Новые книги

Збережено в:
Бібліографічні деталі
Дата:2013
Формат: Стаття
Мова:Russian
Опубліковано: Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України 2013
Назва видання:Технология и конструирование в электронной аппаратуре
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/56400
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Новые книги // Технология и конструирование в электронной аппаратуре. — 2013. — № 6. — С. 13, 18, 45. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-56400
record_format dspace
spelling irk-123456789-564002014-02-18T03:15:44Z Новые книги Библиография 2013 Article Новые книги // Технология и конструирование в электронной аппаратуре. — 2013. — № 6. — С. 13, 18, 45. — рос. 2225-5818 http://dspace.nbuv.gov.ua/handle/123456789/56400 ru Технология и конструирование в электронной аппаратуре Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language Russian
topic Библиография
Библиография
spellingShingle Библиография
Библиография
Новые книги
Технология и конструирование в электронной аппаратуре
format Article
title Новые книги
title_short Новые книги
title_full Новые книги
title_fullStr Новые книги
title_full_unstemmed Новые книги
title_sort новые книги
publisher Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України
publishDate 2013
topic_facet Библиография
url http://dspace.nbuv.gov.ua/handle/123456789/56400
citation_txt Новые книги // Технология и конструирование в электронной аппаратуре. — 2013. — № 6. — С. 13, 18, 45. — рос.
series Технология и конструирование в электронной аппаратуре
first_indexed 2025-07-05T07:40:04Z
last_indexed 2025-07-05T07:40:04Z
_version_ 1836791842422652928
fulltext Òåõíîëîãèÿ è êîíñòðóèðîâàíèå â ýëåêòðîííîé àïïàðàòóðå, 2013, ¹ 6 13 ÑÎÂÐÅÌÅÍÍÛÅ ÝËÅÊÒÐÎÍÍÛÅ ÒÅÕÍÎËÎÃÈÈ Advances in Materials Science Research, vol. 12, NY, Nova Science Publishers, 2012, pp. 135-162. 7. Korotaev A.D., Moshkov V.Yu., Ovchinnikov S.V., Pinzhin Yu.P., Savostikov V.M., Tyumentsev A.N. Nanostructured and nanocomposite superhard coatings. Phys. Mesomech., 2005, vol. 8, no 5-6, pp. 93-104. 8. Andrievskii R. A. [Nanomaterials: the concept and current problems] Zhurnal rossiiskogo khimicheskogo ob- shchestva im. D. I. Mendeleeva, 2002, vol. 46, no 5, pp. 50-56 (in Russian). 9. Andrievskii R. A. Osnovy nanostrukturnogo materialo- vedeniya. Vozmozhnosti i problemy [Fundamentals of nano- structured materials science. Opportunities and challenges] Moskow, “BINOM. Laboratoriya znanii”, 2012 (in Russian). 