Fractal dimensions of gypsum cave-mazes of Western Ukraine
Gypsum maze caves of Western Ukraine are characterized by a complex spatial structure, which can be treated as fractals and can be studied using appropriate mathematical tools. Capacitance and correlation fractal dimensions of largest gypsum caves of the region were calculated. The results were used...
Gespeichert in:
Datum: | 2013 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Український інститут спелеології та карстології НАН та МОН України
2013
|
Schriftenreihe: | Спелеологія і карстологія |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/57064 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Fractal dimensions of gypsum cave-mazes of Western Ukraine / V.N. Andreychouk, T. Błachowicz, K. Domino // Спелеологія і карстологія. — 2013. — № 11. — С. 40-47. — Бібліогр.: 10 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-57064 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-570642014-03-04T03:01:22Z Fractal dimensions of gypsum cave-mazes of Western Ukraine Andreychouk, V.N. Błachowicz, Т. Domino, К. Gypsum maze caves of Western Ukraine are characterized by a complex spatial structure, which can be treated as fractals and can be studied using appropriate mathematical tools. Capacitance and correlation fractal dimensions of largest gypsum caves of the region were calculated. The results were used to predict findings of new, yet undiscovered parts of cave mazes. Горизонтально развитые гипсовые пещеры-лабиринты Западной Украины характеризуются сложной пространственной структурой, обладающей признаками фрактальной, которая может быть исследована с использованием соответствующих математических методов. Изучено (рассчитано) объемное и корреляционное измерения длиннейших гипсовых пещер региона. Предполагается, что результаты фрактального исследования могут быть использованы в целях прогноза еще не обнаруженных частей пещерных лабиринтов. Горизонтально розвинуті гіпсові печери-лабіринти Західної України характеризуються складною просторовою структурою, яка має ознаки фрактальної і може бути досліджувана з використанням відповідних математичних методів. Досліджено (розраховано) об´ємний та кореляційний виміри найдовших гіпсових печер-лабіринтів регіону. Висловлюється припущення, що результати фрактального дослідження можуть використовуватись з ціллю прогнозування ще невідкритих частин печер-лабіринтів. 2013 Article Fractal dimensions of gypsum cave-mazes of Western Ukraine / V.N. Andreychouk, T. Błachowicz, K. Domino // Спелеологія і карстологія. — 2013. — № 11. — С. 40-47. — Бібліогр.: 10 назв. — англ. 1997-7492 http://dspace.nbuv.gov.ua/handle/123456789/57064 en Спелеологія і карстологія Український інститут спелеології та карстології НАН та МОН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Gypsum maze caves of Western Ukraine are characterized by a complex spatial structure, which can be treated as fractals and can be studied using appropriate mathematical tools. Capacitance and correlation fractal dimensions of largest gypsum caves of the region were calculated. The results were used to predict findings of new, yet undiscovered parts of cave mazes. |
format |
Article |
author |
Andreychouk, V.N. Błachowicz, Т. Domino, К. |
spellingShingle |
Andreychouk, V.N. Błachowicz, Т. Domino, К. Fractal dimensions of gypsum cave-mazes of Western Ukraine Спелеологія і карстологія |
author_facet |
Andreychouk, V.N. Błachowicz, Т. Domino, К. |
author_sort |
Andreychouk, V.N. |
title |
Fractal dimensions of gypsum cave-mazes of Western Ukraine |
title_short |
Fractal dimensions of gypsum cave-mazes of Western Ukraine |
title_full |
Fractal dimensions of gypsum cave-mazes of Western Ukraine |
title_fullStr |
Fractal dimensions of gypsum cave-mazes of Western Ukraine |
title_full_unstemmed |
Fractal dimensions of gypsum cave-mazes of Western Ukraine |
title_sort |
fractal dimensions of gypsum cave-mazes of western ukraine |
publisher |
Український інститут спелеології та карстології НАН та МОН України |
publishDate |
2013 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/57064 |
citation_txt |
