Allelic polymorphism of F2, F5 and MTHFR genes in population of Ukraine

Analysis of F2, F5 and MTHFR genes SNPs allelic variants in population of Ukraine. Polymorphic variants were analyzed in 172 unrelated individuals using PCR followed by RFLP analysis.

Gespeichert in:
Bibliographische Detailangaben
Datum:2010
Hauptverfasser: Tatarskyy, P., Kucherenko, A., Livshits, L.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут клітинної біології та генетичної інженерії НАН України 2010
Schriftenreihe:Цитология и генетика
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/66721
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Allelic polymorphism of F2, F5 and MTHFR genes in population of Ukraine / P. Tatarskyy, A. Kucherenko, L. Livshits // Цитология и генетика. — 2010. — Т. 44, № 3. — С. 3-8. — Бібліогр.: 28 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-66721
record_format dspace
spelling irk-123456789-667212014-07-22T03:01:17Z Allelic polymorphism of F2, F5 and MTHFR genes in population of Ukraine Tatarskyy, P. Kucherenko, A. Livshits, L. Оригинальные работы Analysis of F2, F5 and MTHFR genes SNPs allelic variants in population of Ukraine. Polymorphic variants were analyzed in 172 unrelated individuals using PCR followed by RFLP analysis. Проанализировано распределение полиморфных вариантов генов по SNP F2 G20210A, F5 G1691A и MTHFR C677T среди населения Украины. Аллельные варианты SNP анализировали среди 172 неродственных индивидуумов методами ПЦР- и ПДРФ-анализа. Проаналізували розподіл алельних варіантів генів за SNP F2 G20210A, F5 G1691A та MTHFR C677T серед населення України. Алельні варіанти SNP аналізували серед 172 неспоріднених індивідів методом ПЛР- та ПДРФ-аналізу. 2010 Article Allelic polymorphism of F2, F5 and MTHFR genes in population of Ukraine / P. Tatarskyy, A. Kucherenko, L. Livshits // Цитология и генетика. — 2010. — Т. 44, № 3. — С. 3-8. — Бібліогр.: 28 назв. — англ. 0564-3783 http://dspace.nbuv.gov.ua/handle/123456789/66721 575.11+577.21 en Цитология и генетика Інститут клітинної біології та генетичної інженерії НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Оригинальные работы
Оригинальные работы
spellingShingle Оригинальные работы
Оригинальные работы
Tatarskyy, P.
Kucherenko, A.
Livshits, L.
Allelic polymorphism of F2, F5 and MTHFR genes in population of Ukraine
Цитология и генетика
description Analysis of F2, F5 and MTHFR genes SNPs allelic variants in population of Ukraine. Polymorphic variants were analyzed in 172 unrelated individuals using PCR followed by RFLP analysis.
format Article
author Tatarskyy, P.
Kucherenko, A.
Livshits, L.
author_facet Tatarskyy, P.
Kucherenko, A.
Livshits, L.
author_sort Tatarskyy, P.
title Allelic polymorphism of F2, F5 and MTHFR genes in population of Ukraine
title_short Allelic polymorphism of F2, F5 and MTHFR genes in population of Ukraine
title_full Allelic polymorphism of F2, F5 and MTHFR genes in population of Ukraine
title_fullStr Allelic polymorphism of F2, F5 and MTHFR genes in population of Ukraine
title_full_unstemmed Allelic polymorphism of F2, F5 and MTHFR genes in population of Ukraine
title_sort allelic polymorphism of f2, f5 and mthfr genes in population of ukraine
publisher Інститут клітинної біології та генетичної інженерії НАН України
publishDate 2010
topic_facet Оригинальные работы
url http://dspace.nbuv.gov.ua/handle/123456789/66721
citation_txt Allelic polymorphism of F2, F5 and MTHFR genes in population of Ukraine / P. Tatarskyy, A. Kucherenko, L. Livshits // Цитология и генетика. — 2010. — Т. 44, № 3. — С. 3-8. — Бібліогр.: 28 назв. — англ.
