Уточненное уравнение приведенной скорости сушки

Предложено уточненное выражение для функции приведенной скорости сушки в кинетическом уравнении Г.К.Филоненко.

Збережено в:
Бібліографічні деталі
Дата:2007
Автори: Гришин, М.А., Потапов, В.А., Погожих, Н.И.
Формат: Стаття
Мова:Russian
Опубліковано: Інститут технічної теплофізики НАН України 2007
Назва видання:Промышленная теплотехника
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/61218
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Уточненное уравнение приведенной скорости сушки / М.А. Гришин, В.А. Потапов, Н.И. Погожих // Промышленная теплотехника. — 2007. — Т. 29, № 1. — С. 39-42. — Бібліогр.: 1 назв. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-61218
record_format dspace
spelling irk-123456789-612182014-04-28T03:01:37Z Уточненное уравнение приведенной скорости сушки Гришин, М.А. Потапов, В.А. Погожих, Н.И. Теория и практика сушки Предложено уточненное выражение для функции приведенной скорости сушки в кинетическом уравнении Г.К.Филоненко. Запропоновано уточнений вираз для функції приведеної швидкості сушіння в кінетичному рівнянні Г.К. Філоненка. We propose a refined expression for the function of effective drying rate in Filonenko’s kinetic equation. 2007 Article Уточненное уравнение приведенной скорости сушки / М.А. Гришин, В.А. Потапов, Н.И. Погожих // Промышленная теплотехника. — 2007. — Т. 29, № 1. — С. 39-42. — Бібліогр.: 1 назв. — рос. 0204-3602 http://dspace.nbuv.gov.ua/handle/123456789/61218 664.834 ru Промышленная теплотехника Інститут технічної теплофізики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language Russian
topic Теория и практика сушки
Теория и практика сушки
spellingShingle Теория и практика сушки
Теория и практика сушки
Гришин, М.А.
Потапов, В.А.
Погожих, Н.И.
Уточненное уравнение приведенной скорости сушки
Промышленная теплотехника
description Предложено уточненное выражение для функции приведенной скорости сушки в кинетическом уравнении Г.К.Филоненко.
format Article
author Гришин, М.А.
Потапов, В.А.
Погожих, Н.И.
author_facet Гришин, М.А.
Потапов, В.А.
Погожих, Н.И.
author_sort Гришин, М.А.
title Уточненное уравнение приведенной скорости сушки
title_short Уточненное уравнение приведенной скорости сушки
title_full Уточненное уравнение приведенной скорости сушки
title_fullStr Уточненное уравнение приведенной скорости сушки
title_full_unstemmed Уточненное уравнение приведенной скорости сушки
title_sort уточненное уравнение приведенной скорости сушки
publisher Інститут технічної теплофізики НАН України
publishDate 2007
topic_facet Теория и практика сушки
url http://dspace.nbuv.gov.ua/handle/123456789/61218
citation_txt Уточненное уравнение приведенной скорости сушки / М.А. Гришин, В.А. Потапов, Н.И. Погожих // Промышленная теплотехника. — 2007. — Т. 29, № 1. — С. 39-42. — Бібліогр.: 1 назв. — рос.
