Influence of Human Disturbance on the Abundance of Himalayan Pheasant in the Temperate Forest of Western Himalaya, India
We conducted field studies in the Jiwa valley (Indian Himalayas) to examine the influence of human disturbance on Himalayan pheasants. We used the “call count” and “line transect” methods to estimate the abundance of pheasants in Jiwa valley. A human disturbance gradient defined by human population,...
Gespeichert in:
Datum: | 2011 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут зоології ім. І.І. Шмальгаузена НАН України
2011
|
Schriftenreihe: | Вестник зоологии |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/65839 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Influence of Human Disturbance on the Abundance of Himalayan Pheasant in the Temperate Forest of Western Himalaya, India / V. Jolli, M.K. Pandit // Вестник зоологии. — 2011. — Т. 45, № 6. — С. 523–530. — Бібліогр.: 26 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-65839 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-658392014-07-04T03:01:50Z Influence of Human Disturbance on the Abundance of Himalayan Pheasant in the Temperate Forest of Western Himalaya, India Jolli, V. Pandit, M.K. Экология We conducted field studies in the Jiwa valley (Indian Himalayas) to examine the influence of human disturbance on Himalayan pheasants. We used the “call count” and “line transect” methods to estimate the abundance of pheasants in Jiwa valley. A human disturbance gradient defined by human population, agriculture activity, forest wood collection, grazing, vehicle, use of heavy machines, human settlements, dumping ground, and blasting was prepared. Проведены полевые исследования в долине Джива (Индийские Гималаи) для оценки влияния фактора беспокойства на гималайских фазанов. Для оценки численности фазанов в долине Джива использовали метод учета по голосам и трансектный метод. Градиент фактора беспокойства определен по оценке количества населения, сельскохозяйственной деятельности, вырубке лесов, выпасу, транспорту, использованию тяжелых машин, человеческим поселениям, использованию земли под свалки и направленным взрывам. 2011 Article Influence of Human Disturbance on the Abundance of Himalayan Pheasant in the Temperate Forest of Western Himalaya, India / V. Jolli, M.K. Pandit // Вестник зоологии. — 2011. — Т. 45, № 6. — С. 523–530. — Бібліогр.: 26 назв. — англ. 0084-5604 http://dspace.nbuv.gov.ua/handle/123456789/65839 598.261.7:591.525(540) en Вестник зоологии Інститут зоології ім. І.І. Шмальгаузена НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Экология Экология |
spellingShingle |
Экология Экология Jolli, V. Pandit, M.K. Influence of Human Disturbance on the Abundance of Himalayan Pheasant in the Temperate Forest of Western Himalaya, India Вестник зоологии |
description |
We conducted field studies in the Jiwa valley (Indian Himalayas) to examine the influence of human disturbance on Himalayan pheasants. We used the “call count” and “line transect” methods to estimate the abundance of pheasants in Jiwa valley. A human disturbance gradient defined by human population, agriculture activity, forest wood collection, grazing, vehicle, use of heavy machines, human settlements, dumping ground, and blasting was prepared. |
format |
Article |
author |
Jolli, V. Pandit, M.K. |
author_facet |
Jolli, V. Pandit, M.K. |
author_sort |
Jolli, V. |
title |
Influence of Human Disturbance on the Abundance of Himalayan Pheasant in the Temperate Forest of Western Himalaya, India |
title_short |
Influence of Human Disturbance on the Abundance of Himalayan Pheasant in the Temperate Forest of Western Himalaya, India |
title_full |
Influence of Human Disturbance on the Abundance of Himalayan Pheasant in the Temperate Forest of Western Himalaya, India |
title_fullStr |
Influence of Human Disturbance on the Abundance of Himalayan Pheasant in the Temperate Forest of Western Himalaya, India |
title_full_unstemmed |
Influence of Human Disturbance on the Abundance of Himalayan Pheasant in the Temperate Forest of Western Himalaya, India |
title_sort |
influence of human disturbance on the abundance of himalayan pheasant in the temperate forest of western himalaya, india |
publisher |
Інститут зоології ім. І.І. Шмальгаузена НАН України |
publishDate |
2011 |
topic_facet |
Экология |
url |
http://dspace.nbuv.gov.ua/handle/123456789/65839 |
citation_txt |
Influence of Human Disturbance on the Abundance of Himalayan Pheasant in the Temperate Forest of Western Himalaya, India / V. Jolli, M.K. Pandit // Вестник зоологии. — 2011. — Т. 45, № 6. — С. 523–530. — Бібліогр.: 26 назв. — англ. |
series |
Вестник зоологии |
work_keys_str_mv |
AT jolliv influenceofhumandisturbanceontheabundanceofhimalayanpheasantinthetemperateforestofwesternhimalayaindia AT panditmk influenceofhumandisturbanceontheabundanceofhimalayanpheasantinthetemperateforestofwesternhimalayaindia |
first_indexed |
2025-07-05T16:13:16Z |
last_indexed |
2025-07-05T16:13:16Z |
_version_ |
1836824129902215168 |
fulltext |
UDC 598.261.7:591.525(540)
INFLUENCE OF HUMAN DISTURBANCE
ON THE ABUNDANCE OF HIMALAYAN PHEASANT (AVES,
GALLIFORMES) IN THE TEMPERATE FOREST
OF WESTERN HIMALAYA, INDIA
V. Jolli, M. K Pandit
Centre for Inter-disciplinary Studies of Mountain & Hill Environment
Academic Research Building, Patel Road, University of Delhi, Delhi, India
E-mail: jollivirat@gmail.com
Received 29 March 2011
Accepted 10 November 2011
Influence of Human Disturbance on the Abundance of Himalayan Pheasant (Aves, Galliformes) in the
Temperate Forest of Western Himalaya, India. Jolli V., Pandit M. K. – We conducted field studies in
the Jiwa valley (Indian Himalayas) to examine the influence of human disturbance on Himalayan pheas-
ants. We used the “call count” and “line transect” methods to estimate the abundance of pheasants in
Jiwa valley. A human disturbance gradient defined by human population, agriculture activity, forest wood
collection, grazing, vehicle, use of heavy machines, human settlements, dumping ground, and blasting
was prepared. We assessed the pheasant numbers under two conditions (1) a decline in the gradient of
human activity during two consecutive years (2009—2010) (2) in the presence of hydroelectric develop-
ment activities. The numbers of koklass pheasants, Himalayan monal, cheer pheasant and Western tragopan
declined significantly with anthropogenic activities. During spring 2010, hydroelectric construction activ-
ity was temporarily suspended in Manjhan adit, and a positive response was noted in terms of an increase
in the pheasant numbers near the site. The response of pheasants to human disturbance has inferred that
large scale development can lead to decline of Himalayan pheasant in Himalayan region.
