Импедансная модель прецизионных платиновых термометров сопротивления в области высоких температур

Double-pole multiunit impedance model of sensitive thermometer element during measurement on alternating current is proposed. It takes into consideration impact on resistance of sensitive element of bypassing effect which is caused by essential lowing of specific resistance of framework isolation el...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2012
Hauptverfasser: Михаль, А.А., Мелещук, Д.В.
Format: Artikel
Sprache:Russian
Veröffentlicht: Інститут електродинаміки НАН України 2012
Schriftenreihe:Технічна електродинаміка
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/62076
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Импедансная модель прецизионных платиновых термометров сопротивления в области высоких температур / А.А. Михаль, Д.В. Мелещук // Технічна електродинаміка. — 2012. — № 4. — С. 73–79. — Бібліогр.: 10 назв. — pос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-62076
record_format dspace
spelling irk-123456789-620762014-05-18T17:20:31Z Импедансная модель прецизионных платиновых термометров сопротивления в области высоких температур Михаль, А.А. Мелещук, Д.В. Інформаційно-вимірювальні системи в електроенергетиці Double-pole multiunit impedance model of sensitive thermometer element during measurement on alternating current is proposed. It takes into consideration impact on resistance of sensitive element of bypassing effect which is caused by essential lowing of specific resistance of framework isolation elements with temperature growth. As a result, during the measurement of thermometer resistance on direct and alternating current the error appears which is the function of measurable temperature and current frequency. Theoretical investigations of frequency error of thermometers in the range of temperatures from 0 to 1100 °C are conducted. Difference in the results of measurement of resistance of major types of thermometers is established which leads to the error of 0,1-0,2 mK. Model analysis demonstrates the necessity for introduction of individual frequency correction to the measurement result like correction for zero power of dispersion. 2012 Article Импедансная модель прецизионных платиновых термометров сопротивления в области высоких температур / А.А. Михаль, Д.В. Мелещук // Технічна електродинаміка. — 2012. — № 4. — С. 73–79. — Бібліогр.: 10 назв. — pос. 0204-3599 http://dspace.nbuv.gov.ua/handle/123456789/62076 536.531 ru Технічна електродинаміка Інститут електродинаміки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language Russian
topic Інформаційно-вимірювальні системи в електроенергетиці
Інформаційно-вимірювальні системи в електроенергетиці
spellingShingle Інформаційно-вимірювальні системи в електроенергетиці
Інформаційно-вимірювальні системи в електроенергетиці
Михаль, А.А.
Мелещук, Д.В.
Импедансная модель прецизионных платиновых термометров сопротивления в области высоких температур
Технічна електродинаміка
description Double-pole multiunit impedance model of sensitive thermometer element during measurement on alternating current is proposed. It takes into consideration impact on resistance of sensitive element of bypassing effect which is caused by essential lowing of specific resistance of framework isolation elements with temperature growth. As a result, during the measurement of thermometer resistance on direct and alternating current the error appears which is the function of measurable temperature and current frequency. Theoretical investigations of frequency error of thermometers in the range of temperatures from 0 to 1100 °C are conducted. Difference in the results of measurement of resistance of major types of thermometers is established which leads to the error of 0,1-0,2 mK. Model analysis demonstrates the necessity for introduction of individual frequency correction to the measurement result like correction for zero power of dispersion.
format Article
author Михаль, А.А.
Мелещук, Д.В.
author_facet Михаль, А.А.
Мелещук, Д.В.
author_sort Михаль, А.А.
title Импедансная модель прецизионных платиновых термометров сопротивления в области высоких температур
title_short Импедансная модель прецизионных платиновых термометров сопротивления в области высоких температур
title_full Импедансная модель прецизионных платиновых термометров сопротивления в области высоких температур
title_fullStr Импедансная модель прецизионных платиновых термометров сопротивления в области высоких температур
title_full_unstemmed Импедансная модель прецизионных платиновых термометров сопротивления в области высоких температур
title_sort импедансная модель прецизионных платиновых термометров сопротивления в области высоких температур
publisher Інститут електродинаміки НАН України
publishDate 2012
topic_facet Інформаційно-вимірювальні системи в електроенергетиці
url http://dspace.nbuv.gov.ua/handle/123456789/62076
citation_txt Импедансная модель прецизионных платиновых термометров сопротивления в области высоких температур / А.А. Михаль, Д.В. Мелещук // Технічна електродинаміка. — 2012. — № 4. — С. 73–79. — Бібліогр.: 10 назв. — pос.