series Цитология и генетика
work_keys_str_mv AT tatarskyyp allelicpolymorphismoff2f5andmthfrgenesinpopulationofukraine
AT kucherenkoa allelicpolymorphismoff2f5andmthfrgenesinpopulationofukraine
AT livshitsl allelicpolymorphismoff2f5andmthfrgenesinpopulationofukraine
first_indexed 2025-07-05T16:53:26Z
last_indexed 2025-07-05T16:53:26Z
_version_ 1836826658010562560
fulltext УДК 575.11+577.21 P. TATARSKYY, A. KUCHERENKO, L. LIVSHITS Institute of Molecular Biology and Genetics National Academy of Sciences of Ukraine, Kyiv E�mail: tatarskyy@yahoo.com ALLELIC POLYMORPHISM OF F2, F5 AND MTHFR GENES IN POPULATION OF UKRAINE ] Analysis of F2, F5 and MTHFR genes SNPs allelic vari� ants in population of Ukraine. Polymorphic variants were analyzed in 172 unrelated individuals using PCR followed by RFLP analysis. Following genotypes have been identified: GG (97 %), GA (3 %) for F2 gene G20210A SNP, GG (96.5 %), GA (3.5 %) for F5 gene G1691A SNP and CC (49.5 %), CT (43 %), TT (7.5 %) for MTHFR gene C677T SNP. Following combined genotypes have been detected. We observed 1.7 % heterozygous carriers of MTHFR gene 677T SNP which were heterozygous for one of the alleles of F5 1691A or F2 20210A genes. On the other hand, the 7.5 % MTHFR gene 677T SNP homozygous individuals carried wild type alleles only of F5 and F2 genes. None of the individuals was carrying F5 1691A and F2 20210A genes polymorphic variants simultane� ously. The data about F2, F5 and MTHFR genes SNPs allel� ic frequencies in the population of Ukraine have been obtained. Thus, distribution of F2, F5 and MTHFR genotypes based on analysis of SNP in those three genes simultaneously has been detected. Introduction. Taking into account the growing interest to the genetic aspects of complex diseases the era of whole genome association studies (WGAS) started in the last decade. Many single nucleotide polymorphisms (SNPs) have been dis� covered in different genes. Nevertheless there are contradictory conclusions regarding their contri� bution to the pathogenesis of different complex disorders. In different publications the newly described SNPs have been studied in many com� plex pathological conditions. Methylenetetrahydrofolate reductase (MTHFR) is a key regulatory enzyme involved in folate metabolism, DNA synthesis and remethylation reactions [1]. Homocysteine is a metabolic product of remethylation and trans�sulphuration reactions involving methionine [1–4]. A common polymor� phism in the MTHFR gene (C677T) results in a thermolabile phenotype associated with high levels of homocysteine [1–4]. It has been shown that homozygosity for the C to T substitution at nucleo� tide 677 of the MTHFR gene is associated with a 30–50 % reduction of this enzyme activity and is the most common inherited cause of moderate hyperhomocysteinemia [1, 2]. In the last publica� tions there are evidences that the C677T MTHFR gene variation is a risk factor for ischemic stroke [2], infertility [1], primary closed�angle glaucoma (PCAG) [3], presence of anti�hepatitis B virus (HBV) antibodies [4], cytomegalovirus infection (CMV) [4], Huntington disease [5], cancer [6], coronary artery disease (CAD) [7], neural tube defects (spina bifida) and venous thrombosis [6, 8, 9], but the association of the C677T MTHFR gene variation and the risk of primary