Ke y wo r d s: call count, encounter rate, himalayan pheasant, human disturbance, Western Himalaya.
Âëèÿíèå ôàêòîðà áåñïîêîéñòâà íà ÷èñëåííîñòü ãèìàëàéñêèõ ôàçàíîâ (Aves, Galliformes) â óìåðåí-
íîì ëåñó Çàïàäíûõ Ãèìàëàåâ, Èíäèÿ. Äæîëëè Â., Ïàíäèò Ì. Ê. – Ïðîâåäåíû ïîëåâûå èññëåäî-
âàíèÿ â äîëèíå Äæèâà (Èíäèéñêèå Ãèìàëàè) äëÿ îöåíêè âëèÿíèÿ ôàêòîðà áåñïîêîéñòâà íà ãèìà-
ëàéñêèõ ôàçàíîâ. Äëÿ îöåíêè ÷èñëåííîñòè ôàçàíîâ â äîëèíå Äæèâà èñïîëüçîâàëè ìåòîä ó÷åòà
ïî ãîëîñàì è òðàíñåêòíûé ìåòîä. Ãðàäèåíò ôàêòîðà áåñïîêîéñòâà îïðåäåëåí ïî îöåíêå êîëè÷å-
ñòâà íàñåëåíèÿ, ñåëüñêîõîçÿéñòâåííîé äåÿòåëüíîñòè, âûðóáêå ëåñîâ, âûïàñó, òðàíñïîðòó, èñïîëü-
çîâàíèþ òÿæåëûõ ìàøèí, ÷åëîâå÷åñêèì ïîñåëåíèÿì, èñïîëüçîâàíèþ çåìëè ïîä ñâàëêè è íàïðàâ-
ëåííûì âçðûâàì. Ìû îöåíèâàëè êîëè÷åñòâî ôàçàíîâ óñëîâíî ïî (1) ñíèæåíèþ ãðàäèåíòà ôàê-
òîðà áåñïîêîéñòâà â òå÷åíèå äâóõ ïîñëåäîâàòåëüíûõ ëåò (2009—2010) è (2) äåÿòåëüíîñòè ïî
ðàçâèòèþ ãèäðîýëåêòðîñòàíöèé. Êîëè÷åñòâî êëèíîõâîñòîãî ôàçàíà, ãèìàëàéñêîãî ìîíàëà, ãèìà-
ëàéñêîãî ôàçàíà è âîñòî÷íîãî òðàãîïàíà çíà÷èòåëüíî óìåíüøèëîñü ñ àíòðîïîãåííîé äåÿòåëüíîñòüþ.
 òå÷åíèå 2010 ãîäà, äåÿòåëüíîñòü ïî ñîçäàíèþ ãèäðîýëåêòðîñòàíöèé áûëà âðåìåííî ïðèîñòà-
íîâëåíà â Ìàíäæàí àäèò, è áûëî îòìå÷åíî óâåëè÷åíèå ÷èñëåííîñòè ôàçàíîâ â ýòîì ðàéîíå. Îòâåò
íà ôàêòîð áåñïîêîéñòâà îçíà÷àåò, ÷òî øèðîêîìàñøòàáíîå ðàçâèòèå ðåãèîíà ìîæåò ïðèâåñòè ê
ñíèæåíèþ ÷èñëåííîñòè Ãèìàëàéñêèõ ôàçàíîâ â ðàéîíå Ãèìàëàåâ.
Êëþ÷åâûå ñ ëîâ à: ó÷åò ïî ãîëîñàì, êîýôôèöèåíò ñëó÷àéíîñòè, ãèìàëàéñêèé ôàçàí, ôàêòîð
áåñïîêîéñòâà, Çàïàäíûå Ãèìàëàè.
Introduction
The Indian Himalaya is a primary source of many perennial rivers that are exploited extensively for hydro-
electric power. Government of India has planed to set up number of hydro power development projects to meet
its ever increasing energy requirements. Central Electricity Authority (CEA) has formulated a preliminary fea-
sibility reports for 162 new hydroelectric schemes (47,930 MW), 133 of which are in the Indian Himalayas
Vestnik zoologii, 45(6): 523—530, 2011
(CEA, 2009). This is a matter of concern because these hydro electric projects often lie close to protected fo -
rest, e. g., the Parvati Hydro Power Project was constructed near the Greater Himalayan National Park (GHNP).
