Propagation of Polarized Cosmic Maser Radiation in an Anisotropic Magnetized Plasma
The polarization plane of the cosmic maser radiation (CMR) can be rotated either in the space-time with a metric of the anisotropic Bianchi-I type or in a magnetized plasma. A unified treatment of these two phenomena is presented for cold anisotropic plasma. It is argued that the generalized express...
Збережено в:
Дата: | 2010 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Відділення фізики і астрономії НАН України
2010
|
Назва видання: | Український фізичний журнал |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/56208 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Propagation of Polarized Cosmic Maser Radiation in an Anisotropic Magnetized Plasma / S.S. Moskaliuk // Український фізичний журнал. — 2010. — Т. 55, № 5. — С. 636-643. — Бібліогр.: 31 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-56208 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-562082014-02-14T03:12:04Z Propagation of Polarized Cosmic Maser Radiation in an Anisotropic Magnetized Plasma Moskaliuk, S.S. Астрофізика і космологія The polarization plane of the cosmic maser radiation (CMR) can be rotated either in the space-time with a metric of the anisotropic Bianchi-I type or in a magnetized plasma. A unified treatment of these two phenomena is presented for cold anisotropic plasma. It is argued that the generalized expressions derived in the present study may be relevant for direct searches of a possible rotation of the plane of polarization of the cosmic maser radiation. Площина поляризацiї випромiнювання космiчного мазера може обертатися як у просторi з анiзотропною метрикою типу Б’янки-I, так i в анiзотропнiй замагнiченiй плазмi. У випадку холодної плазми цi явища описуються в межах єдиного пiдходу. Показано, що отриманi в даному дослiдженнi узагальненi вирази можуть стати у нагодi при безпосереднiх вимiрюваннях величини обертання площини поляризацiї випромiнювання космiчного мазера. 2010 Article Propagation of Polarized Cosmic Maser Radiation in an Anisotropic Magnetized Plasma / S.S. Moskaliuk // Український фізичний журнал. — 2010. — Т. 55, № 5. — С. 636-643. — Бібліогр.: 31 назв. — англ. 2071-0194 PACS 95.30.Sf, 98.80.Jk, 98.80.Bp, 98.80.Cq http://dspace.nbuv.gov.ua/handle/123456789/56208 en Український фізичний журнал Відділення фізики і астрономії НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Астрофізика і космологія Астрофізика і космологія |
spellingShingle |
Астрофізика і космологія Астрофізика і космологія Moskaliuk, S.S. Propagation of Polarized Cosmic Maser Radiation in an Anisotropic Magnetized Plasma Український фізичний журнал |
description |
The polarization plane of the cosmic maser radiation (CMR) can be rotated either in the space-time with a metric of the anisotropic Bianchi-I type or in a magnetized plasma. A unified treatment of these two phenomena is presented for cold anisotropic plasma. It is argued that the generalized expressions derived in the present study may be relevant for direct searches of a possible rotation of the plane of polarization of the cosmic maser radiation. |
format |
Article |
author |
Moskaliuk, S.S. |
author_facet |
Moskaliuk, S.S. |
author_sort |
Moskaliuk, S.S. |
title |
Propagation of Polarized Cosmic Maser Radiation in an Anisotropic Magnetized Plasma |
title_short |
Propagation of Polarized Cosmic Maser Radiation in an Anisotropic Magnetized Plasma |
title_full |
Propagation of Polarized Cosmic Maser Radiation in an Anisotropic Magnetized Plasma |
title_fullStr |
Propagation of Polarized Cosmic Maser Radiation in an Anisotropic Magnetized Plasma |
title_full_unstemmed |
Propagation of Polarized Cosmic Maser Radiation in an Anisotropic Magnetized Plasma |
title_sort |
propagation of polarized cosmic maser radiation in an anisotropic magnetized plasma |
publisher |
Відділення фізики і астрономії НАН України |
publishDate |
2010 |
topic_facet |
Астрофізика і космологія |
url |
http://dspace.nbuv.gov.ua/handle/123456789/56208 |
citation_txt |
Propagation of Polarized Cosmic Maser Radiation in an Anisotropic Magnetized Plasma / S.S. Moskaliuk // Український фізичний журнал. — 2010. — Т. 55, № 5. — С. 636-643. — Бібліогр.: 31 назв. — англ. |
series |
Український фізичний журнал |
work_keys_str_mv |
AT moskaliukss propagationofpolarizedcosmicmaserradiationinananisotropicmagnetizedplasma |
first_indexed |
2025-07-05T07:26:20Z |
last_indexed |
2025-07-05T07:26:20Z |
_version_ |
1836790978277539840 |
fulltext |
S.S. MOSKALIUK
PROPAGATION OF POLARIZED COSMIC MASER
RADIATION IN AN ANISOTROPIC
MAGNETIZED PLASMA
S.S. MOSKALIUK
Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
(14b, Metrolohichna Str., Kyiv 03143, Ukraine)
PACS 95.30.Sf, 98.80.Jk,
98.80.Bp, 98.80.Cq
c©2010
The polarization plane of the cosmic maser radiation (CMR) can
be rotated either in the space-time with a metric of the anisotropic
Bianchi-I type or in a magnetized plasma. A unified treatment of
these two phenomena is presented for cold anisotropic plasma. It
is argued that the generalized expressions derived in the present
study may be relevant for direct searches of a possible rotation of
the plane of polarization of the cosmic maser radiation.