10. Andrievskii R. A. Nanomaterials based on high- melting carbides, nitrides and borides. Russian Chemical Reviews, 2005, vol. 74, no 12, pp. 1061-1072. DOI:10.1070/ RC2005v074n12ABEH001202 11. Munr R. G. Material properties of titanium diboride, Journal of Research of the National Institute of Standards and Technology, 2000, vol. 105, no 5, pp. 709-720. 12. Itoh H., Naka S., Matsudaira T., Hamamoto H. Preparation of TiB2 a sintered compacts by hot pressing, Journal of Materials Science, 1990, vol. 25, pp. 533-536. 13. Park June-Ho, Lee Yong-Ho, Koh Young-Hag, Kim Hyoun-Ee. Effect of hot-pressing temperature on densification and mechanical properties of titanium diboride with silicon nitride as a sintering aid. J. Am. Ceram. Soc., 2000, vol. 83, no 6, pp. 1542-1544. 14. Andrievskii R. A., Kalinnikov G. V., Shtanskii D. V. High-resolution transmission and scanning electron microscopy of boride-nitride nanostructured films. Physics of the Solid State, 2000, vol. 42, iss. 4, pp. 760-766. doi: 10.1134/1.1131287 15. Pfohl C., Bulak A., Rie K.-T. Development of titanium diboride coatings deposited by PACVD. Surface and Coatings Technology, 2000, vol. 131, pp. 141-146. 16. Mayrhofer P. H., Mitterer C., Wen J. G. et al. Self- organized nanocolumnar structure in superhard TiB2 thin films. Applied Physics Letters, 2005, vol. 86, pp. 131909-(1-3). 17. Beresnev V. M., Pogrebniak A. D., Azarenkov N. A., Farenik V. I., Kirik G. V. Nanocrystalline and nanocomposite coverings, structure, properties. Physical surface engineering, 2007, vol. 5, no 1–2, pp. 4-27 (in Russian). 18. Andrievskiy R. A., Glezer A. M. Strength of nano- structures. Physics-Uspekhi, 2009, vol. 52, no 4, pp. 315-334. DOI: 10.3367/UFNr.0179.200904a.0337 19. Boltovets N. S., Ivanov V. N., Konakova R. V. Kurakin A. M., Milenin V. V., Soloviev E. A., Verimeychenko G. M. Technology and experimental studies of contacts for micro- wave diodes based on interstitial phases, Semiconductor Physics, Quantum Electronics & Optoelectronics, 2001, vol. 4, no 2, pp. 93-105. 20. Todorovich B., Jokich T., Rakocevich Z. Markovich Z., Gakovich B., Nenadovich T. The effect of rapid thermal annealing on structural and electrical properties of TiB2 thin films, Thin Solid Films, 1997, vol. 300, no 1–2, pp. 272-277. 21. Boltovets N. S., Ivanov V. N., Konakova R. V., Kudrik Ya. Ya., Litvin O. S., Litvin P. M., Milenin V. V. Interphase interactions and features of structural relaxation in TiBx-n-GaAs (InP, GaP, 6H-SiC) contacts subjected to active treatment. Semiconductors, 2004, vol. 38, iss. 7, pp. 737-741. DOI: 10.1134/1.1777591 22. Ageev O. A., Belyaev A. E., Boltovets N. S., Ivanov V. N., Konakova R. V., Kudryk Ya. Ya., Lytvyn P. M., Milenin V. V., Sachenko A. V. Au—TiBx—n-6H-SiC Schottky barrier diodes: Specific features of charge transport