Morse-Bott functions on manifolds with semi-free circle action

Let W²ⁿ be a closed manifold of dimension ≥ 6 with semi-free circle having finitely many fixed points. We study S¹-invariant Morse-Bott functions on W²ⁿ. The aim of this paper is to obtain exact values of minimal numbers of singular circles of some indexes of S¹-invariant Morse-Bott functions on W²ⁿ...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2009
Автор: Sharko, V.V.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2009
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/6331
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Morse-Bott functions on manifolds with semi-free circle action / V.V. Sharko // Збірник праць Інституту математики НАН України. — 2009. — Т. 6, № 2. — С. 518-523. — Бібліогр.: 4 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-6331
record_format dspace
spelling irk-123456789-63312010-02-24T12:01:16Z Morse-Bott functions on manifolds with semi-free circle action Sharko, V.V. Геометрія, топологія та їх застосування Let W²ⁿ be a closed manifold of dimension ≥ 6 with semi-free circle having finitely many fixed points. We study S¹-invariant Morse-Bott functions on W²ⁿ. The aim of this paper is to obtain exact values of minimal numbers of singular circles of some indexes of S¹-invariant Morse-Bott functions on W²ⁿ. 2009 Article Morse-Bott functions on manifolds with semi-free circle action / V.V. Sharko // Збірник праць Інституту математики НАН України. — 2009. — Т. 6, № 2. — С. 518-523. — Бібліогр.: 4 назв. — англ. 1815-2910 http://dspace.nbuv.gov.ua/handle/123456789/6331 en Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Геометрія, топологія та їх застосування
Геометрія, топологія та їх застосування
spellingShingle Геометрія, топологія та їх застосування
Геометрія, топологія та їх застосування
Sharko, V.V.
Morse-Bott functions on manifolds with semi-free circle action
description Let W²ⁿ be a closed manifold of dimension ≥ 6 with semi-free circle having finitely many fixed points. We study S¹-invariant Morse-Bott functions on W²ⁿ. The aim of this paper is to obtain exact values of minimal numbers of singular circles of some indexes of S¹-invariant Morse-Bott functions on W²ⁿ.
format Article
author Sharko, V.V.
author_facet Sharko, V.V.
author_sort Sharko, V.V.
title Morse-Bott functions on manifolds with semi-free circle action
title_short Morse-Bott functions on manifolds with semi-free circle action
title_full Morse-Bott functions on manifolds with semi-free circle action
title_fullStr Morse-Bott functions on manifolds with semi-free circle action
title_full_unstemmed Morse-Bott functions on manifolds with semi-free circle action
title_sort morse-bott functions on manifolds with semi-free circle action
publisher Інститут математики НАН України
publishDate 2009
topic_facet Геометрія, топологія та їх застосування
url http://dspace.nbuv.gov.ua/handle/123456789/6331
citation_txt Morse-Bott functions on manifolds with semi-free circle action / V.V. Sharko // Збірник праць Інституту математики НАН України. — 2009. — Т. 6, № 2. — С. 518-523. — Бібліогр.: 4 назв. — англ.
work_keys_str_mv AT sharkovv morsebottfunctionsonmanifoldswithsemifreecircleaction
first_indexed 2025-07-02T09:15:32Z
last_indexed 2025-07-02T09:15:32Z
_version_ 1836526057522462720
fulltext Çáiðíèê ïðàöüIí-òó ìàòåìàòèêè ÍÀÍ Óêðà¨íè2009, ò.6, �2, 518-523 V. V. Sharko Institute of Mathematics of NAS of Ukraine, Tereshchenkivs’ka st. 3, Kyiv, 01601 Ukraine E-mail: sharko@imath.kiev.ua Morse-Bott functions on manifolds with semi-free circle action Let W 2n be a closed manifold of dimension ≥ 6 with semi-free circle having finitely many fixed points. We study S1-invariant Morse-Bott functions on W 2n. The aim of this paper is to obtain exact values of minimal numbers of singular circles of some indexes of S1-invariant Morse-Bott functions on W 2n. Keywords: Semi-free circle action, manifold, Morse-Bott function, Morse number. 