1. Introduction
The presence of magnetic fields within astrophysical
masers is believed to be a key ingredient in determining
the observed polarization characteristics of astrophysical
masers. The observation of the linear and circular po-
larizations of maser radiation potentially provides infor-
mation about the astronomical environments, in which
masers occur. On the other hand, the maser polariza-
tion behaves itself differently according to whether the
Zeeman shift νB is larger or smaller than the linewidth
ΔνD. The case νB � ΔνD is well understood. Sponta-
neous decays occur in pure Δm transitions, producing
the radiation that is fully polarized and centered at dif-
ferent Zeeman frequencies in different transitions. Under
these circumstances, the amplification process preserves
the polarization. Therefore, thermal and maser polar-
izations are the same. The only difference between the
two cases is the disparity between the π and σ maser
intensities, reflecting their different growth rates [1].
In the opposite limit, νB � ΔνD, the Zeeman compo-
nents overlap, and the amplification mixes the different
polarizations. The pumping processes produce radiation
in three different modes of polarization with respect to
the magnetic field (Δm = 0,±1), but only two inde-
pendent combinations propagate in any direction, be-
cause the electric field must be perpendicular to the wave
vector. The elimination of the longitudinal component
implies specific phase relations among the three pump-
generated electric fields; only waves launched with these
phase relations produce superpositions that are purely
transverse, so that they can be amplified by propaga-
tion in the inverted medium. The phase relations are
transformed to the following ones for the polarization of
maser radiation propagating at an angle θ to the mag-
netic axis:
Q
I
= −1 +
2
3 sin2 θ
,
V
I
=
16xxB
3 cos θ
, (1)
where x = (ν − ν0)/ΔνD and xB = νB/ΔνD. This so-
lution, which was first derived by Goldreich, Keeley &
Kwan [2] in the limit xB = 0 and extended by Elitzur
[1] to finite xB < 1, follows also from the requirement
that the four Stokes parameters produce fractional po-
larizations that remain unaffected by the amplification
process.
How the unpolarized radiation produced in sponta-
neous decays evolves into this stationary polarization so-
lution remains an open problem. In this paper, a unified
discussion of the rotation of a polarization plane in the
cases of an anisotropic model of the Bianchi-I type and
the Faraday rotation is presented for the cold plasma
following works [3, 4].
2. Polarization Effects of CMR in a Space-Time
with a Metric of the Bianchi-I Type
Let us consider the Maxwell equations for a free electro-
magnetic field. In the metric
ds2 = dt2 −
3∑
i=1
A2
i (t)
(
dxi
)2
, (2)
they can be written as
∇µFµν = 0, ∇µ (∗F )µν = 0,
where Fµν is the electromagnetic-field tensor and
(∗F )αβ = 1√
−g [αβγη]Fγη is the quantity dual to it; here,
636 ISSN 2071-0194. Ukr. J. Phys. 2010. Vol. 55, No. 5
PROPAGATION OF POLARIZED COSMIC MASER RADIATION
[αβγη] is the fully antisymmetric tensor specified by the
condition [0123] = 1.
The solutions of these equations can be represented in
the form of the electric- and magnetic-field vectors [5–9]
E(t,x) =
=
∫
d3k
[
Eθ(t,k)eθ(t,k) + Eϕ(t,k)eϕ(t,k)
]
exp(ikx),
H(t,x) =
=
∫
d3k
[
Hθ(t,k)eθ(t,k) +Hϕ(t,k)eϕ(t,k)
]
exp(ikx),
where
eθ = cos θt cosϕt
e1
A1
+ cos θt sinϕt
e2
A2
− sin θt
e3
A3
,
eϕ = − sinϕt
e1
A1
+ cosϕt
e2
A2
are orthogonal vectors. Together with the vector
ek = sin θt cosϕt
e1
A1
+ sin θt sinϕt
e2
A2
+ cos θt
e3
a3
they form the vierbein unit basis in the momentum
space.
