Wavelets in the Transport Theory of Heterogeneous Reacting Solutes

Рассматривается дисперсионное уравнение одномерной конвекции (адвекции) теории транспорта гетерогенных реагирующих растворенных веществ в пористых средах. Вейвлетное решение получено в рамках мультирезольвентного анализа....

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2002
Автори: Cattani, C., Laserra, E.
Формат: Стаття
Мова:English
Опубліковано: Інститут гідромеханіки НАН України 2002
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/4947
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Wavelets in the Transport Theory of Heterogeneous Reacting Solutes / C. Cattani, E. Laserra // Прикладна гідромеханіка. — 2002. — Т. 4, № 3. — С. 75-77. — Бібліогр.: 7 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-4947
record_format dspace
spelling irk-123456789-49472009-12-30T12:00:33Z Wavelets in the Transport Theory of Heterogeneous Reacting Solutes Cattani, C. Laserra, E. Рассматривается дисперсионное уравнение одномерной конвекции (адвекции) теории транспорта гетерогенных реагирующих растворенных веществ в пористых средах. Вейвлетное решение получено в рамках мультирезольвентного анализа. Розглядається дiсперсiйне рiвняння одновимiрної конвекцiї (адвекцiї) теорiї транспорту гетерогенних реагуючих розчинених речовин у пористих середовищах. Вейвлетний розв'язок одержано в рамках мультирезольвентного аналiзу. In this paper we consider the one-dimensional convection (advection) dispersion equation of the transport theory of heterogeneous reacting solutes in porous media. A wavelet solution is in the framework of multi-resolution analysis. 2002 Article Wavelets in the Transport Theory of Heterogeneous Reacting Solutes / C. Cattani, E. Laserra // Прикладна гідромеханіка. — 2002. — Т. 4, № 3. — С. 75-77. — Бібліогр.: 7 назв. — англ. 1561-9087 http://dspace.nbuv.gov.ua/handle/123456789/4947 35А35, 47А58, 65N13, 65F10, 76W05 en Інститут гідромеханіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Рассматривается дисперсионное уравнение одномерной конвекции (адвекции) теории транспорта гетерогенных реагирующих растворенных веществ в пористых средах. Вейвлетное решение получено в рамках мультирезольвентного анализа.
format Article
author Cattani, C.
Laserra, E.
spellingShingle Cattani, C.
Laserra, E.
Wavelets in the Transport Theory of Heterogeneous Reacting Solutes
author_facet Cattani, C.
Laserra, E.
author_sort Cattani, C.
title Wavelets in the Transport Theory of Heterogeneous Reacting Solutes
title_short Wavelets in the Transport Theory of Heterogeneous Reacting Solutes
title_full Wavelets in the Transport Theory of Heterogeneous Reacting Solutes
title_fullStr Wavelets in the Transport Theory of Heterogeneous Reacting Solutes
title_full_unstemmed Wavelets in the Transport Theory of Heterogeneous Reacting Solutes
title_sort wavelets in the transport theory of heterogeneous reacting solutes
publisher Інститут гідромеханіки НАН України
publishDate 2002
url http://dspace.nbuv.gov.ua/handle/123456789/4947
citation_txt Wavelets in the Transport Theory of Heterogeneous Reacting Solutes / C. Cattani, E. Laserra // Прикладна гідромеханіка. — 2002. — Т. 4, № 3. — С. 75-77. — Бібліогр.: 7 назв. — англ.
