Defects in high temperature and high pressure processed Si:N revealed by deuterium plasma treatment
Deuterium is accumulated by defects in nitrogen-implanted silicon (Si:N). This effect is investigated for Si:N processed at HT ≤ 1400 K, also under enhanced hydrostatic pressure, HP ≤ 1.1 GPa. Si:N was prepared from Czochralski grown silicon by N₂⁺ implantation at E = 140 keV with nitrogen doses, DN...
Gespeichert in:
Datum: | 2010 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Донецький фізико-технічний інститут ім. О.О. Галкіна НАН України
2010
|
Schriftenreihe: | Физика и техника высоких давлений |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/69328 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Defects in high temperature and high pressure processed Si:N revealed by deuterium plasma treatment / A. Misiuk, A. Barcz, A. Ulyashin, M. Prujszczyk, J. Bak-Misiuk, P. Formanek // Физика и техника высоких давлений. — 2010. — Т. 20, № 4. — С. 53-59. — Бібліогр.: 4 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-69328 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-693282014-10-12T03:01:45Z Defects in high temperature and high pressure processed Si:N revealed by deuterium plasma treatment Misiuk, A. Barcz, A. Ulyashin, A. Prujszczyk, M. Bak-Misiuk, J. Formanek, P. Deuterium is accumulated by defects in nitrogen-implanted silicon (Si:N). This effect is investigated for Si:N processed at HT ≤ 1400 K, also under enhanced hydrostatic pressure, HP ≤ 1.1 GPa. Si:N was prepared from Czochralski grown silicon by N₂⁺ implantation at E = 140 keV with nitrogen doses, DN = 1–1.8•10¹⁸ cm⁻². Si:N was subsequently processed in RF deuterium plasma to prepare Si:N,D. Si:N and Si:N,D were investigated by Transmission Electron Microscopy (TEM), X-ray and Secondary Ion Mass Spec- trometry (SIMS) methods, also after additional annealing at 723 K. In heavily implanted Si:N (DN = 1.8•1010¹⁸ cm⁻²), plasma treatment leads to deuterium pile up to сD1 = 2•10²¹ cm⁻³ at a depth, d = 50 nm, while, at d = 80–250 nm, deuterium concentration is practically constant with сD2 = 1•10²¹ cm⁻³. This suggests dominating accumulation of deuterium within the bubble-containing areas. Determination of deuterium depth profiles in Si:N,D can reveal implantation- and processing-induced defects. В работе рассмотрены эффекты влияния обработки температурным отжигом (до 1400 K) и гидростатическим давлением (до 1.1 GPa) на дефектный состав SOI-структур (silicon-on-insulator) на основе образцов Si:N – материала, широко используемого в полупроводниковых технологиях. Были получены новые данные, свидетельствующие об образовании скрытых дефектосодержащих слоев в образцах кремния, имплантированного азотом, и подвергнутых обработке высокими температурами и давлениями. Такие структуры становятся центрами абсорбции дейтерия из плазмы – его накопление и распределение внутри образца зависят от микроструктуры материала. Таким образом, показано, что обработка в дейтериевой плазме с дальнейшим определением концентрационных профилей по глубине образца может быть полезной для оценки микроструктуры У роботі розглянуто ефекти впливу обробки температурним відпалом (до 1400 K) і гідростатичним тиском (до 1.1 GPa) на дефектний склад SOI-структур (silicon-oninsulator) на основі зразків Si:N – матеріалу, широко використовуваного в напівпровідникових технологіях. Було отримано нові дані, що свідчать про утворення прихованих дефектовміщуючих шарів в зразках кремнію, імплантованого азотом, підданих обробці високими температурами та тиском. Такі структури стають центрами абсорбції дейтерію з плазми – його накопичення і розподіл усередині зразка залежать від мікроструктури матеріалу. Таким чином, показано, що обробка в дейтерієвій плазмі з подальшим визначенням концентраційних профілів по глибині зразка може бути корисною для оцінки мікроструктури Si:N-зразка, особливо зважаючи на потенційну застосовність в SOI-технологіях. 