Groups with the minimal condition for nonabelian subgroups

Для деяких дуже широких класiв D i B ⊂ D груп автор доводить, що довiльна (неабелева) група G ∊ D (вiдповiдно, G ∊ B) задовольняє умову мiнiмальностi для (неабелевих) пiдгруп тодi i тiльки тодi, коли вона є чернiковською....

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2006
Автор: Chernikov, N.S.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2006
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/6277
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Groups with the minimal condition for nonabelian subgroups / N.S. Chernikov // Збірник праць Інституту математики НАН України. — 2006. — Т. 3, № 3. — С. 423-430. — Бібліогр.: 7 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-6277
record_format dspace
spelling irk-123456789-62772016-05-19T14:09:46Z Groups with the minimal condition for nonabelian subgroups Chernikov, N.S. Геометрія, топологія та їх застосування Для деяких дуже широких класiв D i B ⊂ D груп автор доводить, що довiльна (неабелева) група G ∊ D (вiдповiдно, G ∊ B) задовольняє умову мiнiмальностi для (неабелевих) пiдгруп тодi i тiльки тодi, коли вона є чернiковською. Для некоторых очень широких классов D и B ⊂ D групп автор доказывает, что произвольная (неабелева) группа G ∊ D (соответственно, G ∊ B) удовлетворяет условию минимальности для (неабелевых) подгрупп тогда и только тогда, когда она является черниковской. Для некоторых очень широких классов D и B ⊂ D групп автор доказывает, что произвольная (неабелева) группа G ∊ D (соответственно, G ∊ B) удовлетворяет условию минимальности для (неабелевых) подгрупп тогда и только тогда, когда она является черниковской. For some very wide classes D and B ⊂ D of groups, the author proves that an arbitrary (nonabelian) group G ∊ D (respectively G ∊ B) satisfies the minimal condition for (nonabelian) subgroups iff it is Chernikov. 2006 Article Groups with the minimal condition for nonabelian subgroups / N.S. Chernikov // Збірник праць Інституту математики НАН України. — 2006. — Т. 3, № 3. — С. 423-430. — Бібліогр.: 7 назв. — англ. 1815-2910 http://dspace.nbuv.gov.ua/handle/123456789/6277 519.41/47 en Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Геометрія, топологія та їх застосування
Геометрія, топологія та їх застосування
spellingShingle Геометрія, топологія та їх застосування
Геометрія, топологія та їх застосування
Chernikov, N.S.
Groups with the minimal condition for nonabelian subgroups
description Для деяких дуже широких класiв D i B ⊂ D груп автор доводить, що довiльна (неабелева) група G ∊ D (вiдповiдно, G ∊ B) задовольняє умову мiнiмальностi для (неабелевих) пiдгруп тодi i тiльки тодi, коли вона є чернiковською.
format Article
author Chernikov, N.S.
author_facet Chernikov, N.S.
author_sort Chernikov, N.S.
title Groups with the minimal condition for nonabelian subgroups
title_short Groups with the minimal condition for nonabelian subgroups
title_full Groups with the minimal condition for nonabelian subgroups
title_fullStr Groups with the minimal condition for nonabelian subgroups
title_full_unstemmed Groups with the minimal condition for nonabelian subgroups
title_sort groups with the minimal condition for nonabelian subgroups
publisher Інститут математики НАН України
publishDate 2006
topic_facet Геометрія, топологія та їх застосування
url http://dspace.nbuv.gov.ua/handle/123456789/6277
citation_txt Groups with the minimal condition for nonabelian subgroups / N.S. Chernikov // Збірник праць Інституту математики НАН України. — 2006. — Т. 3, № 3. — С. 423-430. — Бібліогр.: 7 назв. — англ.