Fractal dimensions of gypsum cave-mazes of Western Ukraine / V.N. Andreychouk, T. Błachowicz, K. Domino // Спелеологія і карстологія. — 2013. — № 11. — С. 40-47. — Бібліогр.: 10 назв. — англ. |
series |
Спелеологія і карстологія |
work_keys_str_mv |
AT andreychoukvn fractaldimensionsofgypsumcavemazesofwesternukraine AT błachowiczt fractaldimensionsofgypsumcavemazesofwesternukraine AT dominok fractaldimensionsofgypsumcavemazesofwesternukraine |
first_indexed |
2025-07-05T08:21:09Z |
last_indexed |
2025-07-05T08:21:09Z |
_version_ |
1836794427578777600 |
fulltext |
Спелеологія і Карстологія
Спелеология и Карстология
Speleology and Karstology
ISSN 1997-7492
11, 2013, 40-47
УИСК
INTRODUCTION
Natural objects possessing enough complicated
spatial structure can be treated as fractals. Importantly,
calculations of so-called fractal dimensions can be
performed in most typical cases. There are many different
types of fractal dimensions named as: capacity, correlation,
informative, topological, boxed, Hausdorff, Lyapunov,
to mention widely used terms or synonyms. However, a
common feature for all types of these fractal quantitative
measures is that the fractal dimension counts a self-
similarity of an object at different spatial scales. In other
words, a fractal dimension measures directly geometrical
complexity of an object as a whole or additionally can
be sensitive to uniformity of spatial distribution existing
in a given object. Especially, a fractal dimension can
keep information about surface roughness and edges
complexity. Obviously, in order to perform proper analysis
any information of interest should be collected in a form of
an image for further numerical processing.
Regions and karst objects, including caves, usually
have complicated spatial structure and possess a self-
similarity property enabling treatment of them as fractals.
Good examples of karst fractals are: the karst landscape
densely dotted by craters and karst depressions, often
overlapping each other, the corroded walls in caves
covered by micro-forms, the rock massifs cut by nets of
karsified fissures, and others structures. The problem
is not discussed in details in scientific literature, - there
are only a few works devoted to fractal problematics in
karst (Curl, 1986; Laverty, 1987; Finnesand, Curl; 2009,
Kusumayudha, Notosiswoyo, Gautama; 2000, Skoglund,
Lauritzen, 2011, Piccini, 2011).
A specific example of a spatial, genetic, fractal-like
organization are maze cave systems created by hypogenic
V. Andreychouk, T. Błachowicz, K. Domino
Fractal dimensions of gypsum cave-mazes of Western Ukraine
© V. Andreychouk1, T. Błachowicz2, K. Domino2
1Faculty of Earth’s Sciences, Silesian University, Będzińska 60, 41-200
Sosnowiec, Poland
2Institute of Physics - Center for Science and Education
Silesian University of Technology, Krzywoustego 2 str., 44-100 Gliwice,
Poland
*Корреспондуючий автор: E-mail: geo@wnoz.us.edu.pl
Андрейчук В.М., Бляхович Т., Домино К. Фрактальные измерения гипсових гипсовых пещер-лабиринтов Западной
Украины // Спелеология и Карстология, - № 11, Симферополь. – 2014. – С. 40-47.
Резюме: Горизонтально развитые гипсовые пещеры-лабиринты Западной Украины характеризуются сложной
пространственной структурой, обладающей признаками фрактальной, которая может быть исследована с
использованием соответствующих математических методов. Изучено (рассчитано) объемное и корреляционное
измерения длиннейших гипсовых пещер региона. Предполагается, что результаты фрактального исследования
могут быть использованы в целях прогноза еще не обнаруженных частей пещерных лабиринтов.
Ключевые слова: лабиринтовые пещеры, фракталы, фрактальные измерения.
Андрейчук В.М., Бляхович Т., Доміно К. Фрактальні виміри гіпсових печер-лабіринтів Західної України // Спелеологія
і Карстологія, - № 11, Сімферополь. – 2014. – С. 40-47.
Резюме: Горизонтально розвинуті гіпсові печери-лабіринти Західної України характеризуються складною просторовою
структурою, яка має ознаки фрактальної і може бути досліджувана з використанням відповідних математичних
методів. Досліджено (розраховано) об´ємний та кореляційний виміри найдовших гіпсових печер-лабіринтів регіону.
