On the temperature dependence of oxygen ionic conductivity of 10Sc1CeSZ electrolytes

The dependency of ionic oxygen conductivity of 10Sc1CeSZ electrolyte made of different nanosized zirconia powders those differ by their impurities and manufacturing technologies, and sintered in air at different temperatures after uniaxial pressing are analyzed in terms of their Arrhenius equations...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2013
Автор: Kyrpa, O.L.
Формат: Стаття
Мова:English
Опубліковано: Інститут проблем матеріалознавства ім. І.М. Францевича НАН України 2013
Назва видання:Электронная микроскопия и прочность материалов
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/63565
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On the temperature dependence of oxygen ionic conductivity of 10Sc1CeSZ electrolytes / O.L. Kyrpa // Электронная микроскопия и прочность материалов: Сб. научн . тр. — К.: ІПМ НАН України, 2013. — Вип. 19. — С. 159-168. — Бібліогр.: 13 назв. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-63565
record_format dspace
spelling irk-123456789-635652014-06-04T03:01:27Z On the temperature dependence of oxygen ionic conductivity of 10Sc1CeSZ electrolytes Kyrpa, O.L. The dependency of ionic oxygen conductivity of 10Sc1CeSZ electrolyte made of different nanosized zirconia powders those differ by their impurities and manufacturing technologies, and sintered in air at different temperatures after uniaxial pressing are analyzed in terms of their Arrhenius equations in 250—850 °C temperature range. Deviation from a typical linear dependence of conductivity on temperature that is the most clearly visible in the electrolyte made of the purest powder is observed. The inflection point is determined by powder properties and is practically independent on sintering temperature. Йонна провідність електроліту 10Sc1CeSZ залежить від багатьох факторів, зокрема від способу виробництва порошку, анізотропного пресування нанорозмірних порошків в зразок і температури спікання зразків. Так, після спікання у повітрі при різних температурах порошку 10Sc1CeSZ різних виробників залежність його йонної провідності від температури 250—900 °С виражається через рівняння Арреніуса. Опис та аналіз відхилення від прямолінійного ходу залежності електропровідності є важливим аспектом розуміння і покращення властивостей електроліту. Так, точка перегину визначається властивостями порошку і практично не залежить від його температури спікання, тобто є важливою характеристикою матеріалу. Ионная проводимость электролита 10Sc1CeSZ зависит от многих факторов, в частности от способа производства порошка, анизотропного прессования наноразмерных порошков в образец и температуры спекания образцов. Так, после спекания на воздухе при различных температурах порошка 10Sc1CeSZ разных производителей зависимость его ионной проводимости от температуры 250— 900 °С выражается через уравнение Аррениуса. Описание и анализ отклонения от прямолинейного хода зависимости электропроводности является важным аспектом понимания и улучшения свойств электролита. Так, точка перегиба определяется свойствами порошка и практически не зависит от температуры спекания, то есть, является важной характеристикой материала. 2013 Article On the temperature dependence of oxygen ionic conductivity of 10Sc1CeSZ electrolytes / O.L. Kyrpa // Электронная микроскопия и прочность материалов: Сб. научн . тр. — К.: ІПМ НАН України, 2013. — Вип. 19. — С. 159-168. — Бібліогр.: 13 назв. — рос. XXXX-0048 http://dspace.nbuv.gov.ua/handle/123456789/63565 620.187:620.1 en Электронная микроскопия и прочность материалов Інститут проблем матеріалознавства ім. І.М. Францевича НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The dependency of ionic oxygen conductivity of 10Sc1CeSZ electrolyte made of different nanosized zirconia powders those differ by their impurities and manufacturing technologies, and sintered in air at different temperatures after uniaxial pressing are analyzed in terms of their Arrhenius equations in 250—850 °C temperature range. Deviation from a typical linear dependence of conductivity on temperature that is the most clearly visible in the electrolyte made of the purest powder is observed. The inflection point is determined by powder properties and is practically independent on sintering temperature.
format Article
author Kyrpa, O.L.
spellingShingle Kyrpa, O.L.
