Модули над групповыми кольцами локально конечных групп
Изучено RG-модуль A такой, что R — ассоциативное кольцо, A/CA(G) не является минимаксным R-модулем, CG(A)=1, G — локально конечная группа. Рассматривается система Lnm(G) всех подгрупп H≤G, для которых фактормодули A/CA(H) не являются минимаксными R-модулями. Исследован RG-модуль A такой, что Lnm(G)...
Gespeichert in:
Datum: | 2012 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | Russian |
Veröffentlicht: |
Видавничий дім "Академперіодика" НАН України
2012
|
Schriftenreihe: | Доповіді НАН України |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/49986 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Модули над групповыми кольцами локально конечных групп / О.Ю. Дашкова // Доп. НАН України. — 2012. — № 6. — С. 13-16. — Бібліогр.: 14 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineZusammenfassung: | Изучено RG-модуль A такой, что R — ассоциативное кольцо, A/CA(G) не является минимаксным R-модулем, CG(A)=1, G — локально конечная группа. Рассматривается система Lnm(G) всех подгрупп H≤G, для которых фактормодули A/CA(H) не являются минимаксными R-модулями. Исследован RG-модуль A такой, что Lnm(G) удовлетворяет либо слабому условию минимальности, либо слабому условию максимальности как упорядоченное множество. Описаны свойства локально конечной группы G, которая удовлетворяет заданным условиям. |
---|