The angles θt and ϕt can be expressed in terms of
spherical coordinates defined in the momentum space
through the relation
(k1, k2, k3) = k (sin θ cosϕ, sin θ sinϕ, cos θ)
as follows
(sin θt cosϕt, sin θt sinϕt, cosϕ) =
= µ−1
(
sin θ cosϕ
A1
,
sin θ sinϕ
A2
,
cosϕ
A3
)
.
The coefficient µ is determined by equating the squares
of both sides of this relation.
The components Eθ, Eϕ, Hθ, and Hϕ can be written
in the form
Eθ(t,k)=
1√
2(2π)3/2(−g)1/4
µ
b1/2
(
σ+ + σ−
)
,
Eϕ(t,k)=
1√
2(2π)3/2(−g)1/4
µ
b1/2k
d
dt
(
σ− + σ−
)
,
Hθ(t,k)=− 1√
2(2π)3/2(−g)1/4
µ
b1/2
(
σ− + σ−
)
,
Hϕ(t,k)=− 1√
2(2π)3/2(−g)1/4
µ
b1/2k
d
dt
(
σ+ + σ−
)
, (3)
where
b =
1√
−g
(
A2
2 cos2 ϕ+A2
1 sin2 ϕ
)
,
and the functions σ± = σr satisfy the equation
σ̈r − ḃ
b
σ̇r +
[
k2µ2 + rkΔ
]
σr = 0, (4)
Δ = b
d
dt
(a
b
)
, a =
cos θ sin 2ϕ
2
√
−g
(A2
2 −A2
1). (5)
Following [10, 11], we describe the polarization effects
of electromagnetic radiation with the aid of the polar-
ization matrix defined in the plane orthogonal to the
direction of propagation of the electromagnetic waves.
This density matrix can be represented in the form
Jab = Jab+ + Jab− , a, b = θ, ϕ,
Jab =
1
2
E{a(t,k), Et∗b}(t,k),
Jab− =
1
2
E [a(t,k), Et∗b](t,k), (6)
where the symbol {, } ([, ]) denotes the symmetrization
(antisymmetrization) with respect to the corresponding
superscripts.
The substitution of the electric-field components (2)
into expression (5) yields
Jθθ+ =
(
2(2π)3(−g)1/2b
)−1
µ2|Y +|2,
Jϕϕ+ =
(
2(2π)3(−g)1/2bk2
)−1
|Ẏ −|2,
Jθϕ+ = −µ
2
(
2(2π)3(−g)1/2bk
)−1
2 Re Ẏ −
∗
Y
+,
Jθϕ− =
i
2
µ
2(2π)3(−g)1/2bk
2 Im Ẏ −
∗
Y
+, (7)
where
Y ± = σ+ ± σ−.
The matrix Jab is expressed in terms of the Stokes
parameters which describe the polarization properties of
electromagnetic waves as follows:
Jab+=
1
2
(
I +Q U
U I −Q
)
, Jab−=
1
2
(
0 −iV
iV 0
)
. (8)
ISSN 2071-0194. Ukr. J. Phys. 2010. Vol. 55, No. 5 637
S.S. MOSKALIUK
Here, I is the total intensity of radiation, the parameters
Q and U are related to the degree of linear polarization
by the equation
PL =
√
U2 +Q2
I
,
and V determines the degree of circular polarization via
the relation
PC = V/I.
Comparing relations (6) and (7), we find that the
Stokes parameters are given by
I =
1
2(2π)3(−g)1/2bk2
[
|Ẏ −|2 +K2
0 |Y +|2
]
,
Q = − 1
2(2π)3(−g)1/2bk2
[
|Ẏ −|2 −K2
0 |Y +|2
]
,
U = − µ
(2π)3(−g)1/2bk
Re Ẏ −
∗
Y
+,
V = − µ
(2π)3(−g)1/2bk
Im Ẏ −
∗
Y
+, K0 = kµ. (9)
To pursue the investigation of polarization effects fur-
ther, we assume that the propagation of waves in an
anisotropic space-time can be described in the short-
wave approximation; that is, we retain the first terms
of the asymptotic expansion of the solutions of Eq. (3)
for σr in the limit k → ∞(λ → 0). Such an expan-
sion was constructed by Sagnotti and Zwiebach [12–15].