On the temperature dependence of oxygen ionic conductivity of 10Sc1CeSZ electrolytes
Электронная микроскопия и прочность материалов
author_facet Kyrpa, O.L.
author_sort Kyrpa, O.L.
title On the temperature dependence of oxygen ionic conductivity of 10Sc1CeSZ electrolytes
title_short On the temperature dependence of oxygen ionic conductivity of 10Sc1CeSZ electrolytes
title_full On the temperature dependence of oxygen ionic conductivity of 10Sc1CeSZ electrolytes
title_fullStr On the temperature dependence of oxygen ionic conductivity of 10Sc1CeSZ electrolytes
title_full_unstemmed On the temperature dependence of oxygen ionic conductivity of 10Sc1CeSZ electrolytes
title_sort on the temperature dependence of oxygen ionic conductivity of 10sc1cesz electrolytes
publisher Інститут проблем матеріалознавства ім. І.М. Францевича НАН України
publishDate 2013
url http://dspace.nbuv.gov.ua/handle/123456789/63565
citation_txt On the temperature dependence of oxygen ionic conductivity of 10Sc1CeSZ electrolytes / O.L. Kyrpa // Электронная микроскопия и прочность материалов: Сб. научн . тр. — К.: ІПМ НАН України, 2013. — Вип. 19. — С. 159-168. — Бібліогр.: 13 назв. — рос.
series Электронная микроскопия и прочность материалов
work_keys_str_mv AT kyrpaol onthetemperaturedependenceofoxygenionicconductivityof10sc1ceszelectrolytes
first_indexed 2025-07-05T14:20:36Z
last_indexed 2025-07-05T14:20:36Z
_version_ 1836817042090491904
fulltext 160 УДК 620.187:620.1 On the temperature dependence of oxygen ionic conductivity of 10Sc1CeSZ electrolytes O. L. Kyrpa Frantcevych Institute for Problems of Materials Science, NAN Ukraine, Kyiv, e-mail: 3.14pi@ukr.net The dependency of ionic oxygen conductivity of 10Sc1CeSZ electrolyte made of different nanosized zirconia powders those differ by their impurities and manufacturing technologies, and sintered in air at different temperatures after uniaxial pressing are analyzed in terms of their Arrhenius equations in 250—850 oC temperature range. Deviation from a typical linear dependence of conductivity on temperature that is the most clearly visible in the electrolyte made of the purest powder is observed. The inflection point is determined by powder properties and is practically independent on sintering temperature. Keywords: oxygen ionic conductivity, DKKK, IPMS, Praxair powders, 10Sc1CeSZ electrolyte, influence of sintering temperatur, grain size, activation energy. Introduction Cubic zirconia is a typical solid electrolyte for ceramic fuel cells during more than one hundred years since its invention by Walter Nernst [1]. In this solid electrolyte, the charge transport is realized by oxygen ions [2]. Historically, the oxygen conduction was first observed in fluorite structures as John Goodenough has mentioned in his comprehensive review referencing to Michael Faraday who had observed the fast ion conduction in the electronic insulator PbF2 [3]. This observation is remarkable because all the tetrahedral sites of the face-centered-cubic array of Pb2+ ions are fully occupied. The fast F-ion conduction in PbF2 is due to saddle-point energy between the fully occupied tetrahedral sites that is nearly the same as that of the tetrahedral sites. The large charge on the O2- ion increases the coulomb repulsion between anions and inhibits the coexistence of O2- ions in both saddle-point and tetrahedral-site position in the MO2 fluorites, but the energy difference between saddle-point and tetrahedral sites remains small, so the motional enthalpy ∆Hm for an oxide ion to transfer to a neighboring oxygen vacancy is relatively low. Bi2O3 has one-quarter of the tetrahedral sites vacant, i. e., c0 = 0,75 and these vacancies are disordered in the high-temperature δ-Bi2O3 phase. Like Pb2+, the Bi3+ ion contains a polarizable 6s2 core that reduces the motional enthalpy ∆Hm for an oxide-ion transfer. However, coulomb repulsions between the O2- ions stabilize long-range ordering of the oxygen vacancies below a first-order order-disorder transition at a temperature Tt. The long-range order creates distinguishable occupied and empty sites separated by an energy ∆Hg. In this situation, thermal excitation of anions into the vacancies introduces a disorder that lowers ∆Hg, which introduces a temperature-dependent feedback: ∆Hg(T) = ∆Hg (O) = cδ. (1) © O. L. Kyrpa, 2013 161 The data available show that oxygen ionic conductivity, as some thermo- activated process, may be traditionally described by the typical Arrhenius equation as      −⋅=σ kT E AT aexp (2) where