in rectifying and nonrectifying contacts. Semiconductors, 2009, vol. 43, iss. 7, pp. 865-871. DOI: 10.1134/S1063782609070070 23. Boltovets N. S., Ivanov V. N., Kovtonyuk V. M., Rayevskaya N. S., Belyaev A. E., Bobyl A. V., Konakova R. V., Kudryk Ya. Ya., Milenin V. V., Novitskiy S. V., Sheremet V. N. InP Gunn diodes with a cathode contact injecting hot electrons. Part 1. Interactions between phases in the cathode contacts. Tekhnologiya i konstruirovanie v elektronnoi apparature, 2010, no 5–6, pp. 3-6 (in Russian). 24. Kudrik Ya.Ya. [Investigation of heat-resistant barrier contacts to n-6H SiC] Trudy 4 MNTK “Mikroelektronnye pre- obrazovateli i pribory na ikh osnove” [Proc. 4th Int. Confer. “Microelectronic converters and devices on their basis”]. Azerbaidzhan, Baku–Sumgait, 2003, pp. 22-26. (in Russian) 25. Belyaev A. E., Boltovets N. S., Ivanov V. N., Kamalov A. B., Kapitanchuk L. M., Kladko V. P., Konakova R. V., Kudryk Ya. Ya., Milenin V. V., Nasyrov M. U., Nevolin P. V. Interphase interactions and the mechanism of current flow in Au–TiBx–AuGe–n-GaP ohmic contacts. Semiconductors, vol. 43, iss. 11, pp. 1428-1432. DOI: 10.1134/S1063782609110062 26. Gupta A., Wang H., Kvit A., Duscher G., Narayan J. Effect of microstructure on diffusion of copper in TiN films. J. Appl. Phys., 2003, vol. 93, no 9, pp. 5210-5214. ÍÎÂÛÅ ÊÍÈÃÈ Í Î Â Û Å Ê Í È Ã È Õàíñåí Ð. Ñ. Ôàçèðîâàííûå àíòåííûå ðåøåòêè.— Ìîñêâà: Òåõíîñôåðà, 2012. В êíèãå ïðèâåдåí âñåñòîðîííèé àíàëèз îñîбåííîñòåé ïðî- åêòèðîâàíèÿ è èññëåдîâàíèÿ õàðàêòåðèñòèê фàзèðîâàííыõ àíòåííыõ ðåшå òîê è âõîдÿщèõ â íèõ ñèñòåм. Оñîбîå зíàчå- íèå ïðèдàåòñÿ ðàñ ñмîòðåíèю àëãîðèòмîâ, ïðèãîдíыõ дëÿ èñ- ïîëьзîâàíèÿ â ПÊ. Пðåдñòàâëåíà òàêжå îбшèðíàÿ èíфîðмàцèÿ î ðàзëèчíыõ òèïàõ àíòåííыõ óñòðîéñòâ ñ ýëåêòðîííым óïðàâ- ëåíèåм ëóчîм è âõîдÿщèõ â íèõ фóíêцèîíàëьíыõ ñèñòåмàõ. Êíèãà ïðåдíàзíàчåíà дëÿ íàóчíыõ ðàбîòíèêîâ è èíжåíåðîâ, зàíèмàющèõñÿ èññëåдîâàíèÿмè è ðàзðàбîòêàмè фàзèðîâàííыõ àíòåííыõ ðåшåòîê, à òàêжå àñïèðàíòîâ è ñòóдåíòîâ ñòàðшèõ êóðñîâ, ñïåцèàëèзèðóющèõñÿ â îбëàñòè àíòåíí è óñòðîéñòâ СВЧ. Òåõíîëîãèÿ è êîíñòðóèðîâàíèå â ýëåêòðîííîé àïïàðàòóðå, 2013, ¹ 6 18 ÑÂ×-ÒÅÕÍÈÊÀ this fact can significantly affect the volume discharge calculated value, and hence the non-synchronization parameter, for those of its values, which are characteristic of the TWT with a phase velocity jump. In this paper, formulas has been obtained for computation of real and imaginary parts of the complex reduction coefficient for a cylindrical electrons beam with exponential variable amplitude of variable current component in the TWT. Influence of complex reduction coefficient on the parameters of the TWT