From their results, it follows that, in the leading approx-
imation in k−1 for k →∞, the required solutions can be
represented as
Y +
0 =
(
bµ0
b0µ
)1/2 (
C+
0 e
iλ + C−0 e
−iλ) eiΩ,
Y −0 =
(
bµ0
b0µ
)1/2 (
C+
0 e
iλ − C−0 e−iλ
)
eiΩ,
Ẏ + = iK0Y
+,
Ẏ − = iK0Y
−, (10)
where
λ =
t∫
t0
Δ
2µ
dt′, Ω =
t∫
t0
kµdt′,
t0 corresponds to an arbitrary initial instant of propa-
gation, and C±0 are the values of the functions σ±(t) at
the point t0.
The substitution of the WKB solutions (9) into ex-
pressions (8) for the Stokes parameters yields
I =
µµ0√
−g(2π)3b0
[
|C+
0 |2 + |C−0 |2
]
,
Q =
µµ0
(2π)3
√
−gb0
2Re
(
C+
0
∗
C−0 e
2iλ
)
,
U =
µµ0
(2π)3
√
−gb0
2Im
(
C+
0 C
−
0 e
2iλ
)
,
V = − µµ0√
−gb0
[
|C+
0 |2 − |C
−
0 |2
]
.
Eliminating the constants from these relations, we can
find the Stokes parameters as functions of time. These
are given by
I(t) =
µ(t)
µ(t0)
√
−g(t0)
−g(t)
I(t0),
Q(t) =
=
µ(t)
µ(t0)
√
−g(t0)
−g(t)
[Q(t0) cos 2λ(t)− U(t0) sin 2λ(t)] ,
U(t) =
=
µ(t)
µ(t0)
√
−g(t0)
−g(t)
[Q(t0) sin 2λ(t) + U(t0) cos 2λ(t)] ,
V (t) =
µ(t)
µ(t0)
√
−g(t0)
−g(t)
V (t1).
It immediately follows that
PL(t) = PL(t0), PC(t) = PC(t0);
that is, the degree of linear polarization and the degree of
circular polarization do not vary with time as the electro-
magnetic wave propagates in an anisotropic space-time
(this result is in the perfect agreement with analogous
conclusions drawn in [16–19] by different methods).
638 ISSN 2071-0194. Ukr. J. Phys. 2010. Vol. 55, No. 5
PROPAGATION OF POLARIZED COSMIC MASER RADIATION
Under such conditions, the rotation of the polarization
plane is the only nontrivial polarization effect. The angle
τ of this rotation in the plane orthogonal to the direction
of wave propagation is determined by the relation
tan 2τ =
U
Q
.
It follows that
tan 2τ(t) =
sin 2λ+ tan 2τ(t0) cos 2λ
cos 2λ− tan 2τ(t0) sin 2λ
.
Differentiating this last relation, we find that the variable
y ≡ tan 2τ satisfies the equation
d
dt
y = 2λ(1 + y2).
Solving this equation, we obtain
τ(t) = λ(t) + τ0
or
Δτ =
t∫
t0
Δ
2µ
dt′.
Taking expression (4) for Δ into account and using the
linear approximation in the anisotropy parameter ΔĀ =
A2 − A1 [the latter is reduced to setting b = µ = 1/A,
where A = (A1A2A3)1/3], we obtain
Δτ(t) =
1
2
cos θ sin 2ϕ (A(t)ΔA(t)−A(t0)ΔA(t0)) .
We can see that the polarization plane undergoes rota-
tion only if the wave propagates in a direction other than
that specified by the coordinate values θ = π
2 (2k+1) and
ϕ = π
2 k (k = 0, 1, 2, . . .) and if ΔA 6= 0, that is, if the
anisotropic model under study is not axially symmetric
[9].
3. Cosmic Maser Radiation Polarization Effects
in a Magnetized Plasma with Bianchi-I type
Anisotropy
If linearly polarized CMR passes through the cold
plasma containing a magnetic field, the polarization
plane of a wave can be rotated since the two circular
polarizations (forming the linearly polarized beam) are
travelling at different speeds. This effect has been stud-
ied in a variety of different frameworks even in relativistic
QED plasmas (see, for instance, [3, 20]).
The CMR has a degree of linear polarization. If CMR
is linearly polarized, then its polarization plane also can
be rotated provided a sufficiently strong magnetic field
is present [21].
In this section, a unified discussion of rotation of the
polarization plane in the case of an anisotropic model
of the Bianchi-I type and the Faraday rotation will be
presented for the cold plasma following works [3, 4]. A
related aspect of the present analysis will be to study
the range of validity of the Faraday rotation estimates.