σ is the ionic conductivity; T — temperature; A — pre-exponential constant, and Ea is the activation energy. In general, some dependencies of the pre-exponential constant and the activation energy on temperature might be expected also. The activation energy normally includes energies required for formation and migration of oxygen vacancies in a perfect crystal. In the extrinsic regime, the activation energy is dominated by the migration energy. In this case, the activation energy might be represented by the migration energy for doped oxide ionic conductors. If the oxygen vacancies are of a defect association within the oxide, the dissociation energy that is required in order to break this complex at high temperature has to be considered in the activation energy also. Indeed, following the existing theory, which considers the ionic conduction as ion hopping along defects of the crystal lattice, and according to Van Bueren [4], the hopping frequency may be formally defined as      −⋅= kT Q vv exp0 (3) where Q is a free activation energy that may depend on temperature too. By applying an electrical field E, the probability of hopping will become anisotropic. In the simplest case, when positively charged ion has to move between ions in isotropic lattice of distance a, it's hopping in direction of the applying field E is favorable. It means that such the hoppings will occur with higher frequency v'. .exp 2 1 0 '       −−⋅ν=ν kT eaEU (4) Against the field direction, the hopping frequencies �'' will be lower as .exp 2 1 0 ''       +−⋅ν=ν kT eaEU (5) As result, at low electrical field when eaF << kT, the current density to be determined as a total number of ions running in the field direction through an area unit is ,expexp) ''' ( 2 1 2 1 0                         + −− − −⋅ν=ν−ν⋅= kT eaEU kT eaEU neaneaj (6) where n is a number of ions running through a volume unit. The last equation may be rewriting as .2exp 2 1 0      ⋅     −⋅ν= kT eaE sh kT U neaj (7) f The sh (x) may be expanded and limited to the first member: .... !5!3)!12( )( 53 0 )12( +++=∑ + = ∞ = + xx x n x xsh n n (8) 162 After that procedure, the current density will be determined as follows: .exp0      ⋅     −⋅ν= kT eaE kT U neaj (9) Proceeding from the first principles, Walter Nernst [5, 6] had determined the ionic conduction, σ, as ,µ=σ en (10) where e and n are the charge and the concentration of its carriers, respectively, and µ is the ionic mobility. The ionic mobility may be defined as ./2 kTea ν=µ (11) It is obvious, ./22 kTena ν=σ (12) In this case, finally, the ionic conduction may be determined as .exp 1 0      −⋅σ=σ kT U (13) Typical experimental data on conductivity of solid electrolytes of different classes are shown in fig. 1. Most dependencies are linear. Among zirconia electrolytes, scandia stabilized zirconia (ScSZ) has the highest conductivity. The latest studies give contradictive data on oxygen ionic conductivity of zirconia electrolytes stabilized with scandia, 10Sc1CeSZ especially, where dependencies, which could be described either one or two lines, are observed (fig. 2) [7, 8]. The purpose of the study was to examine the temperature dependence of electrical conductivity of 10Sc1CeSZ electrolytes to be related to structural features and mechanical behavior of different structure ensuring by different powders and their sintering at different temperatures. Experimental 10% (mol.) Sc2O3 and 1% (mol.) CeO2 (10Sc1CeSZ) solid electrolyte was made of three different powders produced by IPMS, Ukraine, DKKK, Japan, and Praxair, USA, and compared. The comprehensive analysis of the powders and their ceramics is given in [9—12]. Here, we remind briefly that the size of initial particles in IPMS’s powder was 11 ± 2 nm; DKKK’s is 83 ± 20 nm, and Praxair's one is 141 ± 60 nm. The concentration of impurities in the bulk of DKKK is only 0,001% (wt.), which is one order of magnitude lower than the corresponding values for IPMS and Praxair (0,01% (wt.)). IPMS powder contains mainly silica (0,05%) and alumina (<0,025%) while in Praxair’s one silica (0,05%) and titania (<0,14%) are present. From the point of surface-bulk distribution revealed with secondary ion mass-spectrometry, in DKKK powder, the surface of particles is enriched with Sc and Al; in Praxair one, Sc and Si are mostly present on the surface. In IPMS powder, the surface is depleted with Sc; Si is localized inside particles. SEM appearance of 10Sc1CeSZ powders is shown in [9—12]. It is seen that agglomerates of IPMS powders consist of really nano-sized particles. Their commercial analogs consist of much larger particles. DKKK powder is non- agglomerated, but Praxair’s agglomerates are as chips of well-sintered polycrystalline ceramics. 