Висловлюється припущення, що результати фрактального дослідження можуть використовуватись з ціллю
прогнозування ще невідкритих частин печер-лабіринтів.
Ключові слова: лабіринтові печери, фрактали, фрактальні виміри.
Andreychouk V.N.., Błachowicz Т., Domino К. Fractal dimensions of gypsum cave-mazes of Western Ukraine // Speleology
and Karstology, - № 11, Simferopol. – 2014. – P. 40-47.
Abstract: Gypsum maze caves of Western Ukraine are characterized by a complex spatial structure, which can be treated as
fractals and can be studied using appropriate mathematical tools. Capacitance and correlation fractal dimensions of largest
gypsum caves of the region were calculated. The results were used to predict findings of new, yet undiscovered parts of cave
mazes.
Keywords: maze caves, fractals, fractal dimentions.
41
FRACTAL DIMENSIONS OF GYPSUM CAVE-MAZES OF WESTERN UKRAINE
Спелеологія і Карстологія 11 (2013), 40-47
Speleology and Karstology 11 (2013), 40-47
speleogenesis. They often form enormous and dense
nets of underground channels and corridors. Due to their
spatial complexity such systems can be analyzed as fractal
objects. Obviously, this fractal character of labyrinthine
caves – as specific natural objects – is interesting and this
is a novelty in the field. However, the important question is:
if such analysis makes sense, which fractal dimension is
optimally suitable for that purpose? Authors argue that this
type of analysis does makes sense and try to specify one
of a possible field of application, namely, for prediction of
existence of not discovered yet (not explored) parts of cave
networks. This aspect of research has both theoretical
importance and practical meaning for speleologists trying
to discover new unknown cave regions.
In opinion of authors, the above mentioned goal is
optimally fulfilled by the use of capacity and correlation
fractal dimensions. These dimensions characterize fractal
geometrical complexity of objects and may indicate internal
regularities, or level of heterogeneity providing information
about a genetic complexity (mono- or multi-factorial origin)
manifested itself as a specific spatial realization of mazes.
Thus, a capacity dimension enables estimation of the
general level of structural complexity, a variety of an object
as a whole. The lower is the value, the greater is spatial
multiplicity of a given cave (or its part). On the other hand,
a correlation dimension additionally senses variations in
a cave structural distribution. Additionally, an important
source of information can come from a comparison
between both fractal dimensions what will be discussed
below.
STUDIED OBJECTS – CAVE MAZES
Analytical studies were performed for four maze caves
chosen from the set (fig. 1) of largest gypsum caves of
the Western Ukraine region (in brackets a total length
of passages and corridors in km is given): Optymistychna
(188), Ozerna (111), Zoloushka (90), Kryshtaleva (22)
(Klimchouk, Andreychouk, Turchinov, 2009). These caves
are horizontal maze cave systems developed in hypogenic
conditions and represent enormous and dense networks of
underground passages and corridors. Area of cave fields
(fig. 1) ranges from 0.3 to 2.5 km2.
All the mentioned caves are located in Western Ukraine
(Podilla and Bukovina regions) and developed in Miocenic
gypsum layer of 20-25 m thickness. Underground waters
penetrated the layer (from below) through the vertical and
subvertical fractures causing formation of diverse internal
morphological (speleomorphological) structures and their
combinations. All the caves have similar (hypogenic) origin
and were formed in confined phreatic conditions as a
result of underground waters rising across the gypsum bed
via dense networks of fissures in gypsum.
Fig. 1. Configurations and relative dimensions of some cave fields of the largest gypsum caves of Western Ukraine (including investi-
gated caves). All contours are pictured at the same scale (after Klimchouk, Andreychouk, Turchinov, 2009).
42
V. Andreychouk, T. Błachowicz, K. Domino
Спелеологія і Карстологія 11 (2013), 40-47
Speleology and Karstology 11 (2013), 40-47
Fig. 2. Maps of caves: Optymistychna and Ozerna (spatial scales are different for the provided cases).