open�angle glau� coma (POAG) is still conflicting [3]. Factor V gene which encodes coagulation mol� ecule responsible for blood coagulation through activation of protein C (APC) was discovered in 1987. APC is a serine protease with potent anti� coagulant properties, which is formed in blood on the endothelium from an inactive precursor [10]. The point mutation of factor V (guanine is replaced by adenine in position 1691) led to the structural change in factor V molecule (F5 Q506, or FV Leiden) that is not properly inactivated by APC and shifts the balance toward thrombosis in the clotting cas� cade [2, 9–15] and may increase the risk of sys� temic lupus erythematosus (SLE) [12], type 2 dia� betes [16], recurrent pregnancy loss (RPL) [17– 21], stroke [2, 22], venous thrombosis and myocar� dial infraction [2, 22]. ІSSN 0564–3783. Цитология и генетика. 2010. № 3 3 Оригинальные работы © P. TATARSKYY, A. KUCHERENKO, L. LIVSHITS, 2010 Prothrombin is the precursor of the serine pro� tease thrombin, a key enzyme in the processes of hemostasis and thrombosis, that exhibits procoag� ulant, anticoagulant, and antifibrinolytic activi� ties [20, 23, 24]. The G to A transition at nucleotide position 20210, in the 3'�untranslated region of factor II (prothrombin) gene (F2) plays a regulatory role in gene expression [11, 20, 23]. It has been shown that F2 gene G20210A SNP is associated with higher plasma prothrombin con� centrations and augmented thrombin generation [11, 17, 20, 23, 24]. Patients carrying the 20210A allele have been demonstrated to be at risk for venous thrombosis [9, 11, 15, 17, 20], RPL and ischemic stroke [18–20]. Several studies argued that F5 G1691A and F2 G20210A were maintained at polymorphic frequen� cies among Caucasians, because they conferred an evolutionary advantage of reduced bleeding [25]. The high frequency of 677T allele MTHFR gene suggests that it may be of some benefit to the host. A survival advantage for homozygous fetuses is hypothesized in environment, in which folic acid consumption is adequate [25]. F5 gene G1691A, F2 gene G20210A and MTHFR gene C677T are three SNPs common among Caucasians. Therefore the study of their frequencies in various popula� tions provides perspectives for both clinical medi� cine and population genetics. This study aimed to analyze the F5 gene G1691A, F2 gene G20210A and MTHFR gene C677T alleles distribution in the population of Ukraine. Materials and methods. The study subjects were recruited between 2007 and 2008. An informed consent was obtained from each participant prior to blood collection and DNA extraction. This study was approved by the Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine Ethical Committee. We studied 172 unrelated individuals (men – 85, women – 87), having an age range of 25 to 45 years old, who were randomly selected from different regions of Ukraine from the general population. Venous blood samples were collected into vacu� tainer tubes containing EDTA and stored frozen at –70 °С until using. DNA was extracted from the peripheral blood leukocytes by standard phenol�chloroform extraction method [27] and stored at +4 °С until being used. The F5 gene G1691A, F2 gene G20210A alle� les were genotyped by multiplex polymerase chain reaction (PCR) with the use of specific oligonu� cleotide