series Промышленная теплотехника
work_keys_str_mv AT grišinma utočnennoeuravnenieprivedennojskorostisuški
AT potapovva utočnennoeuravnenieprivedennojskorostisuški
AT pogožihni utočnennoeuravnenieprivedennojskorostisuški
first_indexed 2025-07-05T12:13:25Z
last_indexed 2025-07-05T12:13:25Z
_version_ 1836809040137551872
fulltext Первой работой, давшей научное обоснование эмпирическому методу описания кинетики суш; ки, очевидно, следует считать книгу Г.К.Фило; ненко “Кинетика сушильного процесса” [1]. Он открыл важную кинетическую закономерность – скорость сушки во втором периоде однозначно связана с постоянной скоростью сушки в первом периоде. Плодотворность идеи состояла во вве; дении понятия приведенной скорости сушки, которая представляет собой отношение скорости сушки при данном влагосодержании материала к максимальной скорости постоянного периода: . (1) Из обобщения большого количества экспери; ментальных данных было получено следующее выражение для приведенной скорости сушки: . (2) Из уравнений (1,2) получают кинетическую кривую сушки во втором периоде (wk > w ≥ w∞) . (3) Однако уравнение (2), записанное в таком ви; де не удовлетворяет физическому условию не; прерывности процесса, то есть отсутствию скач; ков скорости сушки в точке критического влагосодержания. Действительно, коэффициенты А1, А2 опре; деляются по регрессии точек кривой сушки, отнесенных исследователем ко второму перио; ду, то есть укладывающихся на линеализован; ное уравнение, имеющее две степени свободы А1, А2: , (4) где вид функций f1, f2 определяется интегралом (3) при фиксированных значениях m = 0,5; 1; 2. Поэтому коэффициенты А1, А2, минимизируя от; клонения точек кривой второго периода сушки от регрессионного уравнения (4), не обязательно обеспечивают значение критического влагосо; держания. Для того чтобы скорость второго пе; риода сушки в точке критического влагосодержа; 1 1 2 2( ) ( )A f w w A f w w∞ ∞τ = − + − 1 2 1 ( ) ( ) k w m w w A w A dw N w w∞ ⎡ ⎤ τ = +⎢ ⎥ −⎢ ⎥⎣ ⎦ ∫ 1 2 ( ) ( ) ( ) m w m w w w A A w w ∞ ∞ − ψ = + − 1 w w dw N d ψ = − τ ISSN 0204�3602. Пром. теплотехника, 2007, т. 29, № 1 39 ТЕОРИЯ И ПРАКТИКА СУШКИ Запропоновано уточнений вираз для функції приведеної швидкості сушіння в кінетичному рівнянні Г.К. Філоненка. Предложено уточненное выражение для функции приведенной скорости сушки в кинетическом уравнении Г.К.Филоненко. We propose a refined expression for the function of effective drying rate in Filonenko’s kinetic equation. УДК 664.834 ГРИШИН М.А.1, ПОТАПОВ В.А.2, ПОГОЖИХ Н.И.2 1Одесская национальная академия пищевых технологий 2Харьковский государственный университет питания и торговли УТОЧНЕННОЕ УРАВНЕНИЕ ПРИВЕДЕННОЙ СКОРОСТИ СУШКИ А1, А2, В, т – эмпирические коэффициенты; Nw – скорость сушки постоянного периода; w – влагосодержание; ε – относительная погрешность; τ – текущее время; ψw – приведенная скорость сушки. Индексы: k – критическое значение; ∞ – равновесное значение при τ → ∞; * – безразмерная величина. ния равнялась скорости первого периода сушки, должно выполняться условие . (5) Откуда с учетом (2) получаем связь между ко; эффициентами А1, А2 . (6) Подставляя (6) в (2), получаем двухпараметри; ческое уравнение приведенной скорости сушки . (7) Легко убедиться, что при w = wk, ψw = 1. Урав; нение (7) можно записать в более компактном виде, если ввести безразмерное влагосодержание и безразмерную приведенную скорость сушки по соотношениям (9), (10) , (8) , (9) , (10) где введенный эмпирический коэффициент B связан с коэффициентом А1 следующим образом: . (11) Уравнение (8) по форме полностью соответст; вует уравнению Г.