43
FRACTAL DIMENSIONS OF GYPSUM CAVE-MAZES OF WESTERN UKRAINE
Спелеологія і Карстологія 11 (2013), 40-47
Speleology and Karstology 11 (2013), 40-47
Fig. 3. Maps of caves: Kryshtaleva and Zoloushka (spatial scales are different for the provided cases).
44
V. Andreychouk, T. Błachowicz, K. Domino
Спелеологія і Карстологія 11 (2013), 40-47
Speleology and Karstology 11 (2013), 40-47
Networks of fissures were evolutionary formed by
subsequent overlapping of two main fracturing systems
of different origin (lithogenetic and tectonic), resulting in
formation of regular geometrical structures (polygons,
crosses, etc.). For every cave considered here individual
combinations (configurations) of overlapping polygonal
(lithogenetic) or systematic (tectonic) networks are well
distinguishable. Thus, fissures significantly extended by
corrosion (up to dimensions of corridors) are seen at the
cave maps (figs. 3 and 4). Also an extreme complexity
of networks, as well as some regularities, are easily
distinguishable on the maps.
BASIC FACTS AND RESEARCH METHODOLOGY
Fractals dimensions, including capacity and correlation
ones, are quantities describing in some situations common
figures, like lines, squares, cubes, providing normal integer
values of these objects, that is: 1, 2, 3, respectively. A
capacity dimension is based on counting of unit-boxes
covering an object (Fig. 4 a, b). During this procedure
boxes of down-scaled dimension are applied. The log-log
dependence between number of boxes covering an object
and a box size is linear within some range of variables.
A capacity dimension is equal to a slope of that linear
dependence. A capacity dimension of a normal figure, like
a triangle, equals 2.
A correlation dimension methodology is similar to that
of capacity dimension, as it is equal to a slope of linear
log-log dependence between a correlation factor and unit-
circles radii covering randomly chosen components of an
object (Fig. 4 c). If points in a 2-dimensional object, for
example in a triangle, are distributed completely randomly,
then the correlation dimension equals 2. Importantly, a
correlation dimension senses small-scale variations of an
image, while a capacity dimension is not sensitive for local
irregularities and represent uniquely an image as a whole
(Baker, Gollub, 1998; Peitgen, Jürgens, Saupe, 2004).
Every dimension can be calculated from counting
procedure of spatial unit objects of a length ε covering
the measured object of the length L (Fig. 4 a). If the
procedure provides )(εN counted squared objects
(Fig. 4 b), the capacity dimension can be
calculated from the following expression
εε ⋅= )(NL , (1)
for a single dimensional object, or from the following
formula
capcap dd NL εε ⋅= )( , (2)
if the capacity dimension capd is larger than 1. Taking
logarithms of Eq. 2 one obtains
( )
( ) ( ))/1(loglog
)(log
ε
ε
+
=
L
Ndcap . (3)
In practice, the capacity dimension can be derived
from a linear log-log dependence between number of
boxes )(εN and the square size ε , being the fractional
part n of the analyzed size L . Thus, the slope of that
dependence equals
( )
( )
( )
( ))/(log
)(log
)/1(log
)(log
Ln
NNdcap
ε
ε
ε
=≈ . (4) Fig. 4. An explanation of principles leading to capacity (a, b)
and correlation (c) fractal dimensions.
45
FRACTAL DIMENSIONS OF GYPSUM CAVE-MAZES OF WESTERN UKRAINE
Спелеологія і Карстологія 11 (2013), 40-47
Speleology and Karstology 11 (2013), 40-47
Another type of fractal dimension is the correlation
one. That type of dimension employs a correlation factor,
which counts mutual distances of randomly distributed
points, lying on an analyzed object. Every point lies in a
center of a circle of radius R (Fig. 4 c). For increasing
radius the ( )RC factor grows, however for enough
large R-values the factor saturates since analyzed region
can be completely included and covered by circles. The
correlation factor is defined as follows
[ ]∑ ∑
=
=
=
≠
=
−−=
Ni
i
Nj
ij
j
ji xxRH
N
RC
1 1
2
1)( , (5)
where N is the number of points, and [ ]ji xxRH −−
is the Heaviside step function
. (6)
Since the correlation factor is proportional to a radius
cordRconstRC ⋅=)( , via the correlation dimension
cord , then the latter can be calculated from the following
expression
( )
( )
( )
( )R
const
R
RCdcor log
log
log
)(log
−= (7)
and the dimension can be, in practice, calculated from
the following expression
( )
( )R
RCdcor log
)(log
≈ , (8)
that is, can be derived from the linear log-log
dependence between corresponding values.