series Технічна електродинаміка
work_keys_str_mv AT mihalʹaa impedansnaâmodelʹprecizionnyhplatinovyhtermometrovsoprotivleniâvoblastivysokihtemperatur
AT meleŝukdv impedansnaâmodelʹprecizionnyhplatinovyhtermometrovsoprotivleniâvoblastivysokihtemperatur
first_indexed 2025-07-05T12:56:20Z
last_indexed 2025-07-05T12:56:20Z
_version_ 1836811740708339712
fulltext ISSN 1607-7970. . . 2012. 4 73 536.531 , , , , , . , 56, -57, 03680, . - . , . - , . - 0 1100° . , 0,1 0,2 mK. . . 10, 1, . 9. : , , , . 13–1300 ( ). , Guildline, Measurement International, Hart Scientific. , , ), , - , , - , . ASL Tinsley , (300 450) . 25(30) 75(90) . F-18, F-900, F-700 (ASL), 5840 (Tinsley) (1,0 0,01 ppm). , F-18 . , , - . . ( ) - , . , 3,4 . - 9,10 . - . , , - 8 . , - . , , - , . ( ) - . . - , . - . - 4 . ( . 1), ( d3) , - , ( a, h1). © ., ., 2012 74 ISSN 1607-7970. . . 2012. 4 ( , , ). , 4- , ( b, d2). d1 h2), . . - . - , . 2. - , - , ( ) - . . 2 , : A – ; B – ; C, D – ; E, F – ; G – . H – - d2 b ( . 1). - - . . - . - , , - , 2 . 3). . 1 . 2 ZA1 ZBB1 ZB1 ZD1 ZC1 ZG1 ZF1 ZE1 ZH Z t1 Z' t1 ZAi ZBBi ZBi ZDi ZCi ZGi ZFi ZEi Zti Z' ti ZAk ZBBk ZBk ZDk ZCk ZGk ZFk ZEk Ztk Z' tk . 3 ISSN 1607-7970. . . 2012. 4 75 : Zti, Z'ti – ; ZAi–ZFi, ZH – ( i=1…k – ); ZBBi – . ( . 2) , : = +j 0, : – ; – - ; – . - 6 . ZAi– ZFi, ZH , - R C. , . , , : tg-1C 1 jj Z , tg1 R j Z , (1) 0CR 1tg , CRtg 0 . (1) , tg 1, tg 1 500° 7 . , , , , , , – R. . 2. Zti, Z'ti , . ( 10 400 ). - R. , , ( . ). ZAi ZBi ZBBi ZCi ZDi ZEi ZGi ZFi ZH Zti Z'ti CAi RBi RBBi CCi CDi CEi RGi CFi CH Rti R'ti , , . - , - . . . - ( , , , - ) ( , , - ) . - . , - E1=E0(1-x/a), . : E2=E0. , - , , , . - , - (0–1300 º ) 12 15 7 . - . , . , . 3, , , - . , - . 76 ISSN 1607-7970. . . 2012. 4 . , . 2, ( ), (1), ( . 4) : 1 AC C , 2 C D C D C C C , 3 E F E F C C C , 1 H BB H BB R RR R R , 2 BR R , 3 GR R . (2) : RDC – , - . - Rt RDC . - - . - 1 . 5 , ( ) - , - . . ( . 1) RDC. ( . 4) , RDC R1, - RH ( . 1) RBB. - ( . 1). . - (1–5)%. R1 RH. R , . 4. ( . 5). RDC R1 Rp=RDC R1 /(RDC+R1). R2, 2 R3, 3 R , , : 2 2 2 2 2 2 3 2 3 2 3 2 2 3 3 2 2 2 2 2 2 3 2 3 2 3 R R C C (R + R )+(R C + R C )= C C (R + R ) +(C +C ) ; 2 2 2 2 2 2 3 2 3 2 3 2 2 2 2 3 2 2 3 3 2 3 C C (R + R ) +(C +C )= C C (C R +C R )+(C +C ) . (3) , . 5, - (Z) : 2 2 2 2 2 2 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 1 1 ( ) ( ) Re( ) 1 (1 ); ( ( ) ) ( ) p p p p R R C C R C C C Z R R R C C C C C (4) : = 1+ ; =R C . (4), : 2 2 2 2 2R C R R C R . (5) (5) , >(2 3)/R C , , - , R R . , . C1R1RDC R2 C2 R3 C3 . 4 C1R R C . 5 ISSN 1607-7970. . . 2012. 4 77 , , . . R ( , -10 -25 ) (R0) 0,6 , 10 25 , 420 1080 ° 0 630° . , , , . 4 5. 2 3 - . - : 2* =4,5–6,2 pF; 3* =1,4–3,6 pF. - - , - . - 2 – (1 6) pF 3 – (0,5 3) pF. R2 : R= ( ) L/S, : S=a d2, L=h1 – ; ( ) , ( – 7 ). . , L/S (30 40)%, ( ) 12–15 . (5) . , ( 10-8), . - -10 -25 . 6, 7 1 – 2=1 pF, C3=0,5 pF; 2 – 2=6 pF, C3=3 pF). , R ( ) 10-7 ( ) . - - 10-4 . , - , . , , . - -10 -25 . - ppm (75 ) . R ( . 8, 9; 1 – 2=1 pF, C3=0,5 pF; 2 – 2=6 pF, C3=3 pF). 0,0E+00 1,0E-07 2,0E-07 3,0E-07 4,0E-07 5,0E-07 6,0E-07 7,0E-07 25 125 225 325 425 525 625 725 825 925 R f( ) 700 500 -10 1 1 2 2 . 6 0,0E+00 2,0E-07 4,0E-07 6,0E-07 8,0E-07 1,0E-06 1,2E-06 1,4E-06 1,6E-06 1,8E-06 2,0E-06 25 125 225 325 425 525 625 725 825 925 700 500 f( ) R -25 1 1 2 2 . 7 78 ISSN 1607-7970. . . 2012. 4 , . (5) R , R , : R =1/ . , R , R Rmax= R /2. ( R0=10 R0=25 ), - 630 , . - , . 75 325 ). . 1. . - , . - . - , - - (75 ). -90. 2. - . 3. -10 -25 . , , - . 1. ., . - // . – 2011. – 1. – . 15–22. 