primers followed by MnlI restriction enzyme digestion as described by Koksal [9]. The PCR reaction was performed in a final vol� ume of 15 μL containing 1 � PCR buffer, 1.5 mM MgCl2, 200 μM of each dNTP, 5 μM of each of the relevant primer (made on an Biosset ASM 800 DNA synthesizer), 0.2 units of Taq�DNA polymerase and 50–200 ng of the DNA template. The cycling conditions on the PCR�amplificator for alleles of F5 and F2 genes were as follows: ini� tial denaturation at 95 °С for 5 min, 30 cycles con� sisting of denaturation at 95 °С for 30 sec, annealing at 60 °С for 30 sec, extension at 72 °С for 30 sec and a final elongation step at 72 °С for 5 min. The MTHFR gene C677T allele was genotyped by PCR with the use of specific oligonucleotide primers followed by HinfI restriction enzyme digestion by Michael [3]. ISSN 0564–3783. Цитология и генетика. 2010. № 34 P. Tatarskyy, A. Kucherenko, L. Livshits Fig. 1. RFLP analysis of F5 (factor V Leiden G1691A) and F2 (prothrombin G20210A) genes endonuclease restric� tion MnlI (7 % polyacrylamide gel electrophoresis): 1 – F2 (GG – wild type) and F5 (GG – wild type) genes; 2 – F2 (GA – heterozygote) and F5 (GG – wild type) genes; 3 – F2 (GG – wild type) and F5 (GA – heterozygote) genes; 4 – undigested PCR product of F2 and F5 genes, М – marker of molecular mass ІSSN 0564–3783. Цитология и генетика. 2010. № 3 The cycling conditions for MTHFR gene C677T allele were as follows: initial denaturation at 95 °С for 5 min, 30 cycles consisting of denaturation at 95 °С for 30 sec, annealing at 66 °С for 30 sec, extension at 72 °С for 30 sec and a final elongation step at 72 °С for 3 min. Electrophoresis of the PCR products was performed in a 1.8 % agarose gel with EtBr followed by visualization under UV. PCR products 169, 221 and 294 bp long corre� spondently were digested and run on 7 % PAGE. The G to A transition in position 1691 of exon 10 F5 gene results in a disappearance of restriction site for MnlI endonuclease. With a purpose to detect G to A transition in position 20210 of the F2 gene 3'�untranslated region detection, a single mismatch nucleotide has been introduced in the reverse primer [9]. This mismatch results in the generation of a new MnlI restriction site in the wild type allele. The C to T transition in position 677 of exon 4 MTHFR gene creates a restriction site for HinfI endonuclease. Digestion was performed in 15 μL reaction vol� ume containing 1 � reaction buffer, 0.5 units of the restriction enzyme and 10 μL of purified PCR prod� uct, incubated at 37 °С for 3 hours or overnight. The digested products with 100 bp leader were electrophoresed on 7 % PAGE gel with EtBr and photographed under UV. Statistical analysis was performed by χ2 test, using GENEPOP [28] package. Results and discussion. In wild type alleles MnlI digestion of F5 and F2 genes amplicons yielded fragments of 17, 37 and 115 bp for F5 gene (Fig. 1), the 17 bp fragment was a result of an invariant MnlI site. For digested F2 gene amplicon 29 and 192 bp fragments were observed (Fig. 1). In wild type allele HinfI digestion of MTHFR gene ampli� cons yielded fragment of 294 bp (Fig. 2). Digestion of the F5 gene G1691A SNP homozy� gote gave fragments of 17 and 152 bp, and the F2 gene G20210A SNP homozygote yielded frag� ment of 221 bp (Fig. 1). Digestion of MTHFR gene C677T SNP homozygote yielded fragments of 126 and 168 bp (Fig. 2). The small 17, 29 and 37 bp fragments has run out from the gel (Fig. 1). 