163 Fig. 1. Typical dependencies of electrical conductivity vs. temperature for ionic solid conductors [2]. Density of sintered samples was measured with the Archimed’s method. Grains size was measured with ImageJ and Image Lab programs of SEM images of sample cross-sections. Samples of ceramic electrolytes were tested for their mechanical behavior studying their fracture micromechanisms with SEM and strength at biaxial three points bend at room temperature. The electrical properties of ceramic pellets (15 mm diameter) was performed using AC impedance Solartron 1260 frequency response analyzer in air in the temperature range 250—850 oC in the range of 6MHz—0,1Hz. Platinum ink (Engelhard) was used for the electrodes coating on each side of pellets, followed by annealing at 900 оC for 1 hour. To determine the inflection point (point of intersection) of two lines, we have developed an algorithm based on the method of least squares. Thus an array of input points, a[N] crashed into two halves containing a different number of elements b[M1], c[M2], but the total number of elements coincides with the total number of elements in the input array M1 + M2 = N. On the next step, was conducted in each area approximating straight to the method of least squares. Next, calculated amount root mean square (rms) deviations of two lines. Dynamically changing the number of elements in the arrays b, from 2—N-2, and repeat iteration of the standard deviation obtained Fig. 2. Typical dependencies of electrical conductivity vs. temperature for 10Sc1CeSZ and 8YSZ electrolytes usually used in SOFC [3, 4]. 164 K[N-2] averages. Next, using the bubble sort method were the least value of total deviation K[i]. That factor is clearly displays all essential factors of both lines. Thus, analytically find the point of intersection of two lines and that will determine the point of inflection. , ; ; 11 21 222 111 kk bb t bxky bxky k − −= += += (14) where tk is the x-coordinate of the point of intersection. Results and discussion The powders had different ability to sintering [12]. Being sintered, e. g., at 1500 oC for 1,5 hour, DKKK samples had practically zero porosity, ~0,95 for Praxair one and ~0,80 only for IPMS one. Fig. 3 demonstrates data on porosity, grain size and biaxial strength of electrolyte samples sintered at different tempe- ratures as well as their structures revealed with fracture at room temperature. Uniaxially pressed 10Sc1CeScSZ—IPMS samples demonstrated less sensitivity to the grain growth at high temperatures than 10Sc1CeScSZ— Praxair and DKKK ones where the grain growth from 0,3 to 4 µm was detected instead of 0,8—2,2 µm observed in IPMS electrolyte. The highest biaxial strength (375 MPa) was obtained for 10Sc1CeSZ— DKKK ceramics sintered at 1350 оC. The second highest value was obtained for co-deposited 10Sc1CeScSZ—IPMS samples (250 MPa) sintered at 1500 оC. The lowest biaxial strength was detected for 10Sc1CeScSZ—Praxair (220 MPa) sintered at 1450 оC. Sintered at 1500 оC and higher the 10Sc1CeScSZ—IPMS and Praxair samples demonstrated the similar biaxial strength around 250 MPa while the value of biaxial strength for 10Sc1CeScSZ—DKKK was only 150 MPa. The cleavage fracture mechanism was detected for porous 10Sc1CeScSZ— IPMS samples with no any changes with sintering temperature while DKKK samples fail with mixed mode (cleavage and intergranular) and Praxair ones fail with intergranular mechanism mainly. So, ceramic electrolyte samples made of 10Sc1CeScSZ—IPMS powder are less inclined to high temperature recrystallization than Praxair's and DKKK's ones. Moreover, it was reported also [4, 7] that ceramics made of IPMS and Praxair’s powders are practically insensitive to cold isostatic pressure (CIP) applied to powder at formation of green ceramic bodies in comparison with DKKK’s powder where increasing CIP pressure from 20 to 80 MPa results in grain growth from 3—7 to 20—30 µ, and pores (up to 20 µ) and final dramatic decrease of biaxial strength less 50 MPa. As to the general conductivity, 10Sc1CeSZ electrolyte itself as well as its temperature dependence demonstrate their strong dependencies on both type of powders and sintering temperature resulting from presence and redistribution of stabilizing additives and dopants, density/porosity, grain size