Attaining a record level of copper-wire properties by using SPD methods
A new approach is proposed to control the processes of plastic deformation of materials by the methods of severe plastic deformation (SPD). High strength and plasticity have been attained for the processed copper billets after multiple repetitions of angular hydroextrusion (ECAH) and hydroextrusion...
Gespeichert in:
Datum: | 2010 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Донецький фізико-технічний інститут ім. О.О. Галкіна НАН України
2010
|
Schriftenreihe: | Физика и техника высоких давлений |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/69269 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Attaining a record level of copper-wire properties by using SPD methods / V.Z. Spuskanyuk, O.A. Davydenko, O.M. Gangalo, L.F. Sennikova, M.A. Tikhonovsky, V. Spiridonov // Физика и техника высоких давлений. — 2010. — Т. 20, № 1. — С. 114-122. — Бібліогр.: 6 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-69269 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-692692014-10-10T03:01:41Z Attaining a record level of copper-wire properties by using SPD methods Spuskanyuk, V.Z. Davydenko, O.A. Gangalo, O.M. Sennikova, L.F. Tikhonovsky, M.A. Spiridonov, V. A new approach is proposed to control the processes of plastic deformation of materials by the methods of severe plastic deformation (SPD). High strength and plasticity have been attained for the processed copper billets after multiple repetitions of angular hydroextrusion (ECAH) and hydroextrusion (HE) methods and with ECAH and HE implementation in the fractional mode. The combined severe plastic deformation technology including ECAH, HE and drawing (D) provided the ultimate tensile strength σ = 686 MPa, the elongation to failure δ = 2% and the electrical conductivity at a level of 86.4% IACS in the 0.5 mm diameter copper wire. Such a processing is efficient due to the alternating schemes of deformation and periodic creation of favorable conditions for relaxation and dynamic recrystallization processes in the material. An important condition for the attaining of the maximum processing effect is the fractional mode and the optimum degree of deformation by the both methods. Предложен новый подход к управлению процессами пластической деформации материалов при обработке заготовок методами интенсивной пластической деформации (ИПД). Высокий комплекс прочности и пластичности обработанных медных заготовок получен после многократного чередования методов угловой гидроэкструзии (УГЭ) и прямой гидроэкструзии (ГЭ) с реализацией УГЭ и ГЭ в дробном режиме. Комбинированная ИПД-технология, включающая УГЭ, ГЭ и волочение (В), обеспечивает в медной проволоке диаметром 0.5 mm предел прочности σ = 686 MPa, относительное удлинение δ = 2% и электрическую проводимость на уровне 86.4% IACS. Эффект такой обработки обусловлен чередованием схем деформаций и периодическим обеспечением благоприятных условий для протекания в материале процессов релаксации и динамической рекристаллизации. Важным условием достижения максимального эффекта обработки являются дробный режим и оптимальные степени деформации обоими методами. Запропоновано новий підхід до керування процесами пластичної деформації матеріалів при обробці заготовок методами інтенсивної пластичної деформації (ІПД). Високий комплекс міцності й пластичності оброблених мідних заготовок отриманий після багаторазового чергування методів кутової гідроекструзії (КГЕ) і прямої гідроекструзії (ГЕ) з реалізацією КГЕ й ГЕ в дробовому режимі. Комбінована ІПД-технологія, що включає КГЕ, ГЕ й волочіння (В), забезпечує в мідному дроті діаметром 0.5 mm межу міцності σ = 686 MPa, відносне подовження δ = 2% і електричну провідність на рівні 86.4% IACS. Ефект такої обробки обумовлений чергуванням схем деформацій і періодичним забезпеченням сприятливих умов для протікання в матеріалі процесів релаксації й динамічної рекристалізації. Важливою умовою досягнення максимального ефекту обробки є дробовий режим і оптимальні ступені деформації обома методами. 2010 Article Attaining a record level of copper-wire properties by using SPD methods / V.Z. Spuskanyuk, O.A. Davydenko, O.M. Gangalo, L.F. Sennikova, M.A. Tikhonovsky, V. Spiridonov // Физика и техника высоких давлений. — 2010. — Т. 20, № 1. — С. 114-122. — Бібліогр.: 6 назв. — англ. 0868-5924 PACS: 62.20.–x, 81.40.–z http://dspace.nbuv.gov.ua/handle/123456789/69269 en Физика и техника высоких давлений Донецький фізико-технічний інститут ім. О.О. Галкіна НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