Let us start by discussing the typical scales involved in
the problem. The plasma is globally neutral, and the ion
density equals the electron density, i.e. ni ' ne = n0,
where n0 stands for the common electron–ion number
density in the corresponding area of the Universe. The
global neutrality of the plasma occurs for typical length
scales L� λD, where
λD =
√
kBTei
8πe2n0
, (11)
is the Debye screening length, and kB is Boltzmann con-
stant.
If the plasma is not magnetized, the only relevant fre-
quency scales of the problem are the plasma frequencies
which can be constructed from the electron and ion den-
sities, i.e.
ωpe =
√
4πe2n0
me
, ωpi =
√
4πe2n0
mi
. (12)
The frequencies given in Eq. (12) enter the dispersion
relations determining the group velocity of an electro-
magnetic signal in the plasma. The plasma frequencies
for both electrons and ions are much larger than the
collision frequencies constructed from the inverse of the
mean free paths. Then the plasma can be described, to a
very good approximation, within a two-fluid framework
[26, 27].
If the plasma is magnetized, two new frequency scales
arise in the problem, namely the electron and ion gy-
rofrequencies, i.e.
ωBe =
eB0
mec
, ωBi =
eB0
mic
, (13)
where B0 is the magnetic field strength in the corre-
sponding area of the Universe, and c is the speed of light
in vacuo.
The electron and ion gyrofrequencies, together with
the plasma frequencies of Eq. (12), affect the dispersion
relations in the case of a magnetized plasma.
Assuming that, at the time moment tin on the back-
ground of the initially homogeneous and isotropic gravi-
tational field in the Universe with the Friedman metric,
ISSN 2071-0194. Ukr. J. Phys. 2010. Vol. 55, No. 5 639
S.S. MOSKALIUK
there arises the homogeneous anisotropic perturbation
so that, as a consequence, the metric can be represented
as (2). Let us assume also that, at t < tin, the state of
the EM field can be described with the density matrix
with the non-zero occupation number of photons in the
mode n0(ν0) corresponding to the black-body radiation.
The latter is strictly constant at t < tin and constant in
the zeroth approximation in the anisotropy parameters
at t > tin:
∂
∂t
n0(ν0) = 0.
The frequency ν0 is considered to be independent of
time and equal to the radiation frequency in the cur-
rent epoch. With the frequency at any time moment t,
it is related as follows:
ν0A(t0) = ν(t)A(t), (14)
where A(t) is the scale factor in the Friedman model at
t < tin, and A3 = (A1A2A3) at t > tin.
Defining the appropriately rescaled electron and ion
densities, ne = A3ñe and ni = A3ñi in a conformally flat
geometry of the Bianchi-I type background characterized
by a scale factor A(η) and by the line element (2), the
continuity equations for the charge densities read
n′e + 3weHne + (we + 1) div (neve) = 0, (15)
n′i + 3wiHni + (wi + 1) div (nivi) = 0, (16)
where H = A′/A; the prime denotes a derivation with
respect to the conformal time coordinate η; w is the
barotropic index for the electron or ion fluid.
In the cold plasma, both electrons and ions are non-
relativistic. Hence, the barotropic index w will be close
to zero to a good approximation. For instance, the en-
ergy density of an ideal electronic gas is given by
ρe = ne
(
mec
2 +
3
2
kBTe
)
, (17)
and since we,i = kBTe,i/me,ic
2, we,i � 1 as far as
kBTe,i � m,iec
2.
In the cold-plasma approximation, the temperature
of ions and electrons vanishes. In the warm-plasma ap-
proximation, the temperature of the two charged species
may be very small but non-vanishing. The warm-plasma
treatment will lead, in practice, only to an effective cor-
rection of the plasma frequency. Since the cold-plasma
results turn out to be, a posteriori, rather accurate, the
discussion will be presented in terms of the cold-plasma
description.
To have a self-consistent set of two-fluid equations,
Eqs. (15) and (16) will be supplemented by the evolution
equations of the velocity fields and of the electromagnetic
field, namely,
ρe[v′e + Hve + (vae∇a)ve] = −nee
(
E +
ve
c
×B
)
, (18)
ρi[v′i + Hvi + (vbi∇b)vi] = nie
(
E +
vi
c
×B
)
, (19)
where E and B are the conformally rescaled electro-
magnetic fields obeying the following set of generalized
Maxwell equations [4]:
div E = 4πe(ni − ne), (20)
div B = 0, curlE = −1
c
B′, (21)
curlB =
1
c
E′ +
4πe
c
(nivi − neve), (22)
Eqs. (20)–(22) are the usual two-fluid equations [22].