The presence of endemic and threatened bird species like Western tragopan (Tragopan melanocephalus) and
cheer pheasant (Caterus wallichi) has raised the importance of this study area from conservation point of view
(Birdlife International, 2010). Construction of these massive facilities creates disturbance, which has been defined
as “any relatively discrete event in time that disrupts ecosystem, community, or population structure and changes
resources, substrate availability, or the physical environment” (White, Pickett, 1985). These disturbances can
have cascading effects on the distribution of Himalayan bird species.
We chose Himalayan pheasants as a candidate group of species to determine the effects of human dis-
turbance on the montane ecosystem. These birds are known to be extremely sensitive to human exploitation
(Fuller, Garson, 2000; Nawaz et al., 2000); their ecological characteristics capture the complexities of the ecosys-
tem and yet are simple enough for easy monitoring. Among the pheasant species, the Himalayan monal
(Lophophorus impejanus), koklass pheasant (Pucrasia macrolopha), cheer pheasant, and Western tragopan
have strong habitat preferences. Changes in land use (Anonymous, 2001) and other anthropogenic pressures
affect pheasant habitats (Bhattacharya, Sathyakumar, 2007; Ramesh, 2003). The sensitivity of these bird species
to human disturbance may be the reason for their dwindling population.
Koklass and monal pheasants are usually found in oak/deodar, oak/pine or Rhododendron vegetation (Ali,
1983). The koklass prefers denser understory than the monal (Gaston et al., 1983), but they sometimes feed
together in early spring (Gaston et al., 1981). Cheer pheasant inhabits precipitous hillsides or ravines covered
with tall grass, scrubs, and oak forests (Ali, 1983). Pheasants are elusive birds that inhabit difficult mountain
terrain, which makes population monitoring by line transects difficult (Ramesh, 2003). Call counts of some
of the species, including western tragopan, cheer pheasant, and koklass pheasant, are useful in such landscapes.
Call counts are a useful index of the relative population abundance over different sectors of terrain (Severinghaus,
1979; Gaston 1980; Duke, 1990; McGowan, 1990). We used call counts and line transects to determine the
following: (1) Do the pheasant numbers increase along a gradient of human disturbance (from forest to dis-
turbed habitat types)? (2) Which species among pheasants respond most strongly to human disturbance? Answers
to these questions about pheasant responses to disturbance will help in understanding the effect of human dis-
turbance on pheasant numbers and in better conservation management of Himalayan pheasant in GHNP.
Methods
S tudy a r e a. The Jiwa valley study area is located in an ecodevelopment zone (where controlled human
interference is allowed) adjoining the Great Himalayan National Park. The site is within thse Western
Himalaya, in the Kullu District of Himachal Pradesh, ~45 km southeast of Kullu. Geographic coordinates are
31°49′20′′–31°50′13′′N and 77°20′24′′–77°22′ 32′′E (fig. 1). Study sites were on the Jiwa Nal River.
There are 3 distinct seasons in the study area (1) summer from April to June, (2) rainy season from July
to September and (3) winter season from October to March when there is snowfall at high elevations. Heavy
monsoonal rains cause landslides and soil erosion (FREEP-GFNP, 1995).
There is abundant mixed broadleaf and coniferous forest vegetation in addition to large mountain mead-
ows and pastures. The description of habitats of each sampled sites are shown in table 1. The area is a rich
bio-diversity zone of the western Himalaya. The GHNP falls within one of the globally important Endemic
Bird Areas (D02: western Himalaya) identified by the International Council of Bird Preservation (ICBP)
Biodiversity Project. A total of 183 bird species, including 51 non passerines and 132 passerines, have been record-
ed from this area. The Greater Himalayan National Park is under review for designation as a UNESCO World
Heritage Site (UNESCO, 2009).
S amp l i n g d e s i g n. We sampled three sites along a gradient of human disturbance. The gradient was
defined by human population, agricultural activity, forest wood collection, grazing, presence of vehicles, use
of heavy machinery, human settlements, waste dump sites, and blasting. Manjhan adit was identified as a dis-
turbed site because of trench weir construction as depicted in table 2. Manjhan village is 3 km from Manjhan
adit. We selected another sampling site in Gatipath ~9 km from Manjhan adit. Gatipath had less anthropogenic
pressure because the steep landscape limits firewood collection and it was distantly located site from disturbed
forest site. Therefore, we assumed Gatipath as a control site during year 2009.
In 2010, we sampled inside GHNP boundary; Apgian (fig. 1), this site was relatively more pristine as
compared to Gatipath (table 3). Therefore, we assumed Apgian as undisturbed forest site during year 2010.
We sampled Himalayan monal visually on transect walks because this species is easy to see along trails,
but calls only sporadically (Kaul, Shakya, 2001). Koklass, cheer pheasants and western tragopan were sam-
pled by call counts. These are elusive birds, but males make audible breeding calls at dawn during April—May;
call counting is an effective procedure for measuring population abundances of such cryptic species (Kaul, 1989;
Ramesh, 2003; Miller, 2008). Call counts gave an index of calling males per station in a given area. We com-
pared the pheasant abundance estimates among Gatipath, Manjhan, and Manjhan adit during 2009 and
Apgian, Manjhan, and Manjhan adit during 2010.