work_keys_str_mv AT cattanic waveletsinthetransporttheoryofheterogeneousreactingsolutes
AT laserrae waveletsinthetransporttheoryofheterogeneousreactingsolutes
first_indexed 2025-07-02T08:05:46Z
last_indexed 2025-07-02T08:05:46Z
_version_ 1836521668977098752
fulltext ISSN 1561 -9087 �ਪ« ¤­  £÷¤à®¬¥å ­÷ª . 2002. �®¬ 4 (76), N 3. �. 75 { 77��� 35A35, 47A58, 65N13, 65F10, 76W05WAVELETS IN THE TRANSPORT THEORY OFHETEROGENEOUS REACTING SOLUTESC. CATTANI�, E. LA SERRA��� Dipartimento di Matematica \G.Castelnuovo", Univ. di Roma \La Sapienza", �� Dipartimento diMatematica e Informatica, Univ. di Salerno, Italia�®«ã祭® 03.04.2002In this paper we consider the one-dimensional convection (advection) dispersion equation of the transport theory ofheterogeneous reacting solutes in porous media. A wavelet solution is in the framework of multi{resolution analysis.� áᬠâਢ ¥âáï ¤¨á¯¥àᨮ­­®¥ ãà ¢­¥­¨¥ ®¤­®¬¥à­®© ª®­¢¥ªæ¨¨ ( ¤¢¥ªæ¨¨) ⥮ਨ â࠭ᯮàâ  £¥â¥à®£¥­­ëå ॠ-£¨àãîé¨å à á⢮७­ëå ¢¥é¥á⢠¢ ¯®à¨áâëå á। å. �¥©¢«¥â­®¥ à¥è¥­¨¥ ¯®«ã祭® ¢ à ¬ª å ¬ã«ìâ¨à¥§®«ì¢¥­â­®£® ­ «¨§ .�®§£«ï¤ õâìáï ¤÷ᯥàá÷©­¥ à÷¢­ï­­ï ®¤­®¢¨¬÷à­®ù ª®­¢¥ªæ÷ù ( ¤¢¥ªæ÷ù) ⥮à÷ù â࠭ᯮàâã £¥â¥à®£¥­­¨å ॠ£ãîç¨å஧稭¥­¨å à¥ç®¢¨­ ã ¯®à¨áâ¨å á¥à¥¤®¢¨é å. �¥©¢«¥â­¨© à®§¢'ï§®ª ®¤¥à¦ ­® ¢ à ¬ª å ¬ã«ìâ¨à¥§®«ì¢¥­â­®£® ­ «÷§ã.INTRODUCTIONThe transport theory of reacting solutes in a porousmedium is considered under the hypotheses that themotion of solute transport is unidirectional, isother-mal and devoid of instabilities; it takes place in aheterogeneous porous medium and the content, thedensity and the viscosity of the water in the medi-um are constant during the process. Since we aremainly interested in the chemical reaction equationswe assume that the physical parameters de�ning themedium are una�ected by the transport, leaving thesize of the pores, their distribution in the solid (andso on) unchanged. The chemical species de�ning thesolid are at rest (while the chemical species de�n-ing the solute are mobile) in the medium, so thatthe mathematical model of the transport solution un-der chemical reactions (source-free) is the followingalgebraic-di�erential system [6](�; D;Q constants)8>>>>>>>><>>>>>>>>: �@ci@t = Lci;L def= D @2@x2 �Q @@xfr �ci; @ci@t � = 0; (i = 1; : : : ;#P ; r = 1; : : :) ;(1)also called the convection-dispersion system. Sys-tem (1) is a di�erential and algebraic system in theunknown #P functions ci(x; t), #P being the num-ber of tenads [?] involved in the chemical reaction.The algebraic equations (1)3 express the relationships among concentrations of reaction participants, to beful�lled irrespective of the contributions of the in-dividual processes (both chemical and/or physical)in uencing the concentrations ci.1. ONE DIMENSIONALSOLUTETRANSPORTEQUATIONIn a one-dimensional domain � R let x bethe coordinate, I a �nite interval of time t, (I def=ft : 0 < t < T; T <1g). We consider a su�cient-ly fast and reversible reaction of heterogeneous type[6],where the medium's original solution consists