work_keys_str_mv AT chernikovns groupswiththeminimalconditionfornonabeliansubgroups
first_indexed 2025-07-02T09:13:08Z
last_indexed 2025-07-02T09:13:08Z
_version_ 1836525906797002752
fulltext Збiрник праць Iн-ту математики НАН України 2006, т.3, №3, 423-430 UDC 519.41/47 N. S.Chernikov Institute of Mathematics of NAS of Ukraine, Kyiv, Ukraine E-mail: chern@imath.kiev.ua Groups with the minimal condition for nonabelian subgroups Для деяких дуже широких класiв D i B ⊂ D груп автор доводить, що довiльна (неабелева) група G ∈ D (вiдповiдно, G ∈ B) задовольняє умову мiнiмальностi для (неабелевих) пiдгруп тодi i тiльки тодi, коли вона є чернiковською. Для некоторых очень широких классов D и B ⊂ D групп автор дока- зывает, что произвольная (неабелева) группа G ∈ D (соответственно, G ∈ B) удовлетворяет условию минимальности для (неабелевых) под- групп тогда и только тогда, когда она является черниковской. For some very wide classes D and B ⊂ D of groups, the author proves that an arbitrary (nonabelian) group G ∈ D (respectively G ∈ B) satisfies the minimal condition for (nonabelian) subgroups iff it is Chernikov. Recall that a group G is called Shunkov, if for any its finite subgroup K every subgroup of the quotient group NG(K)/K, generated by two its conjugated elements of prime order, is finite. Recall that a group is called locally graded, if any its finitely generated subgroup 6= 1 contains a subgroup of finite index 6= 1 (S.N.Chernikov). The class of all periodic Shunkov groups is wide and contains, for instance, all binary finite and 2-groups. The class of all locally graded groups is very wide and contains, for instance, all abelian, locally finite, residually finite groups. It is easy to see that this class is local and any group having a series with locally graded factors is locally c© N. S.Chernikov, 2006 424 Groups with the minimal condition . . . graded, and any residually (locally graded) group is locally graded. At the same time, the class of all locally graded groups contains all groups having a series with locally finite factors, all RN - (and so all groups of all Kurosh-Chernikov classes), locally solvable, locally hyperabelian, radical in the sense of B.I.Plotkin, residually solvable groups. Below, as usual, π(G) is the set of all primes p for which the group G has a p-element 6= 1. Let A be the class of all groups G for which the following conditions are fulfilled: (i) If G is not torsion-free, then for any p ∈ π(G) and p- element g 6= 1 of G and h ∈ CG(gp), 〈g, gh〉 possesses a subgroup of finite index 6= 1 or 〈g, h〉 is not periodic. (ii) If G is not periodic, then for any element g of infinite order of G and h ∈ G, 〈g, gh〉 possesses a subgroup of finite index 6= 1. The class A is very wide and contains, for instance, all periodic Shunkov groups and all locally graded groups. Let C be the class of all groups G for which (i), with "peri- odic 6= 1" instead of "not torsion-free" and deleted "or 〈g, h〉 is not periodic", is fulfilled (and (ii) is not necessary fulfilled). Then A is contained in C, C contains all nonperiodic groups and the class of all periodic A-groups is just the class of all periodic C-groups. Let B (resp. D) be the minimal local class of groups con- taining A (resp. C) such that any group possessing a series with B (resp. D)-factors belongs to B (resp. D). Put B0 = A (resp. D0 = C) and for ordinals β > 0 by induction: if for some ordinal α, β = α+1, then Bβ (resp. Dβ) be the class of all groups which have a local system of subgroups possessing a series with Bα (resp. Dα)-factors, and if there is no such α, N. S.Chernikov 425 then Bβ = ⋃ α<β Bα (resp. Dβ = ⋃ α<β Dα). It is easy to see that B (resp. D) is the union of classes Bβ (resp. Dβ). It is easy to show by induction that all Bβ and, at the same time, B are closed with respect to subgroups. The known Shunkov’s [1] and S.N.Chernikov’s [2] Theorems establish that a nonabelian group satisfying the minimal con- dition for nonabelian subgroups is Chernikov, if it is locally finite or has a series with finite factors resp. The next Theo- rem contains them. Its proof below uses some results [2] and Suchkova-Shunkov Theorem [3], which asserts that a Shunkov group with the minimal