operating in the linear mode is estimated. It is shown that taking into account the imaginary part of the reduction coefficient for linear operation of the TWT makes it possible to change the estimated amount of space charge 1.5 to 2 times, which in its turn has quite a strong effect on the formation of the initial conditions of the nonlinear mode and, subsequently, on the output characteristics of the TWT. Keywords: complex reduction coefficient, cylindrical electron beam, variable current component, space charge, TWT. REFERENCES 1. N. J. Dionne. Traveling wave electron interaction device having efficiency enhancement means. Patent USA no 3.614.517, 1970. 2. Malivanchuk V. I., Rukin V. P. [Research TWT with two jumps of the phase velocity]. Elektronnaya tekhnika. Ser. 1. Elektronika SVCh, 1974, iss. 11, pp. 51—56 (in Russian). 3. Tseitlin M. B., Kats A. M. Lampa s begushchei volnoi [Tube with a traveling wave]. Moscow, Sovetskoe Radio, 1964 (in Russian). 4. Lebedev I. V. Tekhnika i pribory SVCh. T. 2 [Microwave equipment and Devices. Vol. 2]. Moscow, Vysshaya shkola, 1972 (in Russian). 5. Branch G. M., Mihran T. G. Plasma frequency reduction factors in electron beams. Electron Devices, IRE Transactions on, 1955, vol. 2, iss. 2, pp. 3—11. doi: 10.1109/T-ED.1955.14065 6. Strokovskii Ya. N., Chasnyk V. I. [Calculation of the depression coefficients for a cylindrical electron beam with the azimuth variation of the current density variable component] Elektronnaya tekhnika. Ser. 1. Elektronika SVCh, 1980, iss. 4, pp. 94—97 (in Russian). ÍÎÂÛÅ ÊÍÈÃÈ Í Î Â Û Å Ê Í È Ã È Гилмор-мл. À. Ñ. Лампы с бегущей волной.— Ìîñêâà: Òåõíîñôåðà, 2013. Êíèãà îñíîâàíà íà мàòåðèàëàõ ëåêцèé è ñåмèíàðîâ ïî СВЧ- ëàмïàм, êîòîðыå àâòîð мíîãîêðàòíî ïðåдñòàâëÿë â âåдóщèõ фèð- мàõ è óíèâåðñèòåòàõ США. В íåé ñîñðåдîòîчåíы бàзîâыå зíàíèÿ ïî òåîðèè è òåõíèêå íàèбîëåå âîñòðåбîâàííîãî â òåчåíèå мíîãèõ, â òîм чèñëå è ïîñëåдíèõ дåñÿòèëåòèé, ïðèбîðà — ëàмïы ñ бå- ãóщåé âîëíîé (ЛБВ). Êíèãà íàïèñàíà дîñòóïíым дëÿ шèðîêîãî êðóãà чèòàòåëåé è îбðàзíым ÿзыêîм, мåòîдèчåñêè ñбàëàíñèðî- âàíà. Шèðîêî èñïîëьзóåмыå цèòàòы èз ðàбîò èзâåñòíыõ ñïåцè- àëèñòîâ è îбшèðíàÿ бèбëèîãðàфèÿ ñïîñîбñòâóюò бîëåå ãëóбîêî- мó âîñïðèÿòèю èзëàãàåмîãî мàòåðèàëà. Êíèãà мîжåò быòь ïîëåзíà êàê дëÿ ïîд- ãîòîâêè ñòóдåíòîâ ñòàðшèõ êóðñîâ è àñïèðàíòîâ âóзîâ, òàê è ñïåцèàëèñòîâ, зàíÿ- òыõ ðàзðàбîòêîé è ïðèмåíåíèåм ЛБВ â ðàзëèчíыõ îбëàñòÿõ ðàдèîýëåêòðîíèêè. Í Î Â Û Å Ê Í È Ã È Íанотехнологии в электронике. Âып. 2 / Под ред. Ю. À. ×аплыгина.