Equations (15) and (16) together with Eqs. (18), (19),
and (20)–(22) can then be linearized in the presence of
the weak background magnetic field B0, i.e.
ne, i(η,x) = n0 + δne, i(η,x), B(η,x) = B0 + δB(η,x),
ve, i(η,x) = δve, i(η,x), E(η,x) = δE(η,x). (23)
Using Eq. (23), the system of equations (15)–(19) and
(20)–(22) can be written as
δn′e + n0 div (δve) = 0, δn′i + n0 div (δvi) = 0, (24)
δv′e + Hδve = − e
me
[
δE +
δve
c
×B0
]
,
δv′i + Hδvi =
e
mi
[
δE +
δvi
c
×B0
]
, (25)
curl (δE) = −1
c
δB′, div (δE) = 4πe(δni − δne), (26)
curl (δB) =
1
c
δE′ +
4π en0
e
(δvi − δve). (27)
640 ISSN 2071-0194. Ukr. J. Phys. 2010. Vol. 55, No. 5
PROPAGATION OF POLARIZED COSMIC MASER RADIATION
From Eqs. (24)–(26), the relevant dispersion relations
and the associated refraction indices can be obtained by
treating separately the motions in parallel and perpen-
dicularly to the magnetic field direction. Defining the
current direction parallel to the magnetic field as
j‖ = n0e(δvi, ‖ − δve, ‖),
Eqs. (25) yield
j′‖ + Hj‖ =
1
4π
(ω2
p, i + ω2
e, i) δE‖. (28)
Since a variation of the geometry is slow with respect to
the typical frequencies of plasma oscillations, the follow-
ing adiabatic expansions can be used:
j‖(η,x) = j‖,ω(x)e−i
∫ η dη′ω(η′),
δE‖(η,x) = δE‖,ω(x)e−i
∫ η dη′ω(η′). (29)
Thus, defining α = iH/ω � 1, Eq. (28) implies that
j‖,ω =
i
4π
ω2
p, i + ω2
p, e
ω(1 + α)
δE‖,ω. (30)
Inserting Eq. (30) into the parallel component of Eq.
(27), the following equation can be obtained:
curl (δBω)‖) = −iω
c
ε‖(ω, α)δE‖,ω , (31)
where the parallel dielectric constant is
ε‖(ω, α) = 1−
ω2
p, i
ω2(1 + α)
−
ω2
p, e
ω2(1 + α)
. (32)
With a similar procedure, the equation of motion in
the plane orthogonal to the magnetic field direction can
be solved as well, and the evolution equations of the
electric and magnetic fluctuations can then be written,
in compact notation, as
curl (δEω) = i
ω
c
δB, (33)
curl (δBω) = −i ω
c
ε(α, ω)δEω , (34)
where δEω and δBω have to be understood as column
matrices containing, in each row, the components of the
electric and magnetic fields in each of the three spatial
directions, while ε(ω, α) is a 3× 3 matrix given by
ε(ω, α) =
ε1(ω, α) iε2(ω, α) 0
−iε2(ω, α) ε1(ω, α) 0
0 0 ε‖(ω, α)
, (35)
where ε‖(ω, α) is defined by Eq. (32); ε1,2(ω, α) are in-
stead
ε1(ω, α) =
1−
ω2
p i(α+ 1)
ω2(α+ 1)2 − ω2
B i
−
ω2
p e(α+ 1)
ω2(α+ 1)2 − ω2
B e
, (36)
ε2(ω, α) =
ωB e
ω
ω2
p e
ω2(α+ 1)2 − ω2
B e
− ωB i
ω
ω2
p i
ω2(α+ 1)2 − ω2
B i
. (37)
The coordinate system can be fixed by setting kx = 0
and ky = k sin θ, kz = k cos θ with B0 oriented along the
ẑ direction. Since Eqs. (33) and (34) yield
curl curl (δBω) =
ω2
c2
ε(ω, α)δBω , (38)
the Fourier transformation of Eq. (38) in the coordi-
nate system selected previously leads to the generalized
Appleton–Hartree equation [4]:
A δBk,ω =
[
1− ε1
n2
]
−i
[
ε2
n2
]
0
i
[
ε2
n2
] [
c2 − ε1
n2
]
−sc
0 −sc
[
s2 − ε‖(ω,α)
n2
]
×
×
δBk,ω,xδBk,ω,y
δBk,ω,z
= 0, (39)
where the refraction index n = c/v has been introduced
so as to eliminate the comoving momentum in such a
way that k = ω/v = nω/c; we have written c(θ) =
cos θ and s(θ) = sin θ. From Eq. (39), we get A† = A,
where the dagger denotes the transposition and complex
conjugation of a given matrix.