A new approach is proposed to control the processes of plastic deformation of materials by the methods of severe plastic deformation (SPD). High strength and plasticity have been attained for the processed copper billets after multiple repetitions of angular hydroextrusion (ECAH) and hydroextrusion (HE) methods and with ECAH and HE implementation in the fractional mode. The combined severe plastic deformation technology including ECAH, HE and drawing (D) provided the ultimate tensile strength σ = 686 MPa, the elongation to failure δ = 2% and the electrical conductivity at a level of 86.4% IACS in the 0.5 mm diameter copper wire. Such a processing is efficient due to the alternating schemes of deformation and periodic creation of favorable conditions for relaxation and dynamic recrystallization processes in the material. An important condition for the attaining of the maximum processing effect is the fractional mode and the optimum degree of deformation by the both methods. |
format |
Article |
author |
Spuskanyuk, V.Z. Davydenko, O.A. Gangalo, O.M. Sennikova, L.F. Tikhonovsky, M.A. Spiridonov, V. |
spellingShingle |
Spuskanyuk, V.Z. Davydenko, O.A. Gangalo, O.M. Sennikova, L.F. Tikhonovsky, M.A. Spiridonov, V. Attaining a record level of copper-wire properties by using SPD methods Физика и техника высоких давлений |
author_facet |
Spuskanyuk, V.Z. Davydenko, O.A. Gangalo, O.M. Sennikova, L.F. Tikhonovsky, M.A. Spiridonov, V. |
author_sort |
Spuskanyuk, V.Z. |
title |
Attaining a record level of copper-wire properties by using SPD methods |
title_short |
Attaining a record level of copper-wire properties by using SPD methods |
title_full |
Attaining a record level of copper-wire properties by using SPD methods |
title_fullStr |
Attaining a record level of copper-wire properties by using SPD methods |
title_full_unstemmed |
Attaining a record level of copper-wire properties by using SPD methods |
title_sort |
attaining a record level of copper-wire properties by using spd methods |
publisher |
Донецький фізико-технічний інститут ім. О.О. Галкіна НАН України |
publishDate |
2010 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/69269 |
citation_txt |
Attaining a record level of copper-wire properties by using SPD methods / V.Z. Spuskanyuk, O.A. Davydenko, O.M. Gangalo, L.F. Sennikova, M.A. Tikhonovsky, V. Spiridonov // Физика и техника высоких давлений. — 2010. — Т. 20, № 1. — С. 114-122. — Бібліогр.: 6 назв. — англ. |
series |
Физика и техника высоких давлений |
work_keys_str_mv |
AT spuskanyukvz attainingarecordlevelofcopperwirepropertiesbyusingspdmethods AT davydenkooa attainingarecordlevelofcopperwirepropertiesbyusingspdmethods AT gangaloom attainingarecordlevelofcopperwirepropertiesbyusingspdmethods AT sennikovalf attainingarecordlevelofcopperwirepropertiesbyusingspdmethods AT tikhonovskyma attainingarecordlevelofcopperwirepropertiesbyusingspdmethods AT spiridonovv attainingarecordlevelofcopperwirepropertiesbyusingspdmethods |
first_indexed |
2025-07-05T18:53:59Z |
last_indexed |
2025-07-05T18:53:59Z |
_version_ |
1836834241965457408 |
fulltext |
Физика и техника высоких давлений 2010, том 20, № 1
© V.Z. Spuskanyuk, O.A. Davydenko, O.M. Gangalo, L.F. Sennikova, M.A. Tikhonovsky,
V. Spiridonov, 2010
PACS: 62.20.–x, 81.40.–z
V.Z. Spuskanyuk1, O.A. Davydenko1, O.M. Gangalo1, L.F. Sennikova1,
M.A. Tikhonovsky2, V. Spiridonov3
ATTAINING A RECORD LEVEL OF COPPER-WIRE PROPERTIES
BY USING SPD METHODS
1Donetsk Institute for Physics and Engineering, National Academy of Sciences of Ukraine
72 R. Luxemburg St., Donetsk, 83114, Ukraine
2National Science Center «Kharkov Institute of Physics and Technology»,
National Academy of Sciences of Ukraine