1. S1-invariant Morse-Bott functions Let W 2n be a closed smooth manifold. Suppose that W 2n admits a smooth semi-free circle action with finitely many fixed points. It is known that every isolated fixed point p of a semi-free S1-action has the following important property: near such a point the action is equivalent to a certain linear S1 = SO(2)-action on R2n. More precisely, for every isolated fixed point p there exist an open invariant neighborhood U of p and a diffeomorphism h from U to an open unit disk D in Cn centered at origin such that h conjugates the given S1-action on U to the S1-action on Cn with weight (1, . . . , 1). We will use both complex, (z1, . . . , zn), and real coordinates (x1, y1, . . . , xn, yn) on Cn = R2n with zi = xi+ √ −1yi. The pair (U, h) will be called a standard chart at the point p. Let f : W 2n → R be a smooth S1-invariant function on the mani- fold W 2n. Denote by Σf the set of singular points of the function c© V. V. Sharko, 2009 Morse-Bott functions on manifolds 519 f . It is clear that the set of isolated singular points Σf (pi) ⊂ Σf of f coincides with the set of fixed points W S1 . A point p ∈ W S1 is nondegenerate if the Hessian of the function f at p is nondegenerate. For a nondegenerate fixed point p there exist a standard chart (U, h) such that on U the function f is given by the following formula: f = f(p) − |z1|2 − . . .− |zλ|2 + |zλ+1|2 + . . .+ |zn|2. Notice that the index of nondegenerate fixed point p is always even. Denote by Σf (S 1) the set singular points of the function f that are disconnected union of circles. These circles will be called sin- gular. A circle s ∈ Σf(S 1) is called nondegenerate if there is an S1-invariant neighborhood U of s on which S1 acts freely and such that the point π(s) is nondegenerate for the function π∗(f) : U/S1 → R, induced on U/S1 by the natural map π : U → U/S1. An invari- ant version of Morse lemma says that there exist an S1-invariant neighborhood U of the circle s and coordinates (x1, . . . , x2n−1) on U/S1 such that the function π∗(f) has the following presentation: π∗(f) = π∗(f(π(s)))− |x1|2 − . . .− |xν |2 + |xν+1|2 + . . .+ |x2n−1|2. By definition ν is the index of singular circle s. Definition 1. A smooth S1-invariant function f : W 2n → R on a manifold W 2n with a semi-free circle action which has isolated fixed points is called an S1-invariant Morse-Bott function if each connected component of the singular set Σf is either a nondegen- erate fixed point or a nondegenerate critical circle, [3]. Definition 2. Assume that W 2n is the closed manifold with a smooth semi-free circle action which has isolated fixed points p1, . . . , pk. For any fixed point pi there exists a standard chart (Ui, hi) such that each Ui is diffeomorphic to the unit disk D2n in 520 V. V. Sharko Cn and that Ui are pairwise disjoint. Take any arbitrary integer λi = 0, 1, . . . , n and define the following function on fi : Ui → R by fi = fi(pi) − |z1|2 − . . .− |zλi |2 + |zλi+1|2 + . . . + |zn|2. Theorem 1. Every smooth semi-free circle action on a closed manifold with isolated fixed points p1, . . . , pk has an S1-invariant Morse-Bott function f such that f = fi on Ui. Proof. From results of paper [2] it follows that functions fi can be extended from Ui to W 2n \⋃Ui. � Theorem 2. The number of fixed points of any smooth semi-free circle action on W 2n with isolated fixed points is always even and equal to the Euler characteristic, χ(W 2n), of the manifold W 2n. Proof. By Theorem 1 we construct on U1 the function f1 = f1(p1) + |z1|2 + . . .+ |zn|2, on Uj , (j ≥ 2) the function fj = fj(pi) − |z1|2 − . . .− |zn|2 and extend such functions to S1-invariant Morse-Bott function f on W 2n \⋃Ui. Since the manifold CPn is non-cobordant to zero it follows that the number of fixed points of any smooth semi-free circle action on W 2n with isolated fixed points is equal to the Euler characteristic χ(W 2n) = 2k of W 2n. � Definition 3. Let f be an S1-invariant Morse-Bott function for smooth semi-free circle action with isolated fixed points p1, . . . , p2k on a closed manifold W 2n. Suppose that the index of a critical point pi of f is λi. The state of f is the collection of numbers λ1, λ2, . . . , λ2k, which we will be denoted by Stf (λi). Remark 1. From Theorem 1 it follows that for every smooth semi-free circle action on a closed manifold W 2n with isolated fixed points p1, . . . , p2k and any collection numbers λ1, λ2, . . . , λ2k, such that 0 ≤ λi ≤ 2n there exists an S1-invariant Morse-Bott functions Morse-Bott