D a t a c o l l e c t i o n. We hiked a total of 16 km starting from Pashi beat located at coordinates
31°49′20′′ N, 77°20′24′′ E, to Manjhan adit at 31°50′08′′ N, 77°22′15′′ E in April 2009 to identify the potential
habitats of pheasants around the Hydro-electric Project (HEP) activities affected areas. On the trail, we record-
ed pheasant presence/absence. We used Magellen GPS equipment to record details such as name, exact loca-
524 V. Jolli, M. K Pandit
525Influence of Human Disturbance on the Abundance of Himalayan Pheasant...
Fig. 1. Location map of sampling sites in Jiwa Valley of Western Himalaya.
Ðèñ. 1. Êàðòà èññëåäîâàííûõ ìåñò â äîëèíå Äæèâà â Çàïàäíûõ Ãèìàëàÿõ.
Ta b l e 1. Description of habitat types surveyed in Jiwa valley
Ò à á ëèö à 1. Îïèñàíèå òèïîâ ìåñò îáèòàíèÿ, èññëåäîâàííûõ â äîëèíå Äæèâà
Apgian Mixed broadleaf and Coniferous forest lies in the GHNP 31°51'08''N 77°23'07''E,
2750 m
T4, C4
Gatipath Charaterised by broad-leaf and coniferous forest lies in eco-
development zone of GHNP
31°49'47''N 77°20'57''E,
2602 m
T1, C1
Manjhan Mixed broadleaf and Coniferous forest makes boundary
between eco-development zone and GHNP
31°50'36''N, 77°21'51''E,
2630 m
T2, C2
Manjhan
adit
Mixed broadleaf forest lies in eco-development zone of
GHNP connected by road characterised by adit construction
work
31°50'08''N 77°22'32''E
2430 m
T3, C3
Ta b l e 2 Components of human disturbance index ranked in increasing order of disturbance Where, 1 = low, 2 = medium, 3 =
high
Òà á ëèö à 2. Êîìïîíåíòû èíäåêñà ôàêòîðà áåñïîêîéñòâà ðàñïîëîæåíû â ïîðÿäêå âîçðàñòàíèÿ
Human activity Apgian Gatipath Manjhan Manjhan adit
Human population 1 1 2 3
Agricultural activity 1 1 3 3
Forest wood collection 1 2 3 2
Grazing 1 2 3 2
No. of Vehicles 1 1 1 3
Use of Heavy machines 1 1 1 3
Human settlement 1 1 2 3
Dumping 1 1 1 3
Blasting 1 1 1 3
Total 9 11 17 25
tion, altitude range and general forest type. Suitable call stations were identified for monitoring pheasant abun-
dance.
We sampled three call stations three times a month in spring season. Call count stations were fixed cir-
cles with 300 m listening radii. On each trail, one or two stations were positioned ~500 m apart to avoid lis-
tening overlap between observers (Kaul, 1989; Ramesh, 2003). We sampled one call station each morning, with
one observer making measurements from each station (following seasonal light shifts, arrival times ranged from
5.30 a. m in early April to 4.15 a. m by late May and 6.00 a. m). We began sampling at the first audible call
and stopped 1 hour after sunrise, a period previously determined to be the most effective for call counting both
koklass and western tragopan (Ramesh, 2003; Miller, 2008). Calls were recorded by species, time, distance,
and cardinal direction. After sampling, observers compared times and directions of calls to eliminate multiple
counts of the same bird from different stations. There was no sampling in adverse weather (thick fog, heavy
rainfall or strong winds) because these conditions alter pheasant activity and/or obscure observer abilities to
accurately measure bird presence (Khaling et al., 2002).
On each site, one transect was laid to monitor the monal abundance. As it was difficult to lay transects
on steep slopes, we used pre-existing footpaths of 1 km length at each sampling site for monitoring monal abun-
dance. We walked three times a month on each transect at an average speed of 1 km/h. We walked transects
in the mornings before 10.00 a. m, when monals forage on the ground around their roosting sites (Ramesh,
2003). For each monal encounter, we recorded gender, sighting angle, sighting distance, time and location.
Walking pace was standardized to reduce irregularities in sampling effort and abundance estimates.
In November 2009, excavation (adit construction) was suspended at Manjhan adit because of technical
reasons. This reduced anthropogenic disturbance at the site. We used this opportunity to investigate whether
disturbance in Jiwa Nal was attributable to the hydroelectric power project. Thus, we compared pheasant abun-
dances of Manjhan adit in spring 2009 and 2010.
Da ta ana l y s i s. We calculated encounter rates for each replicate by dividing the number of birds observed
by distance (transect walks) or station (call counts). The arithmetic means for transects or call stations were
pooled to calculate mean encounter rate ± Standard error (SE) of each site.
We have developed a human disturbance index, and ranked each component parameter in increasing order.
The parameters selected were human population, agriculture activity, forest wood collection, grazing, vehicle
presence, heavy machine use, human settlements, waste dump sites, and noise levels table 2. The human pop-
ulation and settlement data for Manjhan village was collected from Raila Panchayat office in Sainj, Himachal
Pradesh. While the population in Manjhan adit was estimated by direct counting of individual on the site.
Presence/absence survey was conducted to identify the agriculture, forest wood collection and grazing activi-
ties among the three sites. Noise levels were recorded two times a day during morning and evening using a sound
meter (Cygnet D 2023). Combined rank values of all the parameters were derived, giving a human disturbance
intensity value for each sampling site.