1 Akademicheskaya St., Kharkov, 61108, Ukraine
3OJSC Artyomovsk non-ferrous metals processing plant
42 Kirov St., Artyomovsk, 84500, Ukraine
Received January 26, 2010
A new approach is proposed to control the processes of plastic deformation of materials by
the methods of severe plastic deformation (SPD). High strength and plasticity have been at-
tained for the processed copper billets after multiple repetitions of angular hydroextrusion
(ECAH) and hydroextrusion (HE) methods and with ECAH and HE implementation in the
fractional mode. The combined severe plastic deformation technology including ECAH, HE
and drawing (D) provided the ultimate tensile strength σ = 686 MPa, the elongation to fail-
ure δ = 2% and the electrical conductivity at a level of 86.4% IACS in the 0.5 mm diameter
copper wire. Such a processing is efficient due to the alternating schemes of deformation and
periodic creation of favorable conditions for relaxation and dynamic recrystallization proc-
esses in the material. An important condition for the attaining of the maximum processing
effect is the fractional mode and the optimum degree of deformation by the both methods.
Keywords: equal-channel angular hydroextrusion, direct hydroextrusion, drawing, cop-
per, physical and mechanical properties, nanocrystalline structure
1. Introduction
As demonstrated by Segal et al. [1], the equal-channel angular extrusion
(ECAE) is a promising method for the formation of ultrafine grained (UFG) mi-
crostructures in metallic materials. Kulczyk et al. [2] have recently shown by the
examples of copper and nickel that the combined ECAE + HE deformation greatly
increases the homogeneity of the microstructure and considerably improves their
mechanical properties as compared with a single technique (either HE or ECAE).
In copper subjected to a combined ECAE + HE treatment at a true strain of 22.3,
the ultimate tensile strength was 550 MPa.
Физика и техника высоких давлений 2010, том 20, № 1
115
However, the cold processing of lengthy billets by ECAE is difficult because
of high operating pressures, potentially resulting in breaking the machine-tool at-
tachments, the punch first of all. Usually the ECAE is used for billets having l/d =
4–6, where l – length, d – diameter. A new version of ECAE, called the equal-
channel angular hydroextrusion (ECAH), has been proposed by Spuskanyuk et al.
[3,4] for the processing of lengthy billets. Under ECAH a billet is extruded by
high-pressure fluid through the angular die channel. The relative length of die-
billet contact surface is considerably smaller than with ECAE. Therefore, longer
billets can be deformed by ECAH at acceptable pressure levels making this
method attractive for commercial use.
In this paper, the effect of combined technology including the ECAH, HE and
D techniques (Fig. 1) for making wire is investigated. Apparently, a longer wire
can be produced by using ECAH of longer billets (l/d ≥ 10) as compared to ECAE
case. The main purpose of our investigation is to show that the combined technol-
ogy including ECAH, HE and D techniques significantly improves wire proper-
ties. For the first time, it has been demonstrated by the copper samples that com-
bining the ECAH, HE and D techniques provides higher properties of wire as
compared to properties obtained without ECAH. It has been also demonstrated
that the repetitive HE and ECAH (HE + ECAH + HE + ECAH + HE) results in a
higher level of copper wire strength as compared to the result obtained with the
single ECAH technique. For the first time, the ECAH of a rod through conical and
angular dies is described.
Fig. 1. A new combined technology including the HE (1, 3), ECAH (2) and D (4) tech-
niques for making wire
2. Materials and investigation procedure
Commercial Cu-FRTP (fire refined tough pitch copper) hot-pressed rods of 60
mm diameter were used. The chemical composition of this material is given in
Table 1. Impurity analysis of copper was done by the atom-emission method us-
ing an optical-emission spectrometer ARL4460 Metals Analyzer.
Rods were processed by HE, ECAH and D followed by annealing of copper in
some cases.