oftwo reacting cations M1;M3 in equilibrium with acation exchanger 1 Me. The displacing solution con-tains a reacting cation M1 and a non{reacting anionM2. The transport a�ecting reaction is represent-ed by the chemical reactions (for binary cation ex-change) M1 +M3Me *)M3 +M1Me:There are four tenads in the system, three reactingM1;M3;Me and one chemical non{reacting speciesM2. The basic equations (1) for the concentrations1 Dissolved in water and solid phase transport participantsare given symbolsM andM , respectively.c C. Cattani, E. Laserra, 2002 75 ISSN 1561 -9087 �ਪ« ¤­  £÷¤à®¬¥å ­÷ª . 2002. �®¬ 4 (76), N 3. �. 75 { 77c1; �c1; c2; c3; �c3 are [6, p. 1237]8>>>>>>>>>>>><>>>>>>>>>>>>: �@c1@t + �@�c1@t = Lc1;�@c2@t = Lc2;�@c3@t + �@�c3@t = Lc3;�@�c1@t + �@�c3@t = 0K13 = �c1c3c1�c3 (2)with K13 a given constant. The e subscript, repre-senting �Me, has been dropped from the �c functions,for them � is the anologous of � and represents theporous medium's bulk density (mass of the medium'ssolids/the medium's volume). In the heterogeneousreactions both the liquid and solid phases are involvedin the tenads. From (2)4 we get�c1 + �c3 = c (3)since the exchange capacity does not vary with x.Then it follows:� @@t (c1 + c3) = L (c1 + c3)that, with the change of variable u = c1+c3, becomesthe linear equation �@u@t = Lu;whose solution can be expressed in terms of wavelets[2].Deriving the condition (2)5 with respect to t andtaking into account equation (3) we obtain from (2)1;4the following nonlinear system [6]:�� + �pig � @ci@t � �pig @cj@t = Lci i; j = 1; 3pi def= K13 (c� ci) ; g def= K13c1 + c3;from which we obtain the non-linear equationa@g@t = gLg; L def= D @2@x2 �Q @@xwith a suitable constant a. In particular, we restrictourselves to the following one-dimensional initial-boundary problem:@g@t = gLg; L def= D @2@x2 � Q @@x; (a = 1)8>><>>: u(x; 0) = uB(x); 0 � x � 1; t = 0;u(0; t) = 0; x = 0; t > 0;u(1; t) = 0; x = 1; t > 0 (4) and we assume as the initial functionuB(x) = 8<: 1; x 2 �1;�1; x 2 ��1;0; x 62 �1 [ ��1;�1 def= fx : 0 < x0 � x � x1 < 1g��1 def= fx : 0 < x1 � x � x2 < 1g (5)which corresponds to the realistic case of an impulsefunction when jx2 � x0j ! 0.2. MULTI{RESOLUTION ANALYSIS IN HAARBASISThe Haar scaling function �nk (x) def= 2n=2�(2nx�k)has a compact support on the dyadic intervalDnk def= � k2n ; k + 12n �;where its value is 1. The Haar family of wavelets nk (x) def= �2n2 (2nx� k) k;n2Z ; (6)is a complete orthonormal system for the L2(R) func-tions [5] nk (x) = 8>>>><>>>>: 1; x 2 � k2n ; k + 1=22n ��1; x 2 �k + 1=22n ; k + 12n �0; elsewhere : (7)Let Vn; n 2 Z be the subspace of L2(R) de�ned asthe set of the piecewise constant functions f(x) ofcompact support on Dnk ( n �xed) , and Wn theorthogonal subspace such that the axioms of multi{resolution (or multiscale) analysis [4, 5]are ful�lled,8<: L2(R) = Ln2ZWn = Vq � Lj�qWj; q 2 ZVn+1 = Vn �Wn; (8)being � the direct sum of orthogonal spaces. The setof functions f nkg (n 2 Z) represents an orthonormalbasis for L2(R).Fixing the resolution value N < 1, in (8), theL2(R) space is approximated by L2(R) �= NMn=0Wn;that is,f(x) �= �N+1f(x) def= �00 + NXn=0 nXk=0�nk nk (x); (9)76 C. Cattani, E. Laserra ISSN 1561 -9087 �ਪ« ¤­  £÷¤à®¬¥å ­÷ª . 