The non-trivial solutions of the system of algebraic
(homogeneous) equations given by formula (39) come
from setting the determinant of the coefficients equal to
zero, i.e. det A = 0. It was found that the determinant
vanishes if [4]
s2(θ)
{(
1
ε‖
− 1
n2
)[
1
n2
− 1
2
(
1
εL
+
1
εR
)]
−
−c2(θ)
[(
1
n2
− 1
εL
)(
1
n2
− 1
εR
)]
= 0, (40)
ISSN 2071-0194. Ukr. J. Phys. 2010. Vol. 55, No. 5 641
S.S. MOSKALIUK
where the right-handed and left-handed dielectric con-
stants have been defined as
εR = ε1 + ε2 =
= 1−
ω2
p i
ω[ω(α+ 1)− ωB i]
−
ω2
p e
ω[ω(α+ 1) + ωB e]
, (41)
εL = ε1 − ε2 =
= 1−
ω2
p e
ω[ω(α+ 1)− ωB e]
−
ω2
p i
ω[ω(α+ 1) + ωB i]
. (42)
Equation (40) reduces exactly to the Appleton–
Hartree equation known from the two-fluid plasma the-
ory [26] with a minor difference that the leading depen-
dence upon the background geometry appears in εR,L
through the function α. The dispersion relations for a
wave propagating in parallel and perpendicularly to the
magnetic field direction can be obtained by setting, re-
spectively, θ = 0 and θ = π/2 in Eq. (40). Consequently,
the relevant equations determining the refraction index
are, in this case,
(n2 − εR)(n2 − εL) = 0, θ = 0, (43)
(n2 − ε‖)[n2(εL + εR)− 2εLεR] = 0, θ =
π
2
. (44)
Equation (43) gives the usual dispersion relations for the
two circular polarizations of the electromagnetic wave,
i.e. n2 = εR and n2 = εL, while Eq. (44) gives those for
the “ordinary” (i.e. n2 = ε‖) and “extraordinary” (i.e.
n2 = 2εRεL/(εR + εL)) plasma waves [26, 27].
From Eq. (43), the generalized Faraday rotation ex-
perienced by the linearly polarized CMR travelling in
parallel to the magnetic field can be obtained as
ΔΦ =
ω
2c
[
√
εR −
√
εL
]
ΔL, (45)
where ΔL is the distance travelled by the signal in the
direction parallel to the magnetic field.
According to Eqs. (12) and (13), the leading contribu-
tion to the generalized Faraday rotation arises as follows:(
ωBe
ωCMR
)(
ωpe
ωCMR
)2
. (46)
In a complementary perspective, when analyzing the
possible rotation of the CMR polarization, it seems then
preferable to adopt the generalized formulae derived in
the present study.
In summary, the contributions to the observed CMR
polarization from the magnetized plasma and the
anisotropic space-time with a metric of the Bianchi-I
type are believed to be as follows:
• the degree of linear polarization and the degree of
circular polarization do not vary with time as the
electromagnetic wave propagates in an anisotropic
space-time of Bianchi-I type;
• the polarized CMR propagates in a Bianchi-I
space-time undergoes a rotation of the polarization
plane without any change in the degree of polar-
ization;
• the magnetized plasma contribution has a fre-
quency dependence that may allow us to disentan-
gle their relative weight, since the magnetic con-
tribution vanishes for ω > ωCMR as 1/ω2.
The author is grateful to Georgij Rudnitskij for help-
ful discussions and useful recommendations leading to a
better structure of the present article. The author is also
especially grateful to the Austrian Academy of Sciences
and the Russian Foundation for Fundamental Research
which in the framework of the collaboration with the Na-
tional Academy of Sciences of Ukraine co-financed this
research.
1. M. Elitzur, ApJ 457, 415 (1996).
2. P. Goldreich, D.A. Keeley, and J.Y. Kwan, ApJ 179, 111
(1973).
3. S.S. Moskaliuk, Phys. Rev. D 68, 084023 (2003).
4. M. Giovannini, Phys. Rev. D 71, 021301 (2005).
5. A.A. Grib and A.V. Nesteruk, Yad. Fiz. 38, 1357 (1983).
6. S.S. Moskaliuk, A.V. Nesteruk, and S.A. Pritomanov,
Preprints of Inst. for Theoretical Physics, National Acad.
Sci. of Ukraine, Kiev, No. 90-40R, 90-79R (1990).
7. G.I. Kuznetsov, S.S. Moskalyuk, Yu.F. Smirnov, and V.P.
Shelest, Graphical Theory of Representations of Orthog-
onal and Unitary Groups and their Physical Applications
(Naukova Dumka, Kiev, 1992) (in Russian).