2010 Article Defects in high temperature and high pressure processed Si:N revealed by deuterium plasma treatment / A. Misiuk, A. Barcz, A. Ulyashin, M. Prujszczyk, J. Bak-Misiuk, P. Formanek // Физика и техника высоких давлений. — 2010. — Т. 20, № 4. — С. 53-59. — Бібліогр.: 4 назв. — рос. 0868-5924 PACS: 61.05.pp, 61.43.Gt, 61.72.–y, 62.50.+p, 68.37.Og http://dspace.nbuv.gov.ua/handle/123456789/69328 en Физика и техника высоких давлений Донецький фізико-технічний інститут ім. О.О. Галкіна НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Deuterium is accumulated by defects in nitrogen-implanted silicon (Si:N). This effect is investigated for Si:N processed at HT ≤ 1400 K, also under enhanced hydrostatic pressure, HP ≤ 1.1 GPa. Si:N was prepared from Czochralski grown silicon by N₂⁺ implantation at E = 140 keV with nitrogen doses, DN = 1–1.8•10¹⁸ cm⁻². Si:N was subsequently processed in RF deuterium plasma to prepare Si:N,D. Si:N and Si:N,D were investigated by Transmission Electron Microscopy (TEM), X-ray and Secondary Ion Mass Spec- trometry (SIMS) methods, also after additional annealing at 723 K. In heavily implanted Si:N (DN = 1.8•1010¹⁸ cm⁻²), plasma treatment leads to deuterium pile up to сD1 = 2•10²¹ cm⁻³ at a depth, d = 50 nm, while, at d = 80–250 nm, deuterium concentration is practically constant with сD2 = 1•10²¹ cm⁻³. This suggests dominating accumulation of deuterium within the bubble-containing areas. Determination of deuterium depth profiles in Si:N,D can reveal implantation- and processing-induced defects. |
format |
Article |
author |
Misiuk, A. Barcz, A. Ulyashin, A. Prujszczyk, M. Bak-Misiuk, J. Formanek, P. |
spellingShingle |
Misiuk, A. Barcz, A. Ulyashin, A. Prujszczyk, M. Bak-Misiuk, J. Formanek, P. Defects in high temperature and high pressure processed Si:N revealed by deuterium plasma treatment Физика и техника высоких давлений |
author_facet |
Misiuk, A. Barcz, A. Ulyashin, A. Prujszczyk, M. Bak-Misiuk, J. Formanek, P. |
author_sort |
Misiuk, A. |
title |
Defects in high temperature and high pressure processed Si:N revealed by deuterium plasma treatment |
title_short |
Defects in high temperature and high pressure processed Si:N revealed by deuterium plasma treatment |
title_full |
Defects in high temperature and high pressure processed Si:N revealed by deuterium plasma treatment |
title_fullStr |
Defects in high temperature and high pressure processed Si:N revealed by deuterium plasma treatment |
title_full_unstemmed |
Defects in high temperature and high pressure processed Si:N revealed by deuterium plasma treatment |
title_sort |
defects in high temperature and high pressure processed si:n revealed by deuterium plasma treatment |
publisher |
Донецький фізико-технічний інститут ім. О.О. Галкіна НАН України |
publishDate |
2010 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/69328 |
citation_txt |
Defects in high temperature and high pressure processed Si:N revealed by deuterium plasma treatment / A. Misiuk, A. Barcz, A. Ulyashin, M. Prujszczyk, J. Bak-Misiuk, P. Formanek // Физика и техника высоких давлений. — 2010. — Т. 20, № 4. — С. 53-59. — Бібліогр.: 4 назв. — рос. |
series |
Физика и техника высоких давлений |
work_keys_str_mv |
AT misiuka defectsinhightemperatureandhighpressureprocessedsinrevealedbydeuteriumplasmatreatment AT barcza defectsinhightemperatureandhighpressureprocessedsinrevealedbydeuteriumplasmatreatment AT ulyashina defectsinhightemperatureandhighpressureprocessedsinrevealedbydeuteriumplasmatreatment AT prujszczykm defectsinhightemperatureandhighpressureprocessedsinrevealedbydeuteriumplasmatreatment AT bakmisiukj defectsinhightemperatureandhighpressureprocessedsinrevealedbydeuteriumplasmatreatment AT formanekp defectsinhightemperatureandhighpressureprocessedsinrevealedbydeuteriumplasmatreatment |
first_indexed |