— Ìîñêâà: Òåõíîñôåðà, 2013. Нàñòîÿщåå èздàíèå — âòîðîé âыïóñê êíèãè, âышåдшåé íåñêîëь- êî ëåò íàзàд. Êàждóю èз чàñòåé êíèãè ïðåдñòàâëÿåò ãðóïïà àâ- òîðîâ, àêòèâíî ðàзâèâàющèõ дàííîå íàïðàâëåíèå â Нàцèîíàëь- íîм èññëåдîâàòåëьñêîм óíèâåðñèòåòå «МИЭÒ». Êîëëåêòèâ àâòî- ðîâ ñòàðàëñÿ îñóщåñòâèòь чàñòèчíóю ïðååмñòâåííîñòь мàòåðèà- ëà, ñîдåðжàщåãîñÿ â ïåðâîм âыïóñêå, îдíàêî ñòðóêòóðà êíèãè ñóщåñòâåííî èзмåíèëàñь: ãðóïïèðîâêà ñòàòåé ïî óñëîâíым ðàз- дåëàм (òåîðåòèêî-ýêñïåðèмåíòàëьíыå ðàбîòы, мåòîды èññëåдî- âàíèé, òåõíîëîãèè, ïðèбîðы è óñòðîéñòâà) ïðåдñòàâëÿåòñÿ бîëåå ïðàâèëьíîé ñ òîчêè зðåíèÿ ïîíèмàíèÿ îбщåãî íàïðàâëåíèÿ ðàбîò â МИЭÒ. Êàждàÿ èз ðàбîò ïðåдñòàâëÿåò ñîбîé зàêîíчåííыé íàóчíыé òðóд îбзîðíîãî èëè îбîбщàющåãî õà- ðàêòåðà, ëèбî ÿâëÿåòñÿ чàñòью îðèãèíàëьíыõ èññëåдîâàíèé, ïîëóчåííыõ зà ïî- ñëåдíèå 3—5 ëåò. Òåõíîëîãèÿ è êîíñòðóèðîâàíèå â ýëåêòðîííîé àïïàðàòóðå, 2013, ¹ 6 45 ÒÅÕÍÎËÎÃÈЧÅÑÊÈÅ ÏÐÎÖÅÑÑÛ È ÎÁÎÐÓÄÎÂÀÍÈÅ Розроблено технологію вирощування двосторонніх високовольтних кремнієвих p—i—n-структур мето- дом рідиннофазної епітаксії в єдиному технологічному процесі. Електрофізичні параметри отриманих структур дозволяють виготовляти на їх основі високовольтні діоди. Ключові слова: епітаксійний шар, рідиннофазова епітаксія, рідкоземельний елемент, легування. N. M. VAKIV1, S. I. KRUKOVSKY1, V. R. TYMCHYSHYN1,2, А. P. VAS’KIV3 Ukraine, Lviv, 1SPE “Karat”, 2Lviv Polytechnic National University, 3Ivan Franko Lviv National University E-mail: carat207@i.ua OBTAINING OF BILATERAL HIGH VOLTAGE EPITAXIAL p—i—n SI STRUCTURES BY LPE METHOD Silicon p—i—n-structures are usually obtained using conventional diffusion method or liquid phase epitaxy (LPE). In both cases, the formation of p- and n-layers occurs in two stages. This technological approach is quite complex. Moreover, when forming bilateral high-voltage epitaxial layers, their parameters significantly deteriorate as a result of prolonged heat treatment of active high-resistivity layer. Besides, when using diffusion method, it is impossible to provide good reproducibility of the process. In this paper a technique of growing bilateral high-voltage silicon p—i—n-structures by LPE in a single process is proposed. The authors have obtained the optimum compounds of silicon-undersaturated molten solutions for highly doped (5•1018 cm–3) contact layers: 0.4—0.8 at. % aluminum in gallium melt for growing p-Si- layers and 0.03—0.15 at. % ytterbium in tin melt for n-Si-layers. Parameters of such structures provide for manufacturing of high-voltage diodes on their basis. Such diodes can be used in navigational equipment, communication systems for household and special purposes, on-board power supply systems, radar systems, medical equipment, etc. Key words: epitaxial layer, liquid-phase epitaxy, rare-earth element, dopping. REFERENCES 1. Kharlamov R.V. Razrabotka tekhnologii proizvodstva kremnievykh epitaksial'nykh struktur dlya silovykh priborov. Diss. kand. tekhn. nauk [Development of production technol- ogy of silicon epitaxial structures for power devices. Ph.D. tech. diss.] Moskow, 2000. 