Физика и техника высоких давлений 2010, том 20, № 1
116
Table 1
The chemical composition of Cu-FRTP, %
Pb Fe Sn Si Sb As Mn Al Co Zn
0.0060 0.0019 0.0062 0.0002 0.0012 0.0004 < 0.0002 < 0.0001 < 0.0001 0.0039
Bi P S Ag Cr Ni Se Te Cd Cu
0.0002 0.0116 0.0039 0.0051 0.0006 0.0101 < 0.0001 < 0.0001 < 0.0001 99.948
The experimental conditions, such as processing modes, sequence of process-
ing steps, equivalent strain εНЕ of the samples by the hydroextrusion, temperature
of annealing (for 1 h), the number of ECAH cycles n, ECAH route, total equiva-
lent strain εECAH accumulated during the ECAH, total equivalent strain εD accu-
mulated during the drawing are summarized in Table 2. For the 7-th variant of
processing modes the billets were machined after the first ECAH in order to pro-
vide the same diameter as that of billets after the second HE.
Table 2
Experimental conditions
HE A ECAH HE ECAH HE DProcessing
mode εHE t, °C n route εECAH εHE n route εECAH εHE εD
1 2.3 – – – – 0.8 – – – 1.9 4.6
2 2.3 350 2 C 2.3 0.8 – – – 1.9 4.6
3 2.3 350 2 C 2.3 0.8 1 – 1.2 1.9 4.6
4 2.3 350 2 C 2.3 0.8 2 C 2.3 1.9 4.6
5 2.3 350 2 C 2.3 0.8 3 C 3.5 1.9 4.6
6 2.3 – 1 – 1.2 0.8 – – – 1.9 4.6
7 2.3 – 1 – 1.2 – 3 C 3.5 1.9 4.6
8 2.3 – 1 – 1.2 0.8 4 C 4.6 1.9 4.6
The original ECAH technology was applied with the purpose of refining
structure of lengthy billets. The rods (l = 10d) were extruded by ECAH through an
angular die with 2Φ = 90° using a hydraulic press of 1 MN force. The original
ECAH facility is schematically shown in Fig. 2.
The main part of a facility was a high-pressure vessel with the operating pres-
sure to 1.6 GPa. A conical die and an angular die are located in the lower part of
the vessel channel. Conical die channel and input segment of the angular die
channel were aligned with the high-pressure vessel channel. The diameters of the
conical die calibrating bore and the input segment of the angular die channel were
equal. The diameter of output segment of the angular die channel was made
slightly larger than that of input segment for a repetitive ECAH without any addi-
tional operations of billet thickening before each pass through the conical die.
Prior to plastic deformation, the billet surface was coated with a soap-based solu-
tion. The initial billet with a small nose machined on one end was fitted into an entry
of the conical die to seal the fluid. The high-pressure unit was then filled with the hy-
drostatic fluid (engine oil SAE 40) and the plunger was inserted and forced into the
Физика и техника высоких давлений 2010, том 20, № 1
117
bore by means of the press. The appropriate
fluid pressure initiated extrusion of the billet
into the input segment of the angular die chan-
nel. Subsequently, when the pressure was in-
creased, the fluid forced the billet through the
angular die channel and the product emerged
from the output channel segment. Multiple
ECAH was implemented by the «billet after
billet» technology. All the rods were deformed
under the room-temperature conditions, the
plunger travelled at a rate of 2 mm/s. HE of
billets and D of wire were done by well-known
methods. For instance, HE and D techniques
were described by Blazynski [5].
Microstructure of copper was studied by
methods of optical and electron microscopy.
Vickers hardness measurements were done
using a HV-5 Low V.H. Tester manufactured
by L.H. Testing Instruments Co, Ltd. Me-
chanical tensile tests for samples and wires
were done using machines of 2167 R-50 type
manufactured by «Tochpribor» Co and ZM
20 174.21 type manufactured by «Fritz Heck-
ert» Co, respectively. Diameter of the work-
ing part of a tensile-tested sample was equal
to 3 mm, the length of the base was 15 mm;
wire diameter was equal to 0.5 mm, the length of the base was 100 mm. Tensile
tests were done at the room temperature, the cross-piece travelled at a rate of 10–4
m/s. Electrical resistance of copper wire was measured by the standard four-probe
method under the room temperature (293 K) and the liquid nitrogen boiling tem-
perature (77.3 K). The resistivity was measured with a relative error under 0.5%.