8. G.S. Bisnovatyi-Kogan, Stellar Physics (Springer, Berlin,
2001).
9. S.S. Moskaliuk and A.V. Nesteruk, Phys. At. Nucl. 58,
1744 (1995).
10. Ya.B. Zel’dovich and I.D. Novikov, Structure and Evolu-
tion of the Universe (Nauka, Moscow, 1975) (in Russian).
642 ISSN 2071-0194. Ukr. J. Phys. 2010. Vol. 55, No. 5
PROPAGATION OF POLARIZED COSMIC MASER RADIATION
11. A.Z. Dolginov, Yu.N. Gnedin and N.A. Silant’ev, Prop-
agation and Polarization of Radiation in Cosmic Media
(Nauka, Moscow, 1979) (in Russian).
12. B.W. Tolman and R.A. Matzner, Proc. R. Soc., London
392, 391 (1984).
13. C.H. Brans, Astrophys. J. 197, 1 (1975).
14. N. Cademi, R. Fabbri, B. Melchiorri et al., Phys. Rev. D:
Part. Fields 17, 1901 (1978).
15. A. Sagnotti and B. Zwiebach, Phys. Rev. D: Part. Fields
24, 305 (1981).
16. A.M. Cruise, Mon. Not. R. Astron. Soc. 204, 485 (1983).
17. U. Rees, Astrophys. J. 153, LI (1968).
18. J. Negroponte and J. Silk, Phys. Rev. Lett. 44, 1433
(1980).
19. M.M. Basko and A.G. Polnarev, Astron. Zh. 57, 465
(1980).
20. A.K. Ganguly, S. Konar and P.B. Pal, Phys. Rev. D 60,
105014 (1999); J. C. D’Olivo, J.F. Nieves and S. Sahu,
Phys. Rev. D 67, 025018 (2003); A.K. Ganguly and
R. Parthasarathy, Phys. Rev. D 68, 106005 (2003).
21. A. Kosowsky and A. Loeb, Astrophys. J. 469, 1 (1996);
M. Giovannini, Phys. Rev. D 56, 3198 (1997).
22. M. Giovannini, Int. J. Mod. Phys. D 13, 391 (2004);
G. Piccinelli and A. Ayala, Lect. Notes in Phys. 646,
293 (2004).
23. J.A. Frieman, C.T. Hill, A. Stebbins and I. Waga, Phys.
Rev. Lett. 75, 2077 (1995).
24. S.M. Carroll, G.B. Field and R. Jackiw, Phys. Rev. D
41, 1231 (1990); S.M. Carroll, Phys. Rev. Lett. 81, 3067
(1998).
25. K.R.S. Balaji, R.H. Brandenberger and D.A. Easson,
JCAP 0312 008 (2003).
26. T.J.M. Boyd and J.J. Sanderson, The Physics of Plasmas
(Cambridge Univ. Press, Cambridge, 2003).
27. H.T. Stix, The Theory of Plasma Waves (McGraw-Hill,
New York, 1962).
28. M. Giovannini, Phys. Rev. D 61, 063004 (2000); Phys.
Rev. D 61, 063502 (2000); M. Giovannini and M.E. Sha-
poshnikov, Phys. Rev. Lett. 80, 22 (1998).
29. B. Feng, H. Li, M. z. Li, and X. m. Zhang, arXiv:hep-
ph/0406269.
30. V.A. Kostelecky, R. Lehnert, and M.J. Perry, Phys. Rev.
D 68, 123511 (2003); O. Bertolami, R. Lehnert, R. Pot-
ting, and A. Ribeiro, Phys. Rev. D 69, 083513 (2004).
31. J. Skilling, Phys. of Fluids 14, 2523 (1971).
Received 26.02.09
ПОШИРЕННЯ ПОЛЯРИЗОВАНОГО ВИПРОМIНЮВАННЯ
КОСМIЧНОГО МАЗЕРА В АНIЗОТРОПНIЙ
ЗАМАГНIЧЕНIЙ ПЛАЗМI
С.С. Москалюк
Р е з ю м е
Площина поляризацiї випромiнювання космiчного мазера мо-
же обертатися як у просторi з анiзотропною метрикою типу
Б’янки-I, так i в анiзотропнiй замагнiченiй плазмi. У випадку
холодної плазми цi явища описуються в межах єдиного пiдхо-
ду. Показано, що отриманi в даному дослiдженнi узагальненi
вирази можуть стати у нагодi при безпосереднiх вимiрюваннях
величини обертання площини поляризацiї випромiнювання ко-
смiчного мазера.
ISSN 2071-0194. Ukr. J. Phys. 2010. Vol. 55, No. 5 643
|