5 Allelic polymorphism of F2, F5 and MTHER genes in population of Ukraine Fig. 2. RFLP analysis of MTHFR (C677T) gene endonu� clease restriction HinfI (7 % polyacrylamide gel electro� phoresis): 1 – undigested PCR product of MTHFR gene; 2, 3 – CT (heterozygote); 4 – TT (mutant variant); 5, 6 – CC (wild type); М – marker of molecular mass Table 1 Genotype and allele frequencies distribution of F5 G1691A, F2 G20210A and MTHFR C677T gene variants in Ukraine Note . n – group size. SNPs F2 G20210A F5 G1691A MTHFR C677T 167(GG) 166(GG) 85(CC) 97 96.5 49.5 5(GA) 6(GA) 74(CT) 3 3.5 43 0(AA) 0(AA) 13(TT) 0 0 7.5 0.015 0.017 0.29 n % n Homozygote (wild type) Heterozygote Homozygote (mutant allele) % n % Mutant allele frequency Genotypes and allele frequencies of the three polymorphisms are presented in Table 1. Of the 172 analyzed samples from the present study, we have found 5 to have F2 gene 20210A (mutant allele frequency 0.015), 6 to have F5 gene 1691A (mutant allele frequency 0.017) and 87 to have at least one MTHFR gene 677T allele (mutant allele frequency 0.29). The genotype distribution of the three analyzed SNPs is in Hardy�Weinberg equi� librium χ2 = 0.0374, P > 0.05, χ2 = 0.0542, P > > 0.05 and χ2 = 0.3222, P > 0.05 for F2 G20210A, F5 G1691A and MTHFR C677T genes SNPs cor� respondently. Expected heterozygosity for the studied loci corresponded to the observed one. To our knowledge this is the first published data regarding research of F5 gene G1691A SNP, F2 gene G20210A SNP and MTHFR gene C677T SNP combined genotype distribution in the gener� al population of Ukraine. The frequency of allelic variants of F2 gene 20210A, F5 gene 1691A and MTHFR gene 677T in our study is in agreement with the published data obtained in other countries (Table 2). The excep� tion appears to be the Japanese population in which the F5 gene G1691A and F2 gene G20210A were not detected yet [21]. The expected frequen� cy of homozygotes in our study is 0.017 % for F2 gene 20210A and 0.026 % for F5 gene 1691A. ISSN 0564–3783. Цитология и генетика. 2010. № 36 P. Tatarskyy, A. Kucherenko, L. Livshits Table 2 Frequencies of F5 G1691A, F2 G20210A and MTHFR C677T genes alleles in different countries Note. n – group size; FII*A – 20210A; FV*A – 1691A; MTHFR*T – 677T. Population Gene/mutant allele FII*A n FV*A n MTHFR*T n Reference Russia Japan Turkey Italy Greece Cyprus Jordan Lebanon Tunisia Bahrain Saudi�Arabia Iran�west Morocco Palestinians Pakistan China Brazil Indian Canadian United States Finland Germany Australia United Kingdom France Azerbaijan Spain Ireland Netherlands Sweden – – 0.013 0.0199 0.022 0.039 0.010 0.014 0.013 0.005 0.003 0.017 0.012 0.033 – – 0.0052 – – – – 0.0098 – – – 0.0136 – – – – – – 311 1429 160 90 200 697 313 191 884 180 124 107 – – 384 – – – – 102 – – – 110 – – – – – 0 0.041 0.0187 0.025 0.072 0.085 0.079 0.035 0.016 0.007 0.014 0 0.082 – 0 0.00826 – 0.0266 0.0298 0.0198 0.0274 0.0198 0.0227 0.0133 – – – 0.0156 – – 386 387 1415 160 90 200 697 313 191 902 180 159 581 – 99 484 – 356 704 303 510 126 352 300 – – – 641 – 0.259 – 0.325 0.432 0.353 0.400 0.160 0.304 0.292 0.126 0.148 0.278 0.289 0.322 0.0928 0.5707 – 0.4 – – – – – 0.186 – – 0.545 0.286 0.270 0.338 599 – 1885 1504 160 90 200 697 313 191 884 180 162 284 70 99 – 200 – – – – – 94 – – 33 947 318 6644 7, 26 21 25 25, 26, 19 25 25 25 25 25 25 25 25 25 25 3 2 20, 14 1 14 14 14 21, 18, 14 14 14, 26 14 24 26 8, 26 14, 26 26 Therefore, the absence of homozygous individuals in our study is not surprising. From all the 27 possi� ble combinations of F2 20210A, F5 1691A and MTHFR 677T genes SNPs combined genotypes, we observed only 7 (Table 3). None of the individuals was carrying F5 gene 1691A and F2 gene 20210A alleles simultaneously. We observed 3 heterozygous individuals for MTHFR gene 677T allele who at the same time carried one of the F5 gene 1691A or F2 gene 20210A alleles. On the other hand, the MTHFR gene 677T allele homozygous individuals carried F5 and F2 genes wild type alleles only. The obtained allelic frequencies in the current study were in the lower range frame of the world distribu� tion. Obtained results from our study add to the world distribution data concerning F2 20210A, F5 1691A and MTHFR 677T genes allelic variants. Although further studies based on population data as controls are required to clarify their involvement in different complex disorders, increased awareness of this genetic risk factors is warranted. П.Ф. Татарский, А.М. Кучеренко, Л.А. Лившиц АЛЛЕЛЬНЫЙ ПОЛИМОРФИЗМ ГЕНОВ F2, F5 И MTHFR СРЕДИ НАСЕЛЕНИЯ УКРАИНЫ Проанализировано распределение полиморфных вариантов генов по SNP F2 G20210A, F5 G1691A и MTHFR C677T среди населения Украины. Аллельные варианты SNP анализировали среди 172 неродствен� ных индивидуумов методами ПЦР� и ПДРФ�анализа. Выявлены следующие генотипы: GG (97 %), GA (3 %) для гена F2 G20210A, GG (96,5 %), GA (3,5 %) для ге� на F5 G1691A и CC (49,5 %), CT (43 %), TT (7,5 %) для гена MTHFR С677Т. Идентифицированы следующие комбинированные генотипы: 1,7 % гетерозиготных но� сителей 677Т аллеля гена MTHFR одновременно были носителями одного из полиморфных аллелей генов F2 20210А или F5 1691А. Вместе с тем 7,5 % гомозигот� ных носителей 677Т аллеля гена MTHFR были гомози� готами по аллелям дикого типа генов F2 и F5. Ни у одного из индивидов в генотипе не выявлены иссле� дуемые аллели 20210А и 1691А генов F2 и F5 одновре� менно. Получены данные о частоте аллельных вари� антов SNP по генам F2, F5 и MTHFR среди населения Украины. На основании комплексного анализа SNP этих трех генов было установлено распределение ком� бинированных генотипов. П.Ф. Татарський, А.М. Кучеренко, Л.А. Лівшиць АЛЕЛЬНИЙ ПОЛІМОРФІЗМ ГЕНІВ F2, F5 ТА MTHFR СЕРЕД НАСЕЛЕННЯ УКРАЇНИ Проаналізували розподіл алельних варіантів генів за SNP F2 G20210A, F5 G1691A та MTHFR C677T се� ред населення України. Алельні варіанти SNP аналізу� вали серед 172 неспоріднених індивідів методом ПЛР� та ПДРФ�аналізу. Виявлено наступні генотипи: GG (97 %), GA (3 %) для гена F2 G20210A, GG (96,5 %), GA (3,5 %) для гена F5 G1691A та CC (49,5 %), CT (43 %), TT (7,5 %) для гена MTHFR С677Т. Було іден� тифіковано наступні комбіновані генотипи: 1,7 % ге� терозиготних носіїв 677Т алеля гена MTHFR водночас виявились носіями одного з поліморфних алелів гена F2 20210A чи гена F5 1691A. Разом з тим 7,5 % гомо� зиготних носіїв 677Т алеля гена MTHFR були гомози� готами за алелями дикого типу генів F2 та F5. У жод� ного з індивідів в генотипі не