3. Results and discussion
By the combined processing of original billets by HE and ECAH techniques
the high-strength rods for wire drawing have been produced. For the rods of
7 mm-diameter (the 8-th variant of processing mode of Table 2) the HV of copper
was equal to 1450 МPа (Fig. 3,а), the ultimate tensile strength σ = 546 МPа (Fig.
3,b). For the rods produced without ECAH (the 1-st variant of processing mode of
Table 2), the HV of copper was equal to 1320 МPа (Fig. 3,а), the ultimate tensile
strength σ = 473 МPа (Fig. 3,b).
Figure 4 illustrates the plastic properties of copper in the rods. The highest
level of plastic characteristics was achieved for the 2-nd variant of processing
modes. Note that after different modes of processing, the difference in plastic
characteristic is not so significant as in the strength properties of copper.
Fig. 2. A schematic of the ECAH
facility: 1 – plunger, 2 – fluid, 3 –
high-pressure unit, 4 – billet, 5 –
conical die, 6 – angular die
Физика и техника высоких давлений 2010, том 20, № 1
118
1 2 3 4 5 6 7 81.0
1.1
1.2
1.3
1.4
1.5
V
ic
ke
rs
h
ar
dn
es
s,
G
Pa
Processing mode
1 2 3 4 5 6 7 8400
450
500
550
U
lti
m
at
e
te
ns
ile
st
re
ng
th
, M
Pa
Processing mode
a b
Fig. 3. HV (а) and ultimate tensile strength (b) of copper (Cu-FRTP) rods of 7 mm-
diameter after different processing modes
1 2 3 4 5 6 7 85
6
7
8
9
10
El
on
ga
tio
n,
%
Processing mode
1 2 3 4 5 6 7 8
30
40
50
60
70
80
Processing mode
C
on
tra
ct
io
n,
%
a b
Fig.4. The elongation to failure (а) and contraction at tension (b) for copper specimens
The high strength of 0.5 mm-diameter copper wire was achieved by drawing
the strengthening rods. The multiple interchanging of HE and ECAH techniques
(Fig. 5.), processing without annealing or using a low temperature of annealing
have resulted in a higher level of copper wire strength (Fig. 6).
Fig. 5. The multiple interchanging of HE and ECAH techniques in combined technology
including the HE, ECAH and D techniques for making wire
Физика и техника высоких давлений 2010, том 20, № 1
119
The best result (Fig. 6) was achieved for the 8-th variant of processing mode of
Table. 2: the ultimate tensile strength σ = 686 MPa, the elongation to failure δ =
= 2%. In the case of the processing mode without ECAH (the 1-st variant) the ul-
timate tensile strength σ = 556 MPa, the elongation to failure δ = 1.4%.
The high-strength copper wire produced by combining HE, ECAH and D tech-
niques preserves the highest strength characteristics to the annealing temperature
T ≤ 100°C, and the plasticity increases insignificantly (Fig. 7).
1 2 3 4 5 6 7 8
400
450
500
550
600
650
700
U
lti
m
at
e
te
ns
ile
st
re
ng
th
, M
Pa
Processing mode
1 2 3 4 5 6 7 8
0.5
1.0
1.5
2.0
2.5
Processing mode
El
on
ga
tio
n,
%
a b
Fig. 6. The ultimate tensile strength and elongation to failure of 0.5 mm-diameter copper
wire (column numbers correspond to variants of processing modes of Table 2)
0 50 100 150 200 250
400
500
600
700
Temperature, °CU
lti
m
at
e
te
ns
ile
st
re
ng
th
, M
Pa
0
2
4
6
8
10
El
on
ga
tio
n,
%
The electrical resistance of the highest strength wire produced using ECAH
(the 8-th variant of processing modes) and hardened wire produced without the
ECAH the (1-st variant of processing modes) differ insignificantly (Table 3). Thus,
electrical conductivity is low-dependent on processing mode and for high-strength
copper wire it is equal to 86.4% IACS.