The abundance data of pheasants was entered into PAST version 2.05 and analysis was carried out using
this statistical software (Hammer et al., 2001). We used non parametric test to analyze our data. Kruskal-Wallis
one way ANOVA was used to analyze across site variation in data. Mann-Whiteny test was used to compare
two sites. While, Wilcoxon paired test was performed to analyze the change in pheasant abundance during year
2009—2010.
Results
P r e s e n c e a b s e n c e s u r v e y. In presence/absence survey we recorded five
species of pheasants; Himalayan Monal, Koklass, Cheer pheasant, Western tragopan and
Kalij pheasant. Western tragopan was recorded only in Apgian while cheer pheasant was
present in all the four sampled sites
Phea s an t abundance s i n J iwa v a l l e y. Figure 2 shows across site differences
in mean abundances of pheasants in the spring season of year 2009. The mean abundance
of koklass in Gatipath was 3.75 ± 0.86 ( ± SE) which dropped significantly in Manjhan
to 1.62 ± 0.46 (Mann-Whittney U = 12.5, P = 0.04); we did not record koklass call from
Manjhan adit. The mean abundance of Himalayan monal in Gatipath was 2.87 ± 0.22
which decreased significantly to 1.87 ± 0.2 (Mann-Whittney U = 12, P = 0.03); and fur-
ther dropped to 0.42 ± 0.2 and was significantly less than Manjhan (Mann-Whittney U =
4.5, P = 0.005). The mean abundance of cheer pheasant in Gatipath was 1.25 ± 0.25
which dropped down to 0.5 ± 0.26 in Manjhan (Mann-Whittney U = 15, P = 0.06);
while there was significant difference in mean abundance between Gatipath and Manjhan
adit (Mann-Whittney U = 4, P = 0.001)
Figure 3 shows across site differences in mean abundance of pheasant during the spring
season of 2010. Himalayan monal mean abundance in Apgian was 2.67 ± 0.21 (S. E)
526 V. Jolli, M. K Pandit
which rose slightly in Manjhan and Manjhan adit to 2.83 ± 0.4. Mean abundance of kok-
lass in Apgian was 3.5 ± 0.22 which increased to 4.3 ± 0.33 in Manjhan (Mann-
Whitney U = 7.5, P > 0.05) and dropped in Manjhan adit at 3.3 ± 0.4 and was not dif-
ferent from Manjhan (Mann-Whitney U = 5, P = 0.22). Western Tragopan was record-
ed only in Apgian with mean abundance of 2.5 ± 0.42. Mean abundance of cheer pheasant
in Apgian was 0.33 ± 0.2 which increased significantly in Manjhan to 3 ± 0.8 (P = 0.004)
which further dropped to a level of 0.3 ± 0.2 in Manjhan adit (P < 0.004).
Re spon se o f phea s an t s t o Hyd ro-e l e c t r i c p ro j e c t d i s t u rbance. We
compared pheasant’s abundance in Manjhan adit site during spring season of 2009—2010.
The mean abundance of koklass increased significantly from 0 to 3.3 ± 0.21 during year
2010 (Wilcoxon Z = 2.27, df = 5, P = 0.02). Himalayan Monal also recorded sharp rise
in abundance from 0.16 ± 0.16 to 2.83 ± 0.4 (Wilcoxon Z = 2.2, df = 5, P < 0.02). While
we recorded no change in cheer pheasant abundance (Wilcoxon Z = 1.62, df = 5, P = 0.1).
Discussion
Jiwa valley supports sizeable population of Himalayan pheasants. The Western
Tragopan, a flagship species, is confined in Apgian. The Tragopan calls are not record-
ed in other calling stations. The presence of this species in the interior of forest infers
that this species is sensitive to human presence. The other sites are well suitable for Tragopan
527Influence of Human Disturbance on the Abundance of Himalayan Pheasant...
Fig. 2. Mean abundance of (a) Koklass (Kruskal-Wallis H = 15.81, P = 0.0004) (b) Himalayan Monal (Kruskal-
Wallis H = 14.53, P = 0.0007) and (c) Cheer pheasant (Kruskal-Wallis H = 9.12, P = 0.01) along the dis-
turbance gradient in the temperate forest of Western Himalaya, India (2009). Error bar represent standard error.
Ðèñ. 2. Ïëîòíîñòü êîêëàññà (Kruskal-Wallis H = 15.81, P = 0.0004), (b) ãèìàëàéñêîãî ìîíàëà (Kruskal-
Wallis H = 14.53, P = 0.0007) è (c) ãèìàëàéñêîãî ôàçàíà (Kruskal-Wallis H = 9.12, P = 0.01) ïî ãðàäè-
åíòó ôàêòîðà áåñïîêîéñòâà â óìåðåííîì ëåñó Çàïàäíûõ Ãèìàëàåâ, Èíäèÿ (2009). Øêàëà ïîãðåøíî-
ñòåé ñòàíäàðòíàÿ.