and other structural features (fig. 4). It is seen that samples sintered at 1300—1400 oC are more sensitive to testing temperature than samples sintered at higher temperatures, 1450—1550 oC. 165 a b c d e f Fig. 3. Biaxial strength, grain size, porosity (a, c, e) and structure of fracture surfaces (b, d, f) respectively of the uniaxially pressed samples of 10Sc1CeSZ electrolytes made of IPMS (a, b), DKKK (c, d) and Praxair (e, f) powders sintered at different temperatures in air. а b c Fig. 4. The ionic conductivity of 10Sc1CeSZ electrolytes made of IPMS (a) powder sintered at 1250—1550 oC for 1,5 hour in air vs. temperature, the ionic conductivity of 10Sc1CeSZ electrolytes made of DKKK (b) and Praxair (c) powder sintered at 1250—1550 oC for 1,5 hour in air vs. temperature. Fig. 5 summarizes the temperature dependency of the ionic conductivity of 10Sc1CeSZ electrolyte made of different powders. It is seen that testing temperature has different influence on low and high temperature parts of the dependencies, and different activation energies Ea, respectively. Each 166 Fig. 5. The temperature dependencies of oxygen ionic conductivity of 10Sc1CeSZ electrolytes made of IPMS, DKKK and Praxair powders sintered at 1450 oC for 1,5 h in air: ■ — DKKK; ● — IPMS; ∆ — Praxair. dependency has own an inflection point, position of which on the temperature axis depends mainly on impurities: the purer 10Sc1CeSZ electrolyte the lower temperature of inflection and clearer the inflection. It is obvious that the temperature dependencies of electrical conductivity of the 10Sc1CeSZ electrolyte cannot be described by the one linear dependency in terms of the Arrhenius equation. Any corrections by taking into account, e. g., temperature dependence of the A coefficient, porosity and/or grain size were not able "to straighten" the dependencies. The temperature dependencies could be easily described by two Arrhenius equations differing by their activation energies for low and high temperature ranges separately. The inflection points, Tk, has been determined as the point of intersection of its approximating straight lines, which might be defined by minimizing the mean square deviation of experimental points from their approximating lines in each low and high temperature intervals separately, i. e., before and after the inflection point. In the two term description, the inflection point Tk might be determined from two the Arrhenius equations:      −⋅σ=σ kT U1 1,01 exp (15) and Finally, the inflection point Tk is defined as the function .exp 2 2,02      −⋅σ=σ kT U (16) . ln 2,0 1,0 12       σ σ⋅ −= k UU Tk (17)f 167 Fig. 6. The dependencies of the inflection points Tk on temperature dependencies of the ionic conductivity of 10Sc1CeSZ electrolytes made of IPMS, DKKK and Praxair powders sintered at 1450 oC for 1,5 h in air on sintering temperature: ■ — DKKK; ∆ — Praxair; ● — IPMS. The surprizing independence, or very week dependence, of temperature of the inflection Tk on sintering temperature is obvious (fig. 6). The positon of Tk is determined mainly by the type of zirconia powder, and the amounts of its alloying and doping elements. As the most likely cause of such the behavior of the oxygen ionic conductivity of 10Sc1CeSZ electrolyte is the phase transition between its cubic and rhombohedral states that takes place in the temperature interval studied. The inflection point, Tk, is, probably, the upper temperature limit of the cubic- rhombohedral transition [6, 13], after which the structure becomes cubic totally. Conclusions The temperature dependencies of oxygen conductivity of 10Sc1CeSZ electrolyte might be described by two Arrhenius equations with different Fig. 7. Phase content of the electrolyte sample made of DKKK 10Sc1CeSZ powder and sintered at 1200 oC determined with XRD (Rietveld multiphase analysis) [6]. 168 activation energies. It has no any visible correlation with their structural parameters like grain size or porosity and mechanical behaviors. The inflection point on the entire temperature dependency is mainly determined by type of zirconia powder and is practically independent on sintering temperature. The probable cause of such the behavior of electrolyte conductivity is its cubic- rhombohedral phase transition. Acknowledgements The author gratefully thanks all members of the IPMS SOFC team for fruitful discussions and financial supports from the National Academy of Science of Ukraine, NATO "Science for Peace" Program, project N980878 "Solid oxide fuel cells for energy security" and EU FP6 project N020089 "Demonstration of SOFC stack technology for operation at 600 oC". 