Figure 8 combines the characteristics of strength and electrical conductivity for
different copper alloys. On the diagram, the region under the curve illustrates the
properties of copper alloys highly strengthened by traditional methods of cold
plastic deformation [6]. It is seen that, in the general case, the electrical conduc-
tivity of copper alloys drops abruptly with the growth of strength. The properties
Fig. 7. Dependence of ultimate
tensile strength (■―■―■ – using
ECAH, ●―●―● – without
ECAH) and elongation to fail-
ure (■---■---■ – using ECAH,
●---●---● – without ECAH) of
0.5 mm-diameter copper wire
on annealing temperature (1 h)
Физика и техника высоких давлений 2010, том 20, № 1
120
Table 3
Electrical resistance of 0.5 mm-diameter high-strength copper wires
Processing
mode ρ293/ρ77 ρ77, μΩ·cm ρ293, μΩ·cm
1 3.785 0.512 1.972
8 3.714 0.537 1.995
400 500 600 700 800
0
20
40
60
80
100
Cu–1.0Cr–10.25Sn–10.2Zn
Cu-2.4Fe-0.12Zn
Cu–FRTP
Cu–OF
Cu-9.0Ni-2.0Sn
Cu-2.0Ni-0.4Si-0.2Zn
Cu-1.5Ni-2.0Sn-0.5Zn-0.25Ti
Cu-3.2Ni-1.2Sn-0.7Si-0.3Zn
Cu-0.8Co-1.5Fe-0.6Sn
Cu-0.3Cr-0.25Sn-0.2ZnCu-0.3Cr-0.15Ti
Cu-0.28CoCu-0.1Mg
C
on
du
ct
iv
ity
, %
IA
C
S
Ultimate tensile strength, MPa
Cu–FRTP
Fig. 8. Physical and mechanical properties of copper and copper alloys after cold deformation
of commercially pure copper (Cu-FRTP) produced by us using the combination of
HE, ECAH and D methods are above the curve. The repetitive application of HE and
ECAH methods in technological chain of processing the materials in fractional modes
and with the optimal degrees of deformation results in the formation of a unique
complex of physical and mechanical properties, such as strength σ = = 686 MPa and
electrical conductivity at a level of 86.4% IACS, which is the record for the copper
and copper alloys. Such strength is almost 1.5 times as much as that of copper sub-
jected to monotonous deformation. Such a processing is efficient due to the alternat-
ing schemes of deformation and periodic creation of favorable conditions for relaxa-
tion and dynamic recrystallization processes in the material. A high plastic deforma-
tion by the simple shear scheme results in saturation of grain refinement and metal
hardening. But with further processing of the billets, the method of HE provides a
higher degree of material hardening, whereas ECAH – conditions for stress relaxa-
tion, healing of microdiscontinuities and smaller exhaustion of plastic resource.
4. Summary
For the first time, it has been demonstrated by the example of copper that the
combining of ECAH, HE and D techniques provides higher properties of wire as
Физика и техника высоких давлений 2010, том 20, № 1
121
compared to properties obtained without ECAH. It has been also demonstrated that
the repetitive application of HE and ECAH methods in technological chain of copper
processing in fractional modes and with the optimal degrees of deformation results
in the formation of a unique complex of physical and mechanical properties.
The high ultimate tensile strength σ = 686 MPa, the elongation to failure δ =
= 2% and the electrical conductivity at a level of 86.4% IACS have been reached
for 0.5 mm-diameter copper (Cu-FRTP) wire. Such complex of strength and elec-
trical conductivity is the record for the copper and copper alloys.
Such a processing is efficient due to the alternating schemes of deformation and
periodic creation of favorable conditions for relaxation and dynamic recrystalliza-
tion processes in the material. A high plastic deformation by the simple shear
scheme results in saturation of grain refinement and metal hardening. But with fur-
ther processing of the billets, the method of HE provides a higher degree of material
hardening, whereas ECAH – conditions for stress relaxation, healing of microdis-
continuities and smaller exhaustion of plastic resource.