К. Филоненко, но является двухпараметрическим, при этом в отличие от (2) интегрируется при любых значениях коэффици; ента m: при m ≠ 1 ,(12) при m = 1 . (13) Уравнения (12), (13), как и (3), описывают ки; нетику второго периода сушки и позволяют при заданном значении m определять кинетический коэффициент B. Эти уравнения очень удобны для проведения регрессионного анализа – иско; ( ) [ ]{ }* * *1 ln( ) 1 k w w w B w w w N ∞− τ = − − + − ( ) * * *1 1 1 1 m k w w w w m B w w N m m − ∞ ⎧ ⎫⎡ ⎤⎛ ⎞− ⎪ ⎪τ = − + + −⎢ ⎥⎜ ⎟⎨ ⎬⎜ ⎟− −⎢ ⎥⎪ ⎪⎝ ⎠⎣ ⎦⎩ ⎭ ( ) 1 m k A B w w∞ = − ( ) * * k w w w dw N d ∞− ψ = τ * k w w w w w ∞ ∞ − = − ( ) * * * * ( ) 1 m m w w B B w ψ = + − 1 ( ) ( ) 1 ( ) m w m m k w w w w w A w w w w ∞ ∞ ∞ ∞ − ψ = ⎡ ⎤⎛ ⎞−⎢ ⎥− + −⎜ ⎟⎜ ⎟⎢ ⎥−⎝ ⎠⎣ ⎦ ( )2 11 m kA A w w − ∞= − − ( ) 1w kwψ = 40 ISSN 0204�3602. Пром. теплотехника, 2007, т. 29, № 1 ТЕОРИЯ И ПРАКТИКА СУШКИ Та б л и ц а Сравнение результатов регрессионной обработки кинетики сушки картофеля трехпараметрическим и двухпараметрическим уравнениями мый кинетический параметр B является угловым коэффициентом прямой линии, описываемой уравнениями (14) и (15) при m ≠ 1 , (14) при m = 1 . (15) Еще одно преимущество полученных уравне; ний приведенной скорости сушки заключается в том, что они могут повысить точность аппрокси; мации кинетических кривых, поскольку допус; кают произвольное варьирование кинетического параметра m, который, согласно [1], в уравнени; ях (2) и (8) отражает энергию связи влаги с мате; риалом. В таблице приведены результаты регрессион; ной обработки кинетики конвективной сушки кубиков картофеля размером 8×8×8 мм по двум уравнениям (2) и (8). Как видно из представлен; ных данных, несмотря на меньшее число степе; [ ]* * *1 1 ln( )w k N w B w w w w∞ τ + − = − − − * * *1 1 1 1 m w k N w m w B w w w m m − ∞ ⎡ ⎤⎛ ⎞ τ + − = − +⎢ ⎥⎜ ⎟⎜ ⎟− − −⎢ ⎥⎝ ⎠⎣ ⎦ ISSN 0204�3602. Пром. теплотехника, 2007, т. 29, № 1 41 ТЕОРИЯ И ПРАКТИКА СУШКИ a б Рис. 1. Аппроксимация кинетики сушки картофеля трехпараметрическим (а) и двухпараметрическим уравнениями (б). a б Рис. 2. Расчетная скорость сушки картофеля на основе двух (а) и трехпараметрического (б) уравнений приведенной скорости сушки. ней свободы, двухпараметрическое уравнение в среднем дает меньшую погрешность, чем трехпараметрическое. Следует также отме; тить, что уменьшение величины коэффици; ента m с повышением температуры хорошо согласуется с общеизвестным фактом умень; шения энергии связи влаги с материалом при его нагревании. Пример аппроксимации кривых кинетики сушки картофеля при температуре 70 oС трех и двухпараметрическим уравнениями приведен на рис. 1. На рис. 2 приведена рассчитанная по урав; нениям (2) и (8) скорость сушки для этого экспе; римента. Как видно, в точке критического влаго; содержания погрешность определения скорости сушки на основе трехпараметрического уравне; ния достигает 200%. Вывод Для более корректного анализа кинетики про; цесса сушки следует примененять уточненное уравнение приведенной скорости сушки. ЛИТЕРАТУРА 1. Филоненко Г.К. Кинетика сушильного процесса.– М.: Оборонгиз, 1939.– 138 с. Получено 26.01.2006 г. 42 ISSN 0204�3602. Пром. теплотехника, 2007, т. 29, № 1 ТЕОРИЯ И ПРАКТИКА СУШКИ