INTERPRETATION OF RESULTS AND CONCLUSIONS
Performed image analysis of mono-colored maps
enabled calculations of the capacity fractal dimension
(Fig. 5) and the correlation fractal dimension (Fig. 6). Final
results are given in tables 1 and 2.
The most fractal-like character has Optymistychna
cave – the capacity and correlation dimensions are
significantly different from other three cases – since
calculated values of the capacity dimension, and the
correlation dimension are equal to 1.71, and 1.76,
respectively, and are the relatively smallest values for
the considered caves. That fact shows onto a relatively
more complex general geometrical structure. From
a geomorphological point of view, it indicates also
the significant participation in speleogenesis of both
lithogenetic and tectonic factors associated with polygonal
and crossing-like fissures systems. Significantly less
complicated structure of Zoloushka and other caves
indicates onto domination of one genetic factor (lithogenic
or tectonic), which made a shape somehow more ordered.
The regular features, represented by dominating number
of passages, are clearly noticeable in Ozerna cave (in
chosen parts) and in Kryshtaleva cave (as a whole).
This conclusion is confirmed by values of correlation
dimension, which is sensitive for structure uniformity. Also,
what is normal, it is slightly higher than that of a capacity
one. From that perspective, the smallest correlation
dimension of the Optymistychna cave (1.76) indicates
onto larger spatial irregularities in a structure that in the
Kryshtaleva cave (1.83), what is clearly visible in provided
pictures.
Also, as it was mentioned, the important meaning for a
quantitative description has a difference between capacity
and correlation dimensions. In general, a larger value of
a correlation dimension with respect to a capacity one,
thus existence of a difference between these dimensions,
is something normal, since it results from mathematical
structure of calculations, is natural for most dynamical
systems and possesses geometrical origin. However,
comparable values, or even equal ones, might suggest
that normal rules are somehow deviated, thus it can inform
about aberrations from a fractal mechanism characterizing
a building structure. In a spatio-structural language this can
mean that some parts of cave are not yet discovered or, at
Fig. 5. The dependence between number of boxes covering
analyzed pictures of caves and a box dimension (a). The capac-
ity dimensions can be determined from linear fitting to linear
dependence regions (b).
46
V. Andreychouk, T. Błachowicz, K. Domino
Спелеологія і Карстологія 11 (2013), 40-47
Speleology and Karstology 11 (2013), 40-47
least, not included in graphical charts.
Just from this hypothesis results a
predictive importance of a comparative
analysis of both dimensions. How much
it is correct, that will be revealed by
future speleological investigations of
caves.
Thus, from the presented point of
view, Ozerna cave really stands out.
Thus, looking onto cave picture, and
taking into an account the fact that the
correlation and the capacity dimensions
are comparable (the difference equals
0.01), it might indicate onto existence
of parts not yet discovered, which
should complete structural morphology
and increase correlation dimension
to the higher value of about 0.05-
0.07, under the assumption that a
difference between both dimensions
is a solid rule for caves. A larger
difference and smaller «reservoir» for
undiscovered parts has Zoloushka (the
difference equals 0.02-0.04), next is
Optymistychna cave (0.03-0.05), and finally the smallest
possibility for undiscovered part might reveal Kryshtaleva
cave (0.04-0.07).
As a curiosity of described caves we would like to
present a hypothetical cave, with no internal structure,
possessing a single compact volume, derived graphically
from Ozerna cave (Fig. 7.). For this case, both the capacity
and correlation dimensions are now grater, more closer to
the numerical value of 2, and both the dimension are equal
within the obtained accuracy of calculations.
