Импедансная модель прецизионных платиновых термометров сопротивления в области высоких температур
Double-pole multiunit impedance model of sensitive thermometer element during measurement on alternating current is proposed. It takes into consideration impact on resistance of sensitive element of bypassing effect which is caused by essential lowing of specific resistance of framework isolation el...
Gespeichert in:
Datum: | 2012 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | Russian |
Veröffentlicht: |
Інститут електродинаміки НАН України
2012
|
Schriftenreihe: | Технічна електродинаміка |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/62076 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Импедансная модель прецизионных платиновых термометров сопротивления в области высоких температур / А.А. Михаль, Д.В. Мелещук // Технічна електродинаміка. — 2012. — № 4. — С. 73–79. — Бібліогр.: 10 назв. — pос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-62076 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-620762014-05-18T17:20:31Z Импедансная модель прецизионных платиновых термометров сопротивления в области высоких температур Михаль, А.А. Мелещук, Д.В. Інформаційно-вимірювальні системи в електроенергетиці Double-pole multiunit impedance model of sensitive thermometer element during measurement on alternating current is proposed. It takes into consideration impact on resistance of sensitive element of bypassing effect which is caused by essential lowing of specific resistance of framework isolation elements with temperature growth. As a result, during the measurement of thermometer resistance on direct and alternating current the error appears which is the function of measurable temperature and current frequency. Theoretical investigations of frequency error of thermometers in the range of temperatures from 0 to 1100 °C are conducted. Difference in the results of measurement of resistance of major types of thermometers is established which leads to the error of 0,1-0,2 mK. Model analysis demonstrates the necessity for introduction of individual frequency correction to the measurement result like correction for zero power of dispersion. 2012 Article Импедансная модель прецизионных платиновых термометров сопротивления в области высоких температур / А.А. Михаль, Д.В. Мелещук // Технічна електродинаміка. — 2012. — № 4. — С. 73–79. — Бібліогр.: 10 назв. — pос. 0204-3599 http://dspace.nbuv.gov.ua/handle/123456789/62076 536.531 ru Технічна електродинаміка Інститут електродинаміки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
Russian |
topic |
Інформаційно-вимірювальні системи в електроенергетиці Інформаційно-вимірювальні системи в електроенергетиці |
spellingShingle |
Інформаційно-вимірювальні системи в електроенергетиці Інформаційно-вимірювальні системи в електроенергетиці Михаль, А.А. Мелещук, Д.В. Импедансная модель прецизионных платиновых термометров сопротивления в области высоких температур Технічна електродинаміка |
description |