166 p. (in Russian) 2. Skorobogatov L.A., Zubritskiy S.M., Petrov A.L., Semenov A.L. Tekhnologii materialov dlya mikro- i nanoelek- troniki [Materials technology for micro- and nanoelectronics]. Irkutsk State University, 2009. 83 p. (in Russian) 3. Ufimtsev V.B., Achkurin R.Kh. Fiziko-khimicheskie osnovy zhidkofaznoi epitaksii [Physico-chemical principles of liquid-phase epitaxy]. Moskow, Metallurgiya, 1983. (in Russian) 4. Gorelenok A. T., Kamanin A. V., Shmidt N. M. Rare- earth elements in the technology of III–V compounds and devices based on these compounds. Semiconductors, 2003, vol. 37, iss. 8, pp. 894-914. DOI: 10.1134/1.1601656 5. Vakiv M.M., Krukovsky S.I., Tymchyshyn V.R. [Low- temperature liquid-phase epitaxy of p-Si layers in composition of p-i-n Si high-voltage structures] Visnik Natsional'nogo universitetu “L'vivs'ka Politekhnika”, Ser. “Elektronika“, 2011, no. 708, pp. 50-54. (in Ukraine) 6. Korolev M.A., Krasyukov A.Yu., Polomoshnov S.A. Sovremennye problemy tekhnologii nanoelektroniki [Modern problems of nanoelectronics technology] Moskow, MIET, 2011. 100 p. (in Russian) 7. Vakiv M.M., Krukovsky S.I., Tymchyshyn V.R. Grafitova kaseta dlya otrimannya dvostoronnikh epitaksiinikh struktur [Graphite cassette for obtaining bilateral epitaxial structures]. Pat. of Ukraine no. 73670, 2012. (in Ukraine) ÍÎÂÛÅ ÊÍÈÃÈ Í Î Â Û Å Ê Í È Ã È Áерлин Å. Â., Ñейдман Ë. À. Ïолучение тонких пленок реактивным маг- нетронным распылением.— Ìîñêâà: Òåõíîñôåðà, 2014. Êíèãà ïðåдñòàâëÿåò ñîбîé ïîдðîбíîå ñïðàâîчíîå ðóêîâîдñòâî ïî фèзèчåñêèм îñíî- âàм, òåõíîëîãèчåñêèм îñîбåííîñòÿм è ïðàêòèчåñêîмó ïðèмåíåíèю ïðîцåññà ðåàê- òèâíîãî мàãíåòðîííîãî íàíåñåíèÿ òîíêèõ ïëåíîê ñëîжíîãî ñîñòàâà. Пîдðîбíî îïè- ñàíы фèзèчåñêèå ïðîцåññы, ïðîòåêàющèå âî âðåмÿ ðåàêòèâíîãî мàãíåòðîííîãî íà- íåñåíèÿ, òåõíîëîãèчåñêèå îñîбåííîñòè мàãíåòðîííîãî íàíåñåíèÿ. Оñîбîå âíèмàíèå óдåëåíî ñïîñîбàм óïðàâëåíèÿ ïðîцåññàмè íàíåñåíèÿ ïëåíîê, îбåñïåчèâàющèм ñòà- бèëьíîñòь è âîñïðîèзâîдèмîñòь êàê ñàмîãî ïðîцåññà, òàê è ñâîéñòâ ïîëóчàåмыõ ïëå- íîê. Рàññмîòðåíы мîдèфèêàцèè ïðîцåññà íàíåñåíèÿ, ðàзëèчàющèåñÿ èñïîëьзóåмы- мè èñòîчíèêàмè ïèòàíèÿ: ïîñòîÿííîãî òîêà, ñðåдíåчàñòîòíыõ èмïóëьñîâ, èмïóëьñîâ бîëьшîé мîщíîñòè è âыñîêîчàñòîòíыå. Äàíы ïðàêòèчåñêèå ðåêîмåíдàцèè ïî îñâî- åíèю èзâåñòíыõ è ðàзðàбîòêå íîâыõ ïðîцåññîâ ïîëóчåíèÿ ïëåíîê ñëîжíîãî ñîñòàâà мåòîдîм ðåàêòèâíîãî мàãíåòðîííîãî ðàñïыëåíèÿ.