виявлені досліджувані алелі 20210A та 1691A генів F2 та F5 одночасно. Отри� манo дані про частоти алельних варіантів SNP за генами F2, F5 та MTHFR серед населення України. На основі комплексного аналізу SNP цих трьох генів було вста� новлено розподіл комбінованих генотипів. REFERENCES 1. Dhillon V.S., Shahid M., Husain S.A. Association of MTHFR DNMT3b 4977 bp deletion in mtDNA and GSTM1 deletion, and aberrant CpG island hyperme� thylation of GSTM1 in non�obstructive infertility in Indian men // Mol. Hum. Reprod. – 2007. – № 4. – P. 213–222. 2. Shi C., Kang X., Wang Y., Zhou Y. The coagulation fac� tor V Leiden, MTHFRC677T variant and eNOS 4ab polymorphism in young Chinese population with ischemic stroke // Clin. Chim. Acta. – 2008. – 396, № 1/2. – P. 7–9. ІSSN 0564–3783. Цитология и генетика. 2010. № 3 7 Allelic polymorphism of F2, F5 and MTHER genes in population of Ukraine Table 3 Combined genotypes frequencies of F5 G1691A, F2 G20210A and MTHFR C677T genes variants in Ukraine Note. n – group size; FII: A – 20210A; G – 20210G, FV: A – 1691A; G – 1691G, MTHFR: T – 677T, C – 677C. FII GG GG GA GG GG GA GG GG GA GG GG GA GG GG TT CT CT CT CC CC CC 13 1 2 71 5 3 77 7.5 0.5 1.2 41.3 2.9 1.8 44.8 FV MTHFR n Genotype % 3. Michael S., Qamar R., Akhtar F., Khan W.A., Ahmed A. C677T polymorphism in the methylenetetrahydrofo� late reductase gene is associated with primary closed angle glaucoma // Mol. Vis. – 2008. – 26, № 14. – P. 661–665. 4. Fodil�Cornu N., Kozij N., Wu Q., Rozen R., Vidal S.M. Methylentetrahydrofolate reductase (MTHFR) deficien� cy enhances resistance against cytomegalovirus infec� tion // Gene. Immune. – 2009. – 10, № 7. – P. 662–666. 5. Brune N., Andrich J., Gencik M. et al. Methyltetrahydro� folate reductase polymorphism influences onset of Huntington’s disease // J. Neural. Transm. – 2004. – 68. – P. 105–110. 6. Nishio K., Goto Y., Kondo T. et al. Serum folate and methylentetrahydrofolate reductase (MTHFR) C677T polymorphism adjusted for folate intake // J. Epidemiol. – 2008. – 18, № 3. – P. 125–131. 7. Spiridonova M.G., Stepanov V.A., Pyzyrev V.P., Kar� pov R.S. Relationship between polymorphism C677T of the methylene tetrahydrofolate reductase gene with clinical symptoms of coronary atherosclerosis // Genetika. – 2000. – 36, № 9. – P. 1269–1273. 8. Kirke P.N., Mills J.L., Molloy A.M. et al. Impact of the MTHFR C677T polymorphism on risk of neural tube defects: case�control study // Brit. Med. J. – 2004. – 328, № 7455. – P. 1535–1536. 9. Koksal V., Baris I., Etlik O. Primer�engineered multi� plex PCR–RFLP for detection of MTHFR C677T, pro� thrombin G20210A and factor V Leiden mutations // Exp. Mol. Pathol. – 2007. – 83. – P. 1–3. 10. Bertina R.M., Koeleman B.P., Koster T. et al. Mutation in blood coagulation factor V associated with resistance to activated protein C // Nature. – 1994. – 369, № 6475. – P. 64–67. 11. Huber S., McMaster K.J., Voelkerding K.V. Analytical eva� luation of primer engineered multiplex polymerase chain reaction�restriction fragment length polymorphism for de� tection of factor V Leiden and prothrombin G20210A // J. Mol. Diagn. – 2000. – 2, № 3. – P. 153–157. 12. Kaiser R., Barton J.L., Chang M. et al. Factor V Leiden and thrombosis in patients with systemic lupus erythe� matosus: a meta�analysis // Genes Immun. – 2009. – 10, № 5. – P. 495–502. 