(a)
Koklass
0
1
2
3
4
5
Gatipath Manjhan Manjhan adit
M
ea
n
a
bu
n
d
an
ce
(b)
Himalayan monal
0
0.5
1
1.5
2
2.5
3
3.5
Gatipath Manjhan Manjhan adit
M
ea
n
a
bu
n
d
an
ce
(c)
Cheer pheasant
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
Gatipath Manjhan Manjhan adit
M
ea
n
a
bu
n
d
an
ce
but the presence of anthropogenic activities makes it unfavorable for its survival. It descends
down to 1500 m during winter season (Kazmierczak, 2009) but human presence in the
lower altitudes make it restricted to higher range which may result in higher mortality
during winter. Cheer pheasant is another endemic and threatened species of pheasant
recorded in Jiwa valley. Manjhan support relatively more number of cheer pheasant com-
pared to other sites. The presence of secondary vegetation along with moderate level of
human disturbance like, farming and grazing in upland rural areas are the preferred habi-
tats for cheer pheasant. Koklass and Himalayan monal are abundant in Manjhan, and
Apgian. They remain confined to the tree line and were not reported below 2500 m alti-
tude. They respond negatively with hydroelectric project activity and were not recorded
during year 2009 while their abundance increased significantly during year 2010. During
our study the HEP construction activity was halted due to some contract related disputes
since November 2009 till the present bird call count. This caused reduction in human
disturbance, and thus attracted some the pheasants around Manjhan adit. This has
proved our hypothesis that pheasant are sensitive to intense human activity. Moreover,
the susceptibility to noise is relatively higher in Phasianidae compared to Passeriformes
(Ryals et al., 1999) thus they avoid places where noise levels are high. Blasting, labour
colonies and project vehicles keep this site disturbed.
There is a possibility that pheasants will adapt to human disturbance in due course
of time e. g. adapt to coexist with human settlements. However, pheasants are wild ani-
mals and to maintain their wilderness, entry into the ecozone area should be regulated.
Moreover, there are increased chances of homogenization in montane birds under an
528 V. Jolli, M. K Pandit
Fig. 3. Mean abundance of (a) Koklass (Kruskal-Wallis H = 5.05, P = 0.079), (b) Cheer pheasant (Kruskal-
Wallis H = 11.47, P = 0.003), (c) Himalayan Monal (Kruskal-Wallis H = 0.035, P = 0.98) and (d) Western
Tragopan (Kruskal-Wallis H = 11.37, P = 0.003) along the disturbance gradient in the temperate forest of Western
Himalaya, India (2010). Error bar represent standard error.
Ðèñ. 3. Ïëîòíîñòü (à) êîêëàññà (Kruskal-Wallis H = 5.05, P = 0.079), (b) ãèìàëàéñêîãî ôàçàíà (Kruskal-
Wallis H = 11.47, P = 0.003), (c) ãèìàëàéñêîãî ìîíàëà (Kruskal-Wallis H = 0.035, P = 0.98) è (d) çàïàä-
íîãî òðàãîïàíà (Kruskal-Wallis H = 11.37, P = 0.003) ïî ãðàäèåíòó ôàêòîðà áåñïîêîéñòâà â óìåðåííîì
ëåñó Çàïàäíûõ Ãèìàëàåâ, Èíäèÿ (2010). Øêàëà ïîãðåøíîñòåé ñòàíäàðòíàÿ.
a)
Koklass
0
1
2
3
4
5
Apgian Manjhan Manjhan adit
m
ea
n
a
bu
n
d
an
ce
b)
Cheer pheasant
0
0.5
1
1.5
2
2.5
3
3.5
4
Apgian Manjhan Manjhan adit
c)
Himalayan monal
0
0.5
1
1.5
2
2.5
3
3.5
Apgian Manjhan Manjhan adit
m
ea
n
a
bu
n
d
an
ce
d)
Western Tragopan
2
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
Apgian Manjhan Manjhan adit
anthropogenic influence (Soh et al., 2006), in which only few species will dominate as
they can tolerate human disturbance better than other species.
Blasting sound was heard during their crowing time in both seasons, and both Koklass
and Cheer pheasant calls were not reported after blasting. They call loudly during spring
season for demarcating their territory from rival and to attract females. So, blasting should
be restricted at least during early morning of breeding period (CISMHE, 2000).
Finally, we would suggest comprehensive long term monitoring of pheasants in Greater
Himalayan National Park by GHNP staff. More emphasis should be given in protecting
the Cheer pheasant and Western tragopan. They are important species from conserva-
tion point of view. Their habitats are fragmented in Western Himalaya and need special
protection. The recovery of pheasants during spring 2010 in Manjhan adit showed that
HEP activity has displaced the pheasants. The territorial behavior in koklass and Western
tragopan is very predominant during breeding season and territoriality is directly related
to size of bird (Schoener, 1968). As pheasants are comparatively large birds they need
more space to defend. The congregation of pheasant in adjacent region would increase
competition among males for food, mates and space which can reduce fitness of males.
It can lead to extirpation of pheasant locally. So we suggests from our finding that large
scale development activity pose serious threat to the existence of pheasants in the
Himalayas.
We thank University Grants Commission for providing research scholarship and funds during this rese-
arch. We would like to thanks GHNP Director, for granting permission and providing field assistants during
field work. Our special thanks to Miss Laura Owens and Dr. Matthew Gringer for improving the draft.
Ali S., Ripley S. D. Handbook of the birds of India and Pakistan. – New Delhi : Oxford University Press,
1983. – Vol. 1—10.
Anonymous. Threatened birds of Asia. – Cambridge : Birdlife International, 2001.
Bhattacharya T., Sathyakumar S., Rawat G. Distribution and abundance of Galliformes in response to anthro-
pogenic pressures in the buffer zone of Nanda Devi Biosphere Reserve // International J. Galliformes
Conservation. – 2009. – 1. – P. 78—84.
Central Electricity Authority (CEA) (2009) Status of 50,000 MW hydroelectric initiative, 31 August 2009. –
(http: // www.cea.nic.in).
CISMHE. Environment impact assessment studies of Parvati Stage-II hydro-electric project, Himachal
Pradesh. – New Delhi : University of Delhi, 2000.