1. Pat. 104872 DRP. Verfahren zur Erzeugung von Elektrishem Gluhlicht / W. Nernst. Publ. 1897. 2. Vasyliv B. Mechanical behavior of NiO—10Sc1CeSZ ceramics in high-temperature hydrogen environment / [B. Vasyliv, I. Brodnikovskyi, O. Pasenko et al.] // E-MRS Fall Meeting 2008, Symposium I. — 2008. — P. 1. 3. Goodenough J. Oxide components for the solid oxide fuel cell // Mixed Ionic Electronic Conduction Perovskites for Advanced Energy System. — Springer. — 2003. — 173. — P. 1—13. 4. Van Bueren H. Imperfections in crystals. — Amsterdam, 1960. — 610 p. 5. Steel B. C. H. High сonductivity solid ionic conductors: recent trends and appli- cations / In T. Takahashi (Ed.) // World Scientific. — Singapore, 1989. — P. 402—446. 6. Ray D. Characterization of 10% (mol.) Sc2O3—1% (mol.) CeO2—ZrO2 ceramics as electrolyte for lower temperature solid oxide fuel cells // Master Thesis. — North Carolina Univ., 2007. 7. Brychevskyi M. Influence of sintering temperature on mechanical behavior and electrical conductivity of ceramics made of 10Sc1CeSZ powders / [M. Brychevskyi, O. Vasylyev, E. Pryshchepa et al.] // Electron Microscopy and Strength of Mate- rials. — 2010. — No. 17. — P. 90—96 8. Peters C. Grain size effects in nanoscaled electrolyte and cathode thin films for solid oxide fuel cells (SOFC): Dissertation, Univ. Karlsruhe (TH). Fakultät für Elektrotechnik und Informations Technik. — 2008. 9. Vasylyev O. Powders, and their bulk and film electrolytes: mechanical, electric, and catalytic properties / [O. Vasylyev, M. Brychevskyi, I. Brodnykovskyi et al.] // Proc. 2nd European Fuel Cell Techn. and Appl. сonf. EFC2007, Rome, Italy. — 2007. — Р. 1—2. 10. Vereschak V. Nanocristalline powders system ZrO2—Sc2O3 for solid-state combustion cells / V. Vereschak, N. Nikolenko, K. Nosov // Fuel Cell Technologies: State and Perspectives, NATO Science Series. II. Mathematics, Physics and Chemistry. — 2005. — 202. — P. 317—321. 11. Beckel D. Thin films for microsolid oxide fuel cells / [D. Beckel, A. Bieberle- Hutter, A. Harvey et al.] // J. of Power Sources. — 2007. — 173. — P. 325—45. 12. Vasylyev O. Structural, mechanical, and electrochemical properties of ceria doped scandia stabilized zirconia / [O. Vasylyev, A. Smirnova, M. Brychevskyi et al.] // Mater. Sci. Nanostructures. — 2011. — 1. — P. 70—80. 13. Tataryn T. Chevron-like twin structures in crystals of solid oxide electrolytes / [T. Tataryn, D. Savytskii, L. Vasylechko et al.] // Phys. Stat. Solid. — 2009. — 6. — P. 1178. 169 Температурна залежність йонної електропровідності цирконієвих електролітів 10Sc1CeSZ О. Л. Кирпа Йонна провідність електроліту 10Sc1CeSZ залежить від багатьох факторів, зокрема від способу виробництва порошку, анізотропного пресування нанорозмірних порошків в зразок і температури спікання зразків. Так, після спікання у повітрі при різних температурах порошку 10Sc1CeSZ різних виробників залежність його йонної провідності від температури 250—900 оС виражається через рівняння Арреніуса. Опис та аналіз відхилення від прямолінійного ходу залежності електропровідності є важливим аспектом розуміння і покращення властивостей електроліту. Так, точка перегину визначається властивостями порошку і практично не залежить від його температури спікання, тобто є важливою характеристикою матеріалу. Ключові слова: киснева йонна провідність, порошки DKKK, IPMS, Praxair, електроліти 10Sc1CeSZ, вплив температури спікання, розмір зерна, енергія активації,. Температурная зависимость ионной проводимости циркониевых электролитов 10Sc1CeSZ O. Kирпa Ионная проводимость электролита 10Sc1CeSZ зависит от многих факторов, в частности от способа производства порошка, анизотропного прессования наноразмерных порошков в образец и температуры спекания образцов. Так, после спекания на воздухе при различных температурах порошка 10Sc1CeSZ разных производителей зависимость его ионной проводимости от температуры 250— 900 оС выражается через уравнение Аррениуса. Описание и анализ отклонения от прямолинейного хода зависимости электропроводности является важным аспектом понимания и улучшения свойств электролита. Так, точка перегиба определяется свойствами порошка и практически не зависит от температуры спекания, то есть, является важной характеристикой материала. Ключевые слова: ионная проводимость кислорода, порошки DKKK, IPMS, Praxair, электролиты 10Sc1CeSZ, влияние температуры спекания, размер зерна, энергия активации.