Double-pole multiunit impedance model of sensitive thermometer element during measurement on alternating current is proposed. It takes into consideration impact on resistance of sensitive element of bypassing effect which is caused by essential lowing of specific resistance of framework isolation elements with temperature growth. As a result, during the measurement of thermometer resistance on direct and alternating current the error appears which is the function of measurable temperature and current frequency. Theoretical investigations of frequency error of thermometers in the range of temperatures from 0 to 1100 °C are conducted. Difference in the results of measurement of resistance of major types of thermometers is established which leads to the error of 0,1-0,2 mK. Model analysis demonstrates the necessity for introduction of individual frequency correction to the measurement result like correction for zero power of dispersion. |
format |
Article |
author |
Михаль, А.А. Мелещук, Д.В. |
author_facet |
Михаль, А.А. Мелещук, Д.В. |
author_sort |
Михаль, А.А. |
title |
Импедансная модель прецизионных платиновых термометров сопротивления в области высоких температур |
title_short |
Импедансная модель прецизионных платиновых термометров сопротивления в области высоких температур |
title_full |
Импедансная модель прецизионных платиновых термометров сопротивления в области высоких температур |
title_fullStr |
Импедансная модель прецизионных платиновых термометров сопротивления в области высоких температур |
title_full_unstemmed |
Импедансная модель прецизионных платиновых термометров сопротивления в области высоких температур |
title_sort |
импедансная модель прецизионных платиновых термометров сопротивления в области высоких температур |
publisher |
Інститут електродинаміки НАН України |
publishDate |
2012 |
topic_facet |
Інформаційно-вимірювальні системи в електроенергетиці |
url |
http://dspace.nbuv.gov.ua/handle/123456789/62076 |
citation_txt |
Импедансная модель прецизионных платиновых термометров сопротивления в области высоких температур / А.А. Михаль, Д.В. Мелещук // Технічна електродинаміка. — 2012. — № 4. — С. 73–79. — Бібліогр.: 10 назв. — pос. |
series |
Технічна електродинаміка |
work_keys_str_mv |
AT mihalʹaa impedansnaâmodelʹprecizionnyhplatinovyhtermometrovsoprotivleniâvoblastivysokihtemperatur AT meleŝukdv impedansnaâmodelʹprecizionnyhplatinovyhtermometrovsoprotivleniâvoblastivysokihtemperatur |
first_indexed |
2025-07-05T12:56:20Z |
last_indexed |
2025-07-05T12:56:20Z |
_version_ |
1836811740708339712 |
fulltext |
ISSN 1607-7970. . . 2012. 4 73
536.531
, , , ,
,
. , 56, -57, 03680, .
-
.
,
. -
,
. -
0 1100° .
, 0,1 0,2 mK.
. . 10, 1, . 9.
: , , , .
13–1300
( ).
, Guildline,
Measurement International, Hart Scientific.
, , ), , -
, , -
, .
ASL Tinsley
, (300 450) .
25(30) 75(90) . F-18, F-900, F-700 (ASL), 5840
(Tinsley) (1,0 0,01 ppm). , F-18
. ,
, -
.
. ( ) -
, .
, 3,4 . -
9,10 . -
. ,
, -
8 . , -
. , , -
, .
( ) -
.
. -
,
. -
. -
4 .
( . 1),
( d3) , -
, ( a, h1).
© ., ., 2012
74 ISSN 1607-7970. . . 2012. 4
( ,
,
).
,
4-
,
( b, d2).
d1 h2),
.
.
-
.
-
, . 2. -
, -
, ( ) -
. . 2
, : A –
; B –
; C, D – ; E,
F – ; G –
. H – -
d2 b ( . 1). -
-
.
. -
.
-
, , -
, 2
. 3).
. 1
. 2
ZA1 ZBB1 ZB1
ZD1
ZC1
ZG1
ZF1
ZE1
ZH
Z t1
Z' t1
ZAi ZBBi ZBi
ZDi
ZCi
ZGi
ZFi
ZEi
Zti
Z' ti
ZAk ZBBk ZBk
ZDk
ZCk
ZGk
ZFk
ZEk
Ztk
Z' tk
. 3
ISSN 1607-7970. . . 2012. 4 75
: Zti, Z'ti – ; ZAi–ZFi, ZH –
( i=1…k – );
ZBBi – .
( . 2) ,
: = +j 0, : – ; – -
; – . -
6 . ZAi–
ZFi, ZH , -
R C.
, . ,
, :
tg-1C
1
jj
Z ,
tg1
R
j
Z , (1)
0CR
1tg , CRtg 0 .
(1) ,
tg 1, tg 1
500° 7 . , ,
, , , ,
– R. . 2.
Zti, Z'ti ,
.
( 10 400 ). -
R.
,
, ( . ).
ZAi ZBi ZBBi ZCi ZDi ZEi ZGi ZFi ZH Zti Z'ti
CAi RBi RBBi CCi CDi CEi RGi CFi CH Rti R'ti
,
, .
-
, -
. .
. -
( , , , -
) ( , , -
) . -
. , -
E1=E0(1-x/a), .
: E2=E0. , -
,
, , . -
, -
(0–1300 º )
12 15 7 . -
.
, .
, . 3, , , -
. , -
.
76 ISSN 1607-7970. . . 2012. 4
.