All analyzed caves can be treated like fractals and their
capacity and correlation fractal dimension were calculated.
It is a hope of authors that presented calculations of fractal
dimensions provided a lot of information, which interpreted
from this methodology perspective, would support future
speleomorphologic and speleogenetic investigations.
Fig. 6. The dependence between correlation factor and radii of
circles associated with randomly distributed points representing
caves (a). The correlation dimensions can be determined from
fitting using linear regression (b).
Cave
Capacity
dimension
dcap
Uncertainty
of
d cap
Correlation
dimension
dcorr
Uncertainty
of dcorr
Optymistychna 1.71 0.02 1.76 0.03
Ozerna 1.78 0.03 1.79 0.03
Kryshtaleva 1.76 0.03 1.83 0.03
Zoloushka 1.76 0.02 1.80 0.03
Cave Pixel size (m) Picture dimension (pixels)
Optymistychna 2.22 3295 x 2952
Ozerna 2.22 1936 x 1437
Kryshtaleva 0.39 4048 x 2983
Zoloushka 2.22 6263 x 3749
Table 1
Summary of results
Table 2
Spatial scales for pixels in analyzed images
Fig. 7. Hypothetical cave derived from Ozerna Cave. Its fractal
dimensions are equal to 1.84+/-0.02, and 1.84+/-0.02, for the
capacity dimension and correlation dimension, respectively.
47
FRACTAL DIMENSIONS OF GYPSUM CAVE-MAZES OF WESTERN UKRAINE
Спелеологія і Карстологія 11 (2013), 40-47
Speleology and Karstology 11 (2013), 40-47
REFERENCES
Curl R.L. Fractal dimensions and geometries of caves //
Mathematical Geology. - 1986. - 18 (8). - P. 765-783.
Laverty M. Fractals in karst. Earth Surface Processes and
Landforms. - 1987. - 12 (5). - P. 475-480.
Finnesand T., Curl R.L. Morphology of Tjoarvekrajgge – the
longest cave of Scandinavia // ICS: Proceedings of 15th
International Congress of Speleology. - 2009. - P. 878-883.
Kusumayudha S.B., Zen M.T., Notosiswoyo S., Gautama R.S.
Fractal analysis of the Oyo river, cave system and topography
of the Gunungsewu karst area, central Java, Indonesia //
Hydrogeology Journal. - 2000. - 8. P. 271- 278.
Skoglund R.O., Lauritzen S.E. Subglacial maze origin in low-dip
marble stripe karst: examples for Norway // Jourlan of Cave and
Karst Studies. - 2011. - 73(1). - P. 31-43.
Piccini L. Recent developements on morphometric analysis of
karst caves // Acta Carsologia. - 2011. - 40(1) - P. 43-52.
Klimchouk A., Andreychouk V., Turchinov I. The structural
prerequisites of speleogenesis in gypsum in the Western Ukraine.
- Sosnowiec-Symferopol: University of Silesia-Ukrainian Institute
of Speleology and Karstology, 2009. - 96 p.
Baker G.L., Gollub J.P. Chaotic Dynamics: An Introduction. -
Cambridge University Press, 1998. - 272 p.
Peitgen H.O., Jürgens H., Saupe D. Chaos and Fractals: New
Frontiers of Science. - Springer, 2004. - 864 p.
http://onlinelibrary.wiley.com/doi/10.1002/esp.v12:5/issuetoc
http://institute.speleoukraine.net/libpdf/Klimchouk_et_al_2009_Structural%20prerequisites_speleogenesis_WU.pdf
http://institute.speleoukraine.net/libpdf/Klimchouk_et_al_2009_Structural%20prerequisites_speleogenesis_WU.pdf
http://institute.speleoukraine.net/libpdf/Klimchouk_et_al_2009_Structural%20prerequisites_speleogenesis_WU.pdf
http://institute.speleoukraine.net/libpdf/Klimchouk_et_al_2009_Structural%20prerequisites_speleogenesis_WU.pdf
|