1. V.M. Segal, V.I. Reznikov, A.E. Drobyshevskiy, V.I. Kopylov, Russ. Metall. 1, 115 (1981).
2. M. Kulczyk, W. Pachla, A. Mazur, M. Suś-Ryszkowska, N. Krasilnikov, K.J. Kur-
zydłowski, Mater. Sci. Poland. 25, 991 (2007).
3. V.Z. Spuskanyuk, O.А. Davydenko, I.М. Kovalenko, Proc. Int. Conf. «Modern Materi-
als Science: Achievements and Problems» MMS-2005, Kiev, Ukraine (2005), p. 224.
4. V. Spuskanyuk, A. Spuskanyuk, V. Varyukhin, J. Mater. Process. Tech. 203, 305 (2008).
5. T. Blazynski, Metal forming. Tool profiles and flow, John Wiley & Sons, New York (1976).
6. High Conductivity Coppers. For Electrical Engineering, Copper Development
Association – CDA Publication 122 (1998), p. 80.
В.З. Спусканюк, О.А. Давиденко, О.М. Гангало, Л.Ф. Сеннікова, М.А. Тіхоновський,
Д.В. Спірідонов
ДОСЯГНЕННЯ РЕКОРДНОГО РІВНЯ ВЛАСТИВОСТЕЙ МІДНОГО
ДРОТУ МЕТОДАМИ ІПД
Запропоновано новий підхід до керування процесами пластичної деформації матеріалів
при обробці заготовок методами інтенсивної пластичної деформації (ІПД). Високий
комплекс міцності й пластичності оброблених мідних заготовок отриманий після бага-
торазового чергування методів кутової гідроекструзії (КГЕ) і прямої гідроекструзії (ГЕ)
з реалізацією КГЕ й ГЕ в дробовому режимі. Комбінована ІПД-технологія, що включає
КГЕ, ГЕ й волочіння (В), забезпечує в мідному дроті діаметром 0.5 mm межу міцності
σ = 686 MPa, відносне подовження δ = 2% і електричну провідність на рівні 86.4%
IACS. Ефект такої обробки обумовлений чергуванням схем деформацій і періодичним
забезпеченням сприятливих умов для протікання в матеріалі процесів релаксації й ди-
намічної рекристалізації. Важливою умовою досягнення максимального ефекту оброб-
ки є дробовий режим і оптимальні ступені деформації обома методами.
Ключові слова: кутова гідроекструзія, пряма гідроекструзія, волочіння, мідь,
фізико-механічні властивості, нанокристалічна структура
Физика и техника высоких давлений 2010, том 20, № 1
122
В.З. Спусканюк, А.А. Давиденко, А.Н. Гангало, Л.Ф. Сенникова, М.А. Тихоновский,
Д.В. Спиридонов
ДОСТИЖЕНИЕ РЕКОРДНОГО УРОВНЯ СВОЙСТВ МЕДНОЙ
ПРОВОЛОКИ МЕТОДАМИ ИПД
Предложен новый подход к управлению процессами пластической деформации ма-
териалов при обработке заготовок методами интенсивной пластической деформа-
ции (ИПД). Высокий комплекс прочности и пластичности обработанных медных
заготовок получен после многократного чередования методов угловой гидроэкс-
трузии (УГЭ) и прямой гидроэкструзии (ГЭ) с реализацией УГЭ и ГЭ в дробном
режиме. Комбинированная ИПД-технология, включающая УГЭ, ГЭ и волочение (В),
обеспечивает в медной проволоке диаметром 0.5 mm предел прочности σ = 686 MPa,
относительное удлинение δ = 2% и электрическую проводимость на уровне 86.4%
IACS. Эффект такой обработки обусловлен чередованием схем деформаций и пе-
риодическим обеспечением благоприятных условий для протекания в материале
процессов релаксации и динамической рекристаллизации. Важным условием дос-
тижения максимального эффекта обработки являются дробный режим и оптималь-
ные степени деформации обоими методами.
Ключевые слова: угловая гидроэкструзия, прямая гидроэкструзия, волочение, медь,
физико-механические свойства, нанокристаллическая структура
|