condition for abelian subgroups is Chernikov. Theorem. A (nonabelian) group G ∈ D (resp. G ∈ B) satisfies the minimal condition for (nonabelian) subgroups iff it is Chernikov. Note that Ol’shanskii’s nonabelian groups, in which all proper subgroups are finite (see [4]), satisfy the minimal condi- tion for subgroups and are non-Chernikov. Thus, in Theorem, the condition "G ∈ D" is essential. Note that Ol’shanskii’s nonabelian torsion-free groups, in which all proper subgroups are cyclic (see [4]), satisfy the minimal condition for non- abelian subgroups, are Shunkov and non-Chernikov. In par- ticular, in Theorem, the condition ”G ∈ B” is essential. Below min and min−ab are the minimal conditions for sub- groups and nonabelian subgroups resp. Other notations are standard. (Remark that a group with min is periodic and an abelian group with min is Chernikov.) Proof. Sufficiency is obvious. Necessity. Let G be non-Chernikov. (a) Reduction to the case when G satisfies min−ab and also G ∈ A. Let ζ be minimal among all ordinals α, for which Bα 426 Groups with the minimal condition . . . (resp. Dα) contains a non-(Chernikov or abelian) group (resp. a non-Chernikov group) with min−ab (resp. min). We may assume that G ∈ Bζ (resp. G ∈ Dζ). Suppose ζ > 0. Clearly, for some ordinal ξ, ζ = ξ+1. So G possesses a local system of subgroups having a series with Bξ (resp. Dξ)-factors. Every factor is, obviously, Chernikov or abelian (resp. Chernikov). So G is locally graded. Thus G ∈ B0 (resp. G ∈ D0), which is a contradiction. So ζ = 0 and G ∈ A (resp. G ∈ C). In the case of min, G ∈ C and G is, obviously, periodic nonabelian with min−ab. In particular, G ∈ A. Taking this into account, we may consider later on only the case of G ∈ A with min−ab. Since G satisfies min−ab, it contains a non-(Chernikov or abelian) subgroup L such that any its proper subgroup is Chernikov or abelian. We may assume that G = L. Then for every normal subgroup N of G, any proper subgroup of G/N is Chernikov or abelian. (b) Show that a subgroup H of G is Chernikov or abelian, if it has a subgroup K of finite index 6= 1 or if it is almost solvable. Since K 6= G, K and so H are almost abelian. If H is almost solvable, then in view of Corollary to Theorem 1 [2], Corollary 2 [2] and Lemmas 1,2 [2], it is Chernikov or abelian. (c) Show that G is periodic. Let G have elements g of infinite order. Since G ∈ A, every 〈g, gh〉 has a proper sub- group of finite index and so is abelian (see (b)). Then for any u ∈ G, 〈gh : h ∈ G〉〈u〉 is non-Chernikov solvable and so is abelian (see (b)). Thus g ∈ Z(G). Let v ∈ G and |〈v〉| < ∞. Then vg is of infinite order. So v = (vg)g−1 ∈ Z(G). Thus G is abelian, which is a contradiction. (d) Show that G/Z(G) is Shunkov. Let K/Z(G) be a finite subgroup of G/Z(G). In view of Kalužnin’s Theorem (see [5]), N. S.Chernikov 427 CG(K/Z(G))/CG(K) is abelian. So NG(K)/CG(K) is almost abelian. If K/Z(G) 6= 1, then CG(K) 6= G and so CG(K) is al- most abelian. Thus NG(K) is almost solvable. So NG(K) is Chernikov or abelian (see (b)). Clearly, NG(K)/Z(G) = NG/Z(G)(K/Z(G)). Consequently, the quotient group NG/Z(G)(K/Z(G))/(K/Z(G)) is Chernikov or abelian. There- fore any two its elements of prime order generate a finite sub- group. Let K/Z(G) = 1 and R/Z(G) be a subgroup of G/Z(G) generated by two its conjugated element of some prime or- der p. Obviously, because of Z(G) is periodic (see (c)), for some p-elementg ∈ G such that gp ∈ Z(G) and some h ∈ G, R = 〈g, gh〉Z(G). Clearly, R/Z(G) is isomorphic to a quotient group of the group 〈g, gh〉/〈gp〉. Since G ∈ A, 〈g, gh〉 has a subgroup of finite index 6= 1. So, with regard to (b), 〈g, gh〉 is finite. Therefore R/Z(G) is finite. (e) Show that G/Z(G) has an abelian non-Chernikov non- normal maximal subgroup A/Z(G) such that (0.10) A/Z(G) ∩ (A/Z(G))g = 1, g ∈ (G/Z(G))\(A/Z(G)). If all proper subgroups of G/Z(G) are Chernikov, then it satisfies min. So because of G/Z(G) is Shunkov (see (d)), by Suchkova-Shunkov Theorem [3] it is Chernikov. So G is almost solvable, which is a contradiction (see (b)). So some maximal abelian subgroup A/Z(G) of G/Z(G) is non- Chernikov. An arbitrary proper subgroup H ⊇ A of G is non- Chernikov. So it is abelian. Therefore