorImageDict << /QFactor 0.76 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /JPEG2000ColorACSImageDict << /TileWidth 256 /TileHeight 256 /Quality 15 >> /JPEG2000ColorImageDict << /TileWidth 256 /TileHeight 256 /Quality 15 >> /AntiAliasGrayImages false /CropGrayImages false /GrayImageMinResolution 150 /GrayImageMinResolutionPolicy /OK /DownsampleGrayImages true /GrayImageDownsampleType /Bicubic /GrayImageResolution 150 /GrayImageDepth -1 /GrayImageMinDownsampleDepth 2 /GrayImageDownsampleThreshold 1.50000 /EncodeGrayImages true /GrayImageFilter /DCTEncode /AutoFilterGrayImages true /GrayImageAutoFilterStrategy /JPEG /GrayACSImageDict << /QFactor 0.76 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /GrayImageDict << /QFactor 0.76 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /JPEG2000GrayACSImageDict << /TileWidth 256 /TileHeight 256 /Quality 15 >> /JPEG2000GrayImageDict << /TileWidth 256 /TileHeight 256 /Quality 15 >> /AntiAliasMonoImages false /CropMonoImages false /MonoImageMinResolution 1200 /MonoImageMinResolutionPolicy /OK /DownsampleMonoImages true /MonoImageDownsampleType /Bicubic /MonoImageResolution 1200 /MonoImageDepth -1 /MonoImageDownsampleThreshold 1.50000 /EncodeMonoImages true /MonoImageFilter /CCITTFaxEncode /MonoImageDict << /K -1 >> /AllowPSXObjects true /CheckCompliance [ /PDFX1a:2001 ] /PDFX1aCheck false /PDFX3Check false /PDFXCompliantPDFOnly false /PDFXNoTrimBoxError true /PDFXTrimBoxToMediaBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXSetBleedBoxToMediaBox true /PDFXBleedBoxToTrimBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXOutputIntentProfile (None) /PDFXOutputConditionIdentifier () /PDFXOutputCondition () /PDFXRegistryName () /PDFXTrapped /False /CreateJDFFile false /Description << /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064506390020064506420627064A064A0633002006390631063600200648063706280627063906290020062706440648062B0627062606420020062706440645062A062F062706480644062900200641064A00200645062C062706440627062A002006270644062306390645062706440020062706440645062E062A064406410629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E> /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043f043e04340445043e0434044f044904380020043704300020043d043004340435043604340435043d0020043f044004350433043b04350434002004380020043f04350447043004420020043d04300020043104380437043d0435044100200434043e043a0443043c0435043d04420438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e> /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002> /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002> /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd00630068002000700072006f002000730070006f006c00650068006c0069007600e90020007a006f006200720061007a006f007600e1006e00ed002000610020007400690073006b0020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e> /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e> /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e> /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.) /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e> /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e> /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e> /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003b103be03b903cc03c003b903c303c403b7002003c003c103bf03b203bf03bb03ae002003ba03b103b9002003b503ba03c403cd03c003c903c303b7002003b503c003b903c703b503b903c103b703bc03b103c403b903ba03ce03bd002003b503b303b303c103ac03c603c903bd002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e> /HEB <FEFF05d405e905ea05de05e905d5002005d105d405d205d305e805d505ea002005d005dc05d4002005db05d305d9002005dc05d905e605d505e8002005de05e105de05db05d9002000410064006f006200650020005000440046002005e205d105d505e8002005d405e605d205d4002005d505d405d305e405e105d4002005d005de05d905e005d4002005e905dc002005de05e105de05db05d905dd002005e205e105e705d905d905dd002e002005de05e105de05db05d90020005000440046002005e905e005d505e605e805d5002005e005d905ea05e005d905dd002005dc05e405ea05d905d705d4002005d105d005de05e605e205d505ea0020004100630072006f006200610074002005d5002d00410064006f00620065002000520065006100640065007200200035002e0030002005d505d205e805e105d005d505ea002005de05ea05e705d305de05d505ea002005d905d505ea05e8002e> /HRV (Za stvaranje Adobe PDF dokumenata pogodnih za pouzdani prikaz i ispis poslovnih dokumenata koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.) /HUN <FEFF00410020006800690076006100740061006c006f007300200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d0065006700740065006b0069006e007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200073007a00e1006e0074002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c00200068006f007a006800610074006a00610020006c00e9007400720065002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e> /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.) /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002> /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e> /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b0075007200690065002000740069006e006b006100200070006100740069006b0069006d006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e0074006900200076006500720073006c006f00200064006f006b0075006d0065006e007400750073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e> /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020007000690065006d01130072006f00740069002000640072006f016100610069002000620069007a006e00650073006100200064006f006b0075006d0065006e007400750020006100700073006b006100740065006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e> /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.) /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e> /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f0020006e00690065007a00610077006f0064006e00650067006f002000770079015b0077006900650074006c0061006e00690061002000690020006400720075006b006f00770061006e0069006100200064006f006b0075006d0065006e007400f300770020006600690072006d006f0077007900630068002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e> /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e> /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e007400720075002000760069007a00750061006c0069007a00610072006500610020015f006900200074006900700103007200690072006500610020006c0061002000630061006c006900740061007400650020007300750070006500720069006f0061007201030020006100200064006f00630075006d0065006e00740065006c006f007200200064006500200061006600610063006500720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e> /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e> /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020007000720069006d00650072006e006900680020007a00610020007a0061006e00650073006c006a00690076006f0020006f0067006c00650064006f00760061006e006a006500200069006e0020007400690073006b0061006e006a006500200070006f0073006c006f0076006e0069006800200064006f006b0075006d0065006e0074006f0076002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e> /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e> /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e> /TUR <FEFF005400690063006100720069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900720020015f0065006b0069006c006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e> /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043d0430043404560439043d043e0433043e0020043f0435044004350433043b044f043404430020044204300020043404400443043a0443002004340456043b043e04320438044500200434043e043a0443043c0435043d044204560432002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e> /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f043e04340445043e0434044f04490438044500200434043b044f0020043d0430043404350436043d043e0433043e0020043f0440043e0441043c043e044204400430002004380020043f04350447043004420438002004340435043b043e0432044b044500200434043e043a0443043c0435043d0442043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e> >> /Namespace [ (Adobe) (Common) (1.0) ] /OtherNamespaces [ << /AsReaderSpreads false /CropImagesToFrames true /ErrorControl /WarnAndContinue /FlattenerIgnoreSpreadOverrides false /IncludeGuidesGrids false /IncludeNonPrinting false /IncludeSlug false /Namespace [ (Adobe) (InDesign) (4.0) ] /OmitPlacedBitmaps false /OmitPlacedEPS false /OmitPlacedPDF false /SimulateOverprint /Legacy >> << /AllowImageBreaks true /AllowTableBreaks true /ExpandPage false /HonorBaseURL true /HonorRolloverEffect false /IgnoreHTMLPageBreaks false /IncludeHeaderFooter false /MarginOffset [ 0 0 0 0 ] /MetadataAuthor () /MetadataKeywords () /MetadataSubject () /MetadataTitle () /MetricPageSize [ 0 0 ] /MetricUnit /inch /MobileCompatible 0 /Namespace [ (Adobe) (GoLive) (8.0) ] /OpenZoomToHTMLFontSize false /PageOrientation /Portrait /RemoveBackground false /ShrinkContent true /TreatColorsAs /MainMonitorColors /UseEmbeddedProfiles false /UseHTMLTitleAsMetadata true >> << /AddBleedMarks false /AddColorBars false /AddCropMarks false /AddPageInfo false /AddRegMarks false /BleedOffset [ 0 0 0 0 ] /ConvertColors /ConvertToRGB /DestinationProfileName (sRGB IEC61966-2.1) /DestinationProfileSelector /UseName /Downsample16BitImages true /FlattenerPreset << /PresetSelector /MediumResolution >> /FormElements true /GenerateStructure false /IncludeBookmarks false /IncludeHyperlinks false /IncludeInteractive false /IncludeLayers false /IncludeProfiles true /MarksOffset 6 /MarksWeight 0.250000 /MultimediaHandling /UseObjectSettings /Namespace [ (Adobe) (CreativeSuite) (2.0) ] /PDFXOutputIntentProfileSelector /DocumentCMYK /PageMarksFile /RomanDefault /PreserveEditing true /UntaggedCMYKHandling /UseDocumentProfile /UntaggedRGBHandling /LeaveUntagged /UseDocumentBleed false >> ] >> setdistillerparams << /HWResolution [600 600] /PageSize [419.528 595.276] >> setpagedevice