Duke G. Using call count surveys to obtain comparative population figures for western tragopan in NWFP Pakistan
// Pheasants in Asia 1989 / Eds D. A. Hill, P. J. Garson, D. Jenkins. – Reading : World Pheasant
Association, 1990. – P. 116—123.
Fuller R. A., Garson P. J. Pheasants: status survey and conservation action plan 2000—2004. – Cambridge :
IUCN Publications Services Unit, 2000.
FREEP-GHNP. An ecological study of the conservation of biodiversity and biotic pressure in Great Himalayan
National Park: An eco-development approach. Project proposal to World Bank / GEF, 1995.
Gaston A. J., Garson P. J., Hunter M. L. The status and conservation of forest wildlife in Himachal Pradesh,
Western Himalayas // Biological Conservation. – 1983. – 27. – P. 291—314.
Gaston A. J. Census techniques for Himalayan Pheasants, including notes on individual species // Journal of
the World Pheasant Association. – 1980. – 5. – P. 40—53.
Gaston A. J., Garson P. J., Hunter M. L. Present distribution and status of pheasants in Himachal Pradesh, Western
Himalayas // J. World Pheasant Association. – 1981. – 6. – P. 10—30.
Hammer Ø., Harper D. A. T., Ryan P. D. PAST: Paleontological statistical software package for education and
data analysis // Paleontological Electronica. – 2001. – 4, 1. – P. 9.
Kaul R. Ecology of the Cheer pheasant Catreus wallichii in Kumaon Himalaya : Ph. D. thesis. – Srinagar :
University of Kashmir, 1989. – Unpublished.
Khaling S., Kaul R., Saha G. K. Calling behavior and its significance in Satyr tragopan, Tragopan satyra
(Galliformes: Phasianidae) in the Singhalila National Park, Darjeeling // Proceedings of the Zoological
Society. – Calcutta, 2002. – 55. – P. 1–9.
Kazmierczak K. A Field Guide To The Birds Of India. – India : OM publication, 2009.
McGowan P. J. K. Calling as a means to survey the Malaysian Peacock Pheasant: a preliminary assessment /
Eds D. A. Hill, P. J. Garson, D. Jenkins // Pheasants in Asia 1989. – Reading : World Pheasant
Association, 1990. – P. 110—115.
Miller J. R. B., Ramesh K., Rawat G. S. Pheasant population recovery as an indicator of biodiversity conser-
vation in the Great Himalayan National Park, India. – Dehradun : The Wildlife Institute of India, 2008.
529Influence of Human Disturbance on the Abundance of Himalayan Pheasant...
Nawaz R., Garson P., Malik M. Monitoring pheasant populations in montane forests: some lessons learnt from the
Pakistan Galliformes Project, 1999. – (http: // wwfpak.org/palasvalley/reports/paper1.pdf) (accessed
February, 2011).
Ramesh K. An ecological study on pheasants of The Great Himalayan National Park, Western Himalaya. –
Dehradun : Wildlife Institute of India, 2003.
Ryals B., Dooling R., Westbrook E., Dent M., Mackenzie A., Larsen O. Avian species differences in susceptibil-
ity to noise exposure // Hearing Research. – 1999. – 131. – P. 71—88.
Sathyakumar S., Kaul R. Pheasants // Galliformes of India, ENVIS / Eds S. Sathyakumar, K. Sivakumar. –
2007. – 10, 1. – P. 33—51.
Schoener T. W. Size of feeding territories among birds // Ecology. – 1968. – 49. – P. 123—141.
Severinghaus S. R. Observations on the ecology and behaviour of the Koklass pheasant in Pakistan // Journal
of the World Pheasant Association. – 1979. – 4. – P. 52— 71.
Soh M. C. K., Sodhi, N. S., Lim S. L. H. High sensitivity of montane bird communities to habitat disturbance
in Peninsular Malaysia // Conservation Biology. – 2006. – 129. – P. 149—166.
UNESCO. Great Himalayan National Park / World Heritage. – 2009.– (http://whc.unesco.org/en/tenta-
tivelists/5445) (accessed January, 2010).
White P. S., Pickett S. T. A. Natural disturbance and patch dynamics: an introduction // The ecology of nat-
ural disturbance and patch dynamics accessed / Eds P. S. White, S. T. A. Pickett. – New York : Academic
Press, 1985. – P. 3—13.