2. ., . . – .- .: , 1965. – 892 . 3. . : . . – .: , 1985. – 448 . 4. ., ., ., . : . – : “ ”, 2006. – 560 . 5. ., . , - // . – 2004. – 2. – . 69–71. 6. . ( 195). . , - . 2- . 1. – .: , 1977. – 504 . 7. : ( 74). . .2. – .: , 1987. – 464 . 8. Compton I.P. The realization of low temperature fixed points. TMCSI, 4. – 1972. – Part 1. – P . 195–209. 9. Evans J.P., Burns G.W. A study of stability of high temperature platinum resistance thermometers. TMCSI, 3. – 1962. – Part 1. – P . 313–318. 10. Long Guang, Tao Hongtu. Stability of precision high temperature platinum resistance thermometers. TMCSI, 5. – 1982. – Part 1. – P . 783–787. 536.531 , , , , , . , 56, -57, 03680, . . , - ISSN 1607-7970. . . 2012. 4 79 . , , . - 0 1100° . , 0,1 0,2 mK. . . 10, 1, . 9. : , , , . IMPEDANCE MODEL OF PRECISION PLATINUM RESISTANCE THERMOMETERS IN THE FIELD OF HIGH TEMPERATURES .A.Mikhal, D.V.Meleshchuk, Institute of Electrodynamics National Academy of Science of Ukraine, Peremogy, 56, Kyiv-57, 03680, Ukraine. Double-pole multiunit impedance model of sensitive thermometer element during measurement on alternating current is proposed. It takes into consideration impact on resistance of sensitive element of bypassing effect which is caused by essential lowing of specific resistance of framework isolation elements with temperature growth. As a result, during the measurement of thermometer resistance on direct and alternating current the error appears which is the function of measurable temperature and current frequency. Theoretical investigations of frequency error of thermometers in the range of temperatures from 0 to 1100° are conducted. Difference in the results of measurement of resistance of major types of thermometers is established which leads to the error of 0,1 0,2 mK. Model analysis demonstrates the necessity for introduction of individual frequency correction to the measurement result like correction for zero power of dispersion. References 10, table 1, figures 9. Key words: temperature, measurement, resistance thermometer, frequency error. 1. Glukhenkii A.I., Mikhal A.A. Calculated mark of impedance composed of cylindrical conductor at its measurement on alternating current // Tekhnichna elektrodynamika. – 2011. – 1. – P . 15–22. (Rus) 2. Zernov N.V., Karpov V.G. Theory of radiotechnical chaihs. – Moskva: Energi a, 1965. – 892 p. (Rus) 3. Kuin P. Temperature: Transl. from Engl. – Moskva: Mir, 1985. – 448 p. (Rus) 4. Lutsyk Ya.T., Guk O.P., Lakh O.I., Stadnyk B.I. Temperature measurements: theory and practice. – Lviv: “Bleksyd Bit” edition. – 2006. – 560 p. (Ukr) 5. Meleshchuk D.V., Mikhal A.A. Error of platinum resistance thermometers, caused by surface effect in a wire of sensitive element // Tekhnichna elektrodynamika. – 2004. – 2. – P . 69–71. (Rus) 6. Reference book on theoretical basis of radiotechnics. (P.195). By Krivitskii B.Kh., Dulin V.N. – Vol.1. – Moskva: Energiia, 1977. – 504 p. (Rus) 7. Reference book on electrotechnical materials: (P.74). By Koritskii Yu.V. and others. 3 volumes. Vol.2 – 3-d edition. – Moskva: Energoatomizdat, 1987. – 464 p. (Rus) 8. Compton I.P. The realization of low temperature fixed points. TMCSI, 4. – 1972. – Part 1. – P . 195–209. 9. Evans J.P., Burns G.W. A study of stability of high temperature platinum resistance thermometers. TMCSI, 3. – 1962. – Part 1. – P . 313–318. 10. Long Guang, Tao Hongtu. Stability of precision high temperature platinum resistance thermometers. TMCSI, 5. – 1982. – Part 1. – P . 783–787. 12.07.2011 Received 12.07.2011