, . 2, ( ),
(1),
( . 4) :
1 AC C , 2
C D
C D
C
C C
, 3
E F
E F
C
C C
, 1
H BB
H BB
R RR
R R
, 2 BR R , 3 GR R . (2)
: RDC –
, -
. -
Rt RDC . -
-
. -
1 .
5 , ( ) -
, -
. . ( . 1)
RDC.
( . 4) ,
RDC R1, -
RH ( . 1) RBB. -
( . 1).
. -
(1–5)%.
R1 RH.
R , . 4.
( . 5). RDC R1
Rp=RDC R1 /(RDC+R1).
R2, 2 R3, 3 R , , :
2 2 2 2 2
2 3 2 3 2 3 2 2 3 3
2 2 2 2 2
2 3 2 3 2 3
R R C C (R + R )+(R C + R C )=
C C (R + R ) +(C +C )
;
2 2 2 2 2
2 3 2 3 2 3
2 2 2
2 3 2 2 3 3 2 3
C C (R + R ) +(C +C )=
C C (C R +C R )+(C +C )
. (3)
, . 5, -
(Z) :
2 2 2 2 2 2 2 2 2 2 2 2
1 1
2 2 2 2 2 2 2 2
1 1
( ) ( )
Re( ) 1 (1 );
( ( ) ) ( )
p p
p p R
R C C R C C C
Z R R
R C C C C C
(4)
: = 1+ ; =R C .
(4),
:
2 2
2 2 2R
C R R
C R
. (5)
(5) ,
>(2 3)/R C , , -
, R R .
, .
C1R1RDC
R2
C2
R3
C3
. 4
C1R
R
C
. 5
ISSN 1607-7970. . . 2012. 4 77
,
, .
.
R ( ,
-10 -25 ) (R0) 0,6 , 10 25 ,
420 1080 ° 0 630° . , ,
, . 4 5.
2 3 -
. -
: 2* =4,5–6,2 pF; 3* =1,4–3,6 pF. -
-
, -
. -
2 – (1 6) pF 3 – (0,5 3) pF.
R2 : R= ( ) L/S, : S=a d2, L=h1 –
; ( )
, ( – 7 ).
. ,
L/S (30 40)%, ( )
12–15 .
(5)
. ,
( 10-8),
. -
-10 -25 . 6, 7
1 – 2=1 pF, C3=0,5 pF; 2 – 2=6 pF, C3=3 pF).
, R ( )
10-7 ( ) . -
-
10-4 . , -
, . ,
, . -
-10 -25 . -
ppm (75 )
.
R ( . 8, 9; 1 –
2=1 pF, C3=0,5 pF; 2 – 2=6 pF, C3=3 pF).
0,0E+00
1,0E-07
2,0E-07
3,0E-07
4,0E-07
5,0E-07
6,0E-07
7,0E-07
25 125 225 325 425 525 625 725 825 925
R
f( )
700
500
-10
1
1
2
2
. 6
0,0E+00
2,0E-07
4,0E-07
6,0E-07
8,0E-07
1,0E-06
1,2E-06
1,4E-06
1,6E-06
1,8E-06
2,0E-06
25 125 225 325 425 525 625 725 825 925
700
500
f( )
R -25
1
1
2
2
. 7
78 ISSN 1607-7970. . . 2012. 4
,
. (5) R , R ,
: R =1/ . , R
, R Rmax= R /2.
( R0=10 R0=25 ), -
630 ,
. -
,
. 75 325 ).
.
1.
. -
, . -
. -
, -
-
(75
). -90.
2. -
.
3. -10 -25
.
, , -
.
1. ., . -
// . – 2011. – 1. – . 15–22.
2. ., . . – .- .: , 1965. – 892 .
3. . : . . – .: , 1985. – 448 .
4. ., ., ., . : . –
: “ ”, 2006. – 560 .
5. ., . , -
// . – 2004. – 2. – . 69–71.