13. Simkova M., Batorova A., Dostalova K. et al. Factor V Leiden in patients with venous thrombosis in Slovak population // Gen. Physiol. Biophys. – 2004. – 23, № 4. – P. 435–442. 14. Lee D.H., Henderson P.A., Blajchman M.A. Prevalence of factor V Leiden in a Canadian blood donor population // Canad. Med. Ass. J. – 1996. – 1, № 155. – P. 285–289. 15. Van den Bergh F.A., van Oeveren�Dybicz A.M., Bon M.A. Rapid single�tube genotyping of the factor V Leiden and prothrombin mutations by real�time PCR using dual�color detection // Clin. Chem. – 2000. – 46, № 8. – P. 1191–1195. 16. Lodigiani C., Ferrazzi P., Di Micco P. et al. Is there a relationship between factor V Leiden and type 2 dia� betes? // J. Transl. Med. – 2009. – 26, № 7. – P. 52. 17. Kovalevsky G., Gracia C.R., Berlin J.A., Sammel M.D., Barnhart K.T. Evaluation of the association between hereditary thrombophilias and recurrent pregnancy loss: a meta�analysis // Arch. Intern. Med. – 2004. – 8, № 164. – P. 558–563. 18. Wolf C.E., Haubelt H., Pauer H.U. et al. Recurrent pregnancy loss and its relation to FV Leiden, FII G20210A and polymorphisms of plasminogen activator and plasminogen activator inhibitor // Pathophysiol. Haemost. Thromb. – 2003. – № 33. – P. 134–137. 19. Sottilotta G., Oriana V., Latella C. et al. Genetic pro� thrombotic risk factors in women with unexplained pregnancy loss // Thromb. Res. – 2006. – № 117. – P. 681–684. 20. Souza S.S., Ferriani R.A., Pontes A.G., Zago M.A., Franco R.F. Factor V leiden and factor II G20210A mutations in patients with recurrent abortion // Hum. Reprod. – 1999. – № 14. – P. 2448–2450. 21. Hashimoto K., Shizusawa Y., Shimoya K., Ohashi K. et al. The factor V Leiden mutation in Japanese couples with recurrent spontaneous abortion // Hum. Reprod. – 1999. – № 14. – P. 1872– 1874. 22. Ridker P.M., Hennekens C.H., Lindpaintner K. et al. Mutation in the gene coding for coagulation factor V and the risk of myocardial infarction, stroke, and venous thrombosis in apparently healthy men // N. Engl. J. Med. – 1995. – 6, № 332. – P. 912–917. 23. Poort S.R., Rosendaal F.R., Reitsma P.H., Bertina R. A common genetic variation in the 39�untranslated region of the prothrombin gene is associated with ele� vated plasma prothrombin levels and increase in venous thrombosis // Blood. – 1996. – № 88. – P. 3698–3703. 24. Togrul J., Rustamov R., Gurgey A., Altay S., Altay C. Prevalence of the prothrombin gene G20210A muta� tion in Azerbaijan // Brit. J. Haematol. – 2000. – № 108. – P. 887–888. 25. Zoossmann�Diskin A., Gazit E., Peleg L., Shohat M., Turner D. Thrombophilic polymorphisms in Israel // Blood. Cells. Mol. Dis. – 2008. – № 41. – P. 230–233. 26. Spiridonova M.G., Stepanov V.A., Maksimova N.R., Pu� zyrev V.P. Population study of frequency of methylenete� trahydrofolate reductase C677T gene polymorphism in Yakutia // Genetika. – 2004. – 40. – P. 704–708. 27. Maniatis T., Fritsch E.F., Sambrook J. Molecular cloning: a laboratory manual. – New York : Cold Spring Harbor Laboratory, 1982. – P. 545. 28. Raymond M., Rousset F. GENEPOP (version 1.2): pop� ulation genetics software for exact tests and ecumeni� cism // J. Heredity. – 1995. – № 86. – P. 248–249. Received 01.12.09 ISSN 0564–3783. Цитология и генетика. 2010. № 38 P. Tatarskyy, A. Kucherenko, L. Livshits