H/Z(G) = A/Z(G) and H = A. Thus A is an abelian maximal subgroup of G. If A is normal in G, then |G : A| is prime and G is solv- able, which is a contradiction (see (b)). Consequently, for any g ∈ G\A, G = 〈A, Ag〉. Then A ∩ Ag ⊆ Z(G). But, 428 Groups with the minimal condition . . . clearly, Z(G) ⊆ A, Ag. Thus A ∩ Ag = Z(G). Therefore (1) is valid. (f) Show that A/Z(G) has some element a of odd prime order. Suppose that this is not the case. Since A/Z(G) is pe- riodic (see (c)) and neither cyclic nor quasicyclic, it has some elements b and c 6= b of order 2. Let h ∈ (G/Z(G))\(A/Z(G)). Then 〈b, ch〉 = 〈bch〉⋋ 〈b〉 = 〈bch〉⋋ 〈ch〉 and |〈bch〉| < ∞ (see (c)). If |〈bch〉| is odd, then for some s ∈ 〈bch〉, b = chs. Since A/Z(G) is abelian and b, c ∈ A/Z(G), hs /∈ A/Z(G). But b ∈ A/Z(G) ∩ (A/Z(G))hs, which is a contradiction (see (1)). So 〈bch〉 contains some element w of order 2. But then w ∈ CG/Z(G)(b) ∩ CG/Z(G)(c h) = A/Z(G) ∩ (A/Z(G))h, which is a contradiction. (g) Final contradiction. Let a be from (f). Since G/Z(G) is Shunkov (see (d)), for any h ∈ G/Z(G), |〈a, ah〉| < ∞. So with regard to (1) by Sozutov-Shunkov Theorem [6], for some normal subgroup N/Z(G) of G/Z(G), G/Z(G) = (A/Z(G))(N/Z(G)) and A/Z(G) ∩ N/Z(G) = 1. Since N 6= G and G/N is abelian, G is almost solvable, which is a contradiction (see (b)). The following new proposition is contained in Theorem. Proposition 1. Let G be a nonabelian group. Assume that G is locally graded or periodic Shunkov. Then G satisfies min−ab iff it is Chernikov. In view of Mal’cev Theorem (see Theorem 4.2 [7]), a linear group over a field is locally residually finite. Further, for a commutative and associative ring R with 1 and any finitely generated unital module M over R, AutR(M) is hyperabelian- by-residually (linear over fields) (Theorem 13.5 [7]). Conse- quently, AutR(M) is locally graded. Hence follows that any N. S.Chernikov 429 GLn(R) is locally graded. Therefore, in virtue of Theorem, the following proposition is valid. Proposition 2. A (nonabelian) group G ⊆ AutR(M) or G ⊆ GLn(R) satisfies min (resp. min−ab) iff it is Chernikov. Finally, let E be the class of all groups G for which the following conditions are fulfilled: (i) If G is not torsion-free, then for any p ∈ π(G) and p- element g 6= 1 of G and h ∈ CG(gp), 〈g, gh〉 possesses a B-homomorphic image 6= 1 or 〈g, h〉 is not periodic. (ii) If G is not periodic, then for any element g of infi- nite order of G and h ∈ G, 〈g, gh〉 possesses a B- homomorphic image 6= 1. Let F be the class of all groups G for which the following condition is fulfilled: If G is periodic 6= 1, then for any p ∈ π(G) and p-element g 6= 1 of G and h ∈ CG(gp), 〈g, gh〉 possesses a D-homomorphic image 6= 1. Proposition 3. A (nonabelian) group G ∈ F (resp. G ∈ E) satisfies min (resp. min−ab) iff it is Chernikov. Proof. Necessity. A corresponding homomorphic image of 〈g, gh〉 is generated by two elements. In the case when it is not abelian, by Theorem, it is finite. In the case when it is abelian, it has a subgroup of finite index 6= 1. Consequently, 〈g, gh〉 possesses a subgroup of finite index 6= 1. So G ∈ C (resp. G ∈ A). Therefore by Theorem, G is Chernikov. Sufficiency is obvious. 430 References [1] Shunkov V.P. On abstract characterizations of some linear groups // Al- gebra. Matrices and matrix groups. – Krasnoyarsk: L.V.Kirenskii In-te Physics Sib. Dept. Acad. Sci USSR, 1970. – P. 5–54 (in Russian). [2] Chernikov S.N. Groups with the minimal condition for nonabelian sub- groups // Groups with restrictions for subgroups. – Kyiv: Naukova dumka, 1971. – P. 96–106. (in Russian). [3] Suchkova N.G., Shunkov V.P. On groups with the minimal condition for abelian subgroups // Algebra i logika. – 1986. – 25, №4. – P. 445–469 (in Russian). [4] Ol’shanskii A.Yu. Geometry of defining relations in groups. – Moscow: Nauka, 1989. – 448 p. (in Russian). [5] Kargapolov M.I., Merzljakov Ju.I. Foundations of the theory of groups. – Moscow: Nauka, 1972. – 240 p. (in Russian). [6] Sozutov A.I., Shunkov V.P. A generalization of the Frobenius theorem to infinite groups // Mat. sb. – 1976. – 100, №4. – P. 495–506 (in Russian). [7] Wehrfritz B.A.F. Infinite linear groups. – Berlin etc.: Springer, 1973. – 228 p.