530 V. Jolli, M. K Pandit
<<
/ASCII85EncodePages false
/AllowTransparency false
/AutoPositionEPSFiles true
/AutoRotatePages /None
/Binding /Left
/CalGrayProfile (Dot Gain 20%)
/CalRGBProfile (sRGB IEC61966-2.1)
/CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
/sRGBProfile (sRGB IEC61966-2.1)
/CannotEmbedFontPolicy /Error
/CompatibilityLevel 1.4
/CompressObjects /Tags
/CompressPages true
/ConvertImagesToIndexed true
/PassThroughJPEGImages true
/CreateJDFFile false
/CreateJobTicket false
/DefaultRenderingIntent /Default
/DetectBlends true
/DetectCurves 0.0000
/ColorConversionStrategy /CMYK
/DoThumbnails false
/EmbedAllFonts true
/EmbedOpenType false
/ParseICCProfilesInComments true
/EmbedJobOptions true
/DSCReportingLevel 0
/EmitDSCWarnings false
/EndPage -1
/ImageMemory 1048576
/LockDistillerParams false
/MaxSubsetPct 100
/Optimize true
/OPM 1
/ParseDSCComments true
/ParseDSCCommentsForDocInfo true
/PreserveCopyPage true
/PreserveDICMYKValues true
/PreserveEPSInfo true
/PreserveFlatness true
/PreserveHalftoneInfo false
/PreserveOPIComments false
/PreserveOverprintSettings true
/StartPage 1
/SubsetFonts true
/TransferFunctionInfo /Apply
/UCRandBGInfo /Preserve
/UsePrologue false
/ColorSettingsFile ()
/AlwaysEmbed [ true
]
/NeverEmbed [ true
]
/AntiAliasColorImages false
/CropColorImages true
/ColorImageMinResolution 300
/ColorImageMinResolutionPolicy /OK
/DownsampleColorImages true
/ColorImageDownsampleType /Bicubic
/ColorImageResolution 300
/ColorImageDepth -1
/ColorImageMinDownsampleDepth 1
/ColorImageDownsampleThreshold 1.50000
/EncodeColorImages true
/ColorImageFilter /DCTEncode
/AutoFilterColorImages true
/ColorImageAutoFilterStrategy /JPEG
/ColorACSImageDict <<
/QFactor 0.15
/HSamples [1 1 1 1] /VSamples [1 1 1 1]
>>
/ColorImageDict <<
/QFactor 0.15
/HSamples [1 1 1 1] /VSamples [1 1 1 1]
>>
/JPEG2000ColorACSImageDict <<
/TileWidth 256
/TileHeight 256
/Quality 30
>>
/JPEG2000ColorImageDict <<
/TileWidth 256
/TileHeight 256
/Quality 30
>>
/AntiAliasGrayImages false
/CropGrayImages true
/GrayImageMinResolution 300
/GrayImageMinResolutionPolicy /OK
/DownsampleGrayImages true
/GrayImageDownsampleType /Bicubic
/GrayImageResolution 300
/GrayImageDepth -1
/GrayImageMinDownsampleDepth 2
/GrayImageDownsampleThreshold 1.50000
/EncodeGrayImages true
/GrayImageFilter /DCTEncode
/AutoFilterGrayImages true
/GrayImageAutoFilterStrategy /JPEG
/GrayACSImageDict <<
/QFactor 0.15
/HSamples [1 1 1 1] /VSamples [1 1 1 1]
>>
/GrayImageDict <<
/QFactor 0.15
/HSamples [1 1 1 1] /VSamples [1 1 1 1]
>>
/JPEG2000GrayACSImageDict <<
/TileWidth 256
/TileHeight 256
/Quality 30
>>
/JPEG2000GrayImageDict <<
/TileWidth 256
/TileHeight 256
/Quality 30
>>
/AntiAliasMonoImages false
/CropMonoImages true
/MonoImageMinResolution 1200
/MonoImageMinResolutionPolicy /OK
/DownsampleMonoImages true
/MonoImageDownsampleType /Bicubic
/MonoImageResolution 1200
/MonoImageDepth -1
/MonoImageDownsampleThreshold 1.50000
/EncodeMonoImages true
/MonoImageFilter /CCITTFaxEncode
/MonoImageDict <<
/K -1
>>
/AllowPSXObjects false
/CheckCompliance [
/None
]
/PDFX1aCheck false
/PDFX3Check false
/PDFXCompliantPDFOnly false
/PDFXNoTrimBoxError true
/PDFXTrimBoxToMediaBoxOffset [
0.00000
0.00000
0.00000
0.00000
]
/PDFXSetBleedBoxToMediaBox true
/PDFXBleedBoxToTrimBoxOffset [
0.00000
0.00000
0.00000
0.00000
]
/PDFXOutputIntentProfile ()
/PDFXOutputConditionIdentifier ()
/PDFXOutputCondition ()
/PDFXRegistryName ()
/PDFXTrapped /False
/Description <<
/CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
/CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
/DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
/DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
/ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
/FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
/ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
/JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
/KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
/NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
/NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
/PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
/SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
/SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
/ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
>>
/Namespace [
(Adobe)
(Common)
(1.0)
]
/OtherNamespaces [
<<
/AsReaderSpreads false
/CropImagesToFrames true
/ErrorControl /WarnAndContinue
/FlattenerIgnoreSpreadOverrides false
/IncludeGuidesGrids false
/IncludeNonPrinting false
/IncludeSlug false
/Namespace [
(Adobe)
(InDesign)
(4.0)
]
/OmitPlacedBitmaps false
/OmitPlacedEPS false
/OmitPlacedPDF false
/SimulateOverprint /Legacy
>>
<<
/AddBleedMarks false
/AddColorBars false
/AddCropMarks false
/AddPageInfo false
/AddRegMarks false
/ConvertColors /ConvertToCMYK
/DestinationProfileName ()
/DestinationProfileSelector /DocumentCMYK
/Downsample16BitImages true
/FlattenerPreset <<
/PresetSelector /MediumResolution
>>
/FormElements false
/GenerateStructure false
/IncludeBookmarks false
/IncludeHyperlinks false
/IncludeInteractive false
/IncludeLayers false
/IncludeProfiles false
/MultimediaHandling /UseObjectSettings
/Namespace [
(Adobe)
(CreativeSuite)
(2.0)
]
/PDFXOutputIntentProfileSelector /DocumentCMYK
/PreserveEditing true
/UntaggedCMYKHandling /LeaveUntagged
/UntaggedRGBHandling /UseDocumentProfile
/UseDocumentBleed false
>>
]
>> setdistillerparams
<<
/HWResolution [2400 2400]
/PageSize [612.000 792.000]
>> setpagedevice
|