functions on manifolds 521 f on W 2n with state Stf (λi). Such a collection of numbers will be denoted by St(λi) and called a state. Definition 4. Let W 2n be a closed smooth manifold with smooth semi-free circle action which has finitely many fixed points. The S1-equivariant Morse number Mν S1(W 2n, St(λi)) of index ν of a state St(λi) of W 2n is the minimum number of singular circles of index ν taken over all S1-invariant Morse-Bott functions on W 2n with state St(λi). The S1-equivariant Morse number Mν S1(W 2n) of index ν of W 2n is the minimum number of Mν S1(W 2n, St(λi)) taken over all states. The S1-equivariant Morse number MS1(W 2n, St(λi)) of a state St(λi) is the minimum number of singular circles of all indices taken over all S1-invariant Morse-Bott functions on W 2n with state St(λi). The S1-equivariant Morse number MS1(W 2n) of W 2n is the minimum number of MS1(W 2n, St(λi)) taken over all states. There is an unsolved problem: for a manifold W 2n with a semi- free circle action which has finitely many fixed points find ex- act values of the numbers Mν S1(W 2n, St(λi)), Mν S1(W 2n), MS1(W 2n, St(λi)), and MS1(W 2n). Definition 5. An S1-invariant Morse-Bott function f on the manifold W 2n with semi-free circle action which has finitely many fixed points is minimal for index ν of a state St(λi) if the number of singular circles of f of index ν is equal to Mν S1(W 2n, St(λi)); minimal for index ν if the number of singular circles of f of index ν is equal to Mν S1(W 2n); minimal for state St(λi) if the number of all singular circles of f is equal to MS1(W 2n, St(λi)); minimal if the number of all singular circles of f is equal to MS1(W 2n). 522 V. V. Sharko Theorem 3. Let W 2n (2n > 5) be a closed smooth simply- connected manifold admits a smooth semi-free circle action with isolated fixed points p1, . . . , p2k. Then on the manifold W 2n for the state St(0, . . . , 0︸ ︷︷ ︸ l , 2n, . . . , 2n︸ ︷︷ ︸ 2k−l ) there exists a minimal (minimal for index ν) S1-invariant Morse-Bott function g for the state St(0, . . . , 0︸ ︷︷ ︸ l , 2n, . . . , 2n︸ ︷︷ ︸ 2k−l ) and MS1(W 2n, St(0, . . . , 0︸ ︷︷ ︸ l , 2n, . . . , 2n︸ ︷︷ ︸ 2k−l )) = = n−1∑ i=1 µ(Hi((W 2n/S1) \ (pl+1 ∪ . . . ∪ p2k), p1, . . . , pl,Z)+ + n−2∑ i=2 µ(Tors(Hi((W 2n/S1) \ (pl+1 ∪ . . . ∪ p2k), p1, . . . , pl,Z), ( Mν S1 ( W 2n, St(0, . . . , 0︸ ︷︷ ︸ l , 2n, . . . , 2n︸ ︷︷ ︸ 2k−l ) ) = = µ ( Hν((W 2n/S1) \ (pl+1 ∪ . . . ∪ p2k), p1, . . . , pl,Z) ) + + µ ( Tors(Hν−1((W 2n/S1) \ (pl+1 ∪ . . . ∪ p2k), p1, . . . , pl,Z) )) , where 0 ≤ l ≤ 2k (µ(H) – minimal number of generators of group H). Proof. Choose an invariant neighborhood Ui of the point pi diffeo- morphic to the unit disc D2n ⊂ Cn and set U = ⋃ i Ui. Consider the manifold V 2n = (W 2n \U)/S1. It is clear that its boundary is a disconnected union of complex projective spaces ∂V 2n = CP 2n−2 1 ∪ . . . ∪ CP 2n−2 k . Morse-Bott functions on manifolds 523 The set W 2n/S1 is simply-connected. It is easy to see using van Kampen theorem that (W 2n \ U)/S1 is simply-connected as well. From S. Smale’s theorem [4] is follows that on (W 2n \U)/S1 there exists a minimal Morse function which we used to construct an S1-invariant Morse-Bott function g for state St(0, . . . , 0︸ ︷︷ ︸ l , 2n, . . . , 2n︸ ︷︷ ︸ 2k−l ) on the manifold W 2n. The values of MS1 ( W 2n, St(0, . . . , 0︸ ︷︷ ︸ l , 2n, . . . , 2n︸ ︷︷ ︸ 2k−l ) ) and Mν S1 ( W 2n, St(0, . . . , 0︸ ︷︷ ︸ l , 2n, . . . , 2n︸ ︷︷ ︸ 2k−l ) ) follow from S. Smale’s theorem and simple homology calcu- lation. � Remark 2. Using diagrams technique, [1], one can give estimates for equivariant Morse number for other states. This will be made in forthcoming paper. References [1] V. V. Sharko. Functions on Manifolds: Algebraic and topological aspects, Translations of Mathematical Monographs, 131, American Mathematical Society, 1993. [2] A. Jankowski, R. Rubinsztein. Functions with non-degenerate critical points on manifolds with boundary // Comment. Math. Prace Mat. – 1972. – V. 16. – PP. 99–112. [3] M. Kogan. Existence of perfect Morse functions on spaces with semi- free circle action // Journal of Symplectic Geometry. – 2003. – V. 1. – PP. 829–850. [4] S. Smale. On the structure of manifolds // Amer. Journal of Math. – 1962. – V. 84. – PP. 387-399.