6. . ( 195). . , -
. 2- . 1. – .: , 1977. – 504 .
7. : ( 74). . .2.
– .: , 1987. – 464 .
8. Compton I.P. The realization of low temperature fixed points. TMCSI, 4. – 1972. – Part 1. – P . 195–209.
9. Evans J.P., Burns G.W. A study of stability of high temperature platinum resistance thermometers.
TMCSI, 3. – 1962. – Part 1. – P . 313–318.
10. Long Guang, Tao Hongtu. Stability of precision high temperature platinum resistance thermometers.
TMCSI, 5. – 1982. – Part 1. – P . 783–787.
536.531
, , , ,
,
. , 56, -57, 03680, .
. ,
-
ISSN 1607-7970. . . 2012. 4 79
. , ,
. -
0 1100° .
, 0,1 0,2 mK.
. . 10, 1, . 9.
: , , , .
IMPEDANCE MODEL OF PRECISION PLATINUM RESISTANCE THERMOMETERS IN THE FIELD OF
HIGH TEMPERATURES
.A.Mikhal, D.V.Meleshchuk,
Institute of Electrodynamics National Academy of Science of Ukraine,
Peremogy, 56, Kyiv-57, 03680, Ukraine.
Double-pole multiunit impedance model of sensitive thermometer element during measurement on alternating current is
proposed. It takes into consideration impact on resistance of sensitive element of bypassing effect which is caused by
essential lowing of specific resistance of framework isolation elements with temperature growth. As a result, during the
measurement of thermometer resistance on direct and alternating current the error appears which is the function of
measurable temperature and current frequency. Theoretical investigations of frequency error of thermometers in the
range of temperatures from 0 to 1100° are conducted. Difference in the results of measurement of resistance of major
types of thermometers is established which leads to the error of 0,1 0,2 mK. Model analysis demonstrates the necessity
for introduction of individual frequency correction to the measurement result like correction for zero power of
dispersion. References 10, table 1, figures 9.
Key words: temperature, measurement, resistance thermometer, frequency error.
1. Glukhenkii A.I., Mikhal A.A. Calculated mark of impedance composed of cylindrical conductor at its
measurement on alternating current // Tekhnichna elektrodynamika. – 2011. – 1. – P . 15–22. (Rus)
2. Zernov N.V., Karpov V.G. Theory of radiotechnical chaihs. – Moskva: Energi a, 1965. – 892 p. (Rus)
3. Kuin P. Temperature: Transl. from Engl. – Moskva: Mir, 1985. – 448 p. (Rus)
4. Lutsyk Ya.T., Guk O.P., Lakh O.I., Stadnyk B.I. Temperature measurements: theory and practice. – Lviv:
“Bleksyd Bit” edition. – 2006. – 560 p. (Ukr)
5. Meleshchuk D.V., Mikhal A.A. Error of platinum resistance thermometers, caused by surface effect in a wire
of sensitive element // Tekhnichna elektrodynamika. – 2004. – 2. – P . 69–71. (Rus)
6. Reference book on theoretical basis of radiotechnics. (P.195). By Krivitskii B.Kh., Dulin V.N. – Vol.1. –
Moskva: Energiia, 1977. – 504 p. (Rus)
7. Reference book on electrotechnical materials: (P.74). By Koritskii Yu.V. and others. 3 volumes. Vol.2 – 3-d
edition. – Moskva: Energoatomizdat, 1987. – 464 p. (Rus)
8. Compton I.P. The realization of low temperature fixed points. TMCSI, 4. – 1972. – Part 1. – P . 195–209.
9. Evans J.P., Burns G.W. A study of stability of high temperature platinum resistance thermometers. TMCSI,
3. – 1962. – Part 1. – P . 313–318.
10. Long Guang, Tao Hongtu. Stability of precision high temperature platinum resistance thermometers.
TMCSI, 5. – 1982. – Part 1. – P . 783–787.
12.07.2011
Received 12.07.2011
|