2002. �®¬ 4 (76), N 3. �. 75 { 77 �¨á. 1. Haar-wavelet representation of the wave solutionbeing �n a projection operator into Vn+1, so that�n : L2(R)! Vn+1.Choosing a number of dyadic nodesxk def= k2n ; (k = 0; : : : ; 2n� 1) the dyadic discretiza-tion is the operator rn : L2(R)! L2 (Z(2�n)), withL2 (Z(2�n)) � L2(R) being the set of L2(R) func-tions sampled at xk. The action ofrn on f(x) is suchthat rnf(x) = fn with fn = ff0; f1; : : : ; f2n�1g andnfk def= f(x) jx=xk ; 0 � k � 2n � 1o. The fast Haar-wavelet transform H of fN is the linear operator [1,4] H : L2 (Z(2�n))! Vn j fN 7! HfN == ��00; �nk�n=0;:::;2N�1k=0;:::;n ; (10)where �00; �nk are the wavelet coe�cients.According to the above de�nitions, the projectionoperator �n : L2(R) ! Vn+1 is factorized as �n =Hrn.A p-order Cardinal spline, is a Cp�1([0; 1)) di�er-entiable operatorSp : L2�Z(2�N )�! Cp�2�[0; 1)� : fN 7! s(x) def= SpfN ;such that for the di�erential operatorL : L2�Z(2�N )�! L2�Z(2�N )�it is LH = HLSp: (11)There follows that, given the set fN and computedthe spline of a su�ciently large order, the spline{derivative of HfN belongs to the same space of fN[1, 4].According to the above, using splines and waveletsup to the resolution N , the approximate solution of the equation (4)is the vector uN (2 VN+1), i.e. as-suming the Euler formula for the time-derivative�N @u@t = uN+1 � uN+1�twe have from (4)uN+1 = uN +�tL�HuN�and, according to (11)uN+1 = �1 + �tHLSp�uN : (12)With the boundary condition (5),time step �t =0:01, and assuming in (4)1 Q = D = 1 and in(5)x0 = 14 ; x1 = 38 ; x2 = 12, after 3 time steps(t = 0:05) we obtain the evolving function of Fig.1. C. Cattani Haar Wavelet Spline // Journal of In-terdisciplinary Mathematics.{ 2001.{ vol.4, No. 1.{P. 35-47.2. C.Cattani and E.Laserra , // Transport Theory ofHomogeneous Reacting Solutes.{ Ukrainian Mathe-matical Journal.{ 2001.{ P. vol. 53, No. 8.1048-10523. C.Cattani and F.Passarella Nonsimple Porous mate-rials with Thermal Relaxation // Rend. Ist. Lombar-do Acc. di Scienze e Lett.,A.{ 1996.{ vol. 130, No 2.{P. 1-19.4. C.Cattani and M.Pecoraro Non Linear Di�erentialEquations in Wavelet Basis // Acoustic Bulletin.{2000.{ vol. 3, (4).{ P. 4-10.5. I.Daubechies Ten lectures on wavelets/CBMS-NSFRegional Conference Series in Applied Mathematics.{Philadelphia.:SIAM, 1992.6. J.Rubin Transport of Reacting Solutes in PorousMedia: Relation Between Mathematical Nature ofProblem Formulation and Chemical Nature of Reac-tions // Water Resour. Res.{ 1983.{ No 13.{ P. 1231-1252.7. D.Schweich and M.Sardin Absorption, partition, ionexchange, and chemical reaction in batch reactors orin columns // J. Hydrol.{ No 50.{ 1981.{ P. 1-33.C. Cattani, E. Laserra 77