2025-07-05T18:55:38Z |
last_indexed |
2025-07-05T18:55:38Z |
_version_ |
1836834346002022400 |
fulltext |
Физика и техника высоких давлений 2010, том 20, № 4
© A. Misiuk, A. Barcz,, A. Ulyashin, M. Prujszczyk, J. Bak-Misiuk, P. Formanek, 2010
PACS: 61.05.pp, 61.43.Gt, 61.72.–y, 62.50.+p, 68.37.Og
A. Misiuk1, A. Barcz1,2, A. Ulyashin3, M. Prujszczyk1, J. Bak-Misiuk2,
P. Formanek4
DEFECTS IN HIGH TEMPERATURE AND HIGH PRESSURE
PROCESSED Si:N REVEALED BY DEUTERIUM PLASMA TREATMENT
1Institute of Electron Technology
Al. Lotnikow 46, 02-668 Warsaw, Poland
E-mail: misiuk@ite.waw.pl
2Institute of Physics, PAS
Al. Lotnikow 32/46, 02-668 Warsaw, Poland
3SINTEF, P.O. Box 124 Blindern
NO-0314 Oslo, Norway
4Technical University Dresden, Institut fűr Strukturphysik,
010602 Dresden, Germany
Deuterium is accumulated by defects in nitrogen-implanted silicon (Si:N). This effect is
investigated for Si:N processed at HT ≤ 1400 K, also under enhanced hydrostatic pres-
sure, HP ≤ 1.1 GPa. Si:N was prepared from Czochralski grown silicon by N2
+ implan-
tation at E = 140 keV with nitrogen doses, DN = 1–1.8·1018 cm–2. Si:N was subsequently
processed in RF deuterium plasma to prepare Si:N,D. Si:N and Si:N,D were investigated
by Transmission Electron Microscopy (TEM), X-ray and Secondary Ion Mass Spec-
trometry (SIMS) methods, also after additional annealing at 723 K. In heavily implanted
Si:N (DN = 1.8·1018 cm–2), plasma treatment leads to deuterium pile up to сD1 = 2·1021 cm–3
at a depth, d = 50 nm, while, at d = 80–250 nm, deuterium concentration is practically
constant with сD2 = 1·1021 cm-3. This suggests dominating accumulation of deuterium
within the bubble-containing areas. Determination of deuterium depth profiles in Si:N,D
can reveal implantation- and processing-induced defects.
Keywords: Cz–Si, implantation, nitrogen, high temperature, high pressure, deuterium
plasma, defect, gettering
Introduction
Silicon-on-insulator structures (SOI) prepared from nitrogen-implanted single
crystalline silicon (Si:N) present usually the dislocated SiNx/Si interface and may
contain nitrogen-filled bubbles formed within the buried SiNx layer [1].
Enhanced temperature (HT) and hydrostatic pressure (HP) applied at process-
ing of Si:N affect its microstructure and can improve quality of the SiNx/Si inter-
faces [2].
Физика и техника высоких давлений 2010, том 20, № 4
54
As it has been stated earlier for self-implanted silicon, the buried defect region, cre-
ated by implantation, can getter hydrogen in-diffused from hydrogen plasma [3]. This
effect is now investigated for the Si:N samples, preliminary processed at HT–HP. Bas-
ing on our earlier results, the treatment in deuterium (hydrogen isotope) plasma has
been considered as a tool helpful in revealing the defects in such structures.
Experimental
Details concerning preparation of the Si:N structures are presented in Table.
Table
Investigated Si:N samples, prepared by N2
+ implantation at ≤ 350 K into (001)
oriented Czochralski grown silicon (Cz–Si) with interstitial oxygen concentration,
c0 = 9·1017 cm–3
Sample Energy E, keV
Dose D (calculated for atomic
nitrogen), 1018 cm–2 N2
+ projected range Rp, nm
A 140 1.0 180
B 140 1.8 180
After ion implantation the Si:N samples were processed for 5 h at HT up to
1400 K under hydrostatic Ar pressure HP ≤ 1.1 GPa.
Structure of the HT–HP processed Si:N samples was determined by TEM and
X-ray methods.
To introduce deuterium, the as-implanted and processed Si:N samples were
subsequently treated for 2 h at 530 K in RF deuterium plasma in Plasma Enhanced
Chemical Vapour Deposition (PECVD) reactor [3]. In what follows, the plasma-
treated Si:N samples are labelled as Si:N,D.
SIMS was used to determine the nitrogen, deuterium and oxygen depth profiles
in Si:N,D. The mentioned depth distributions were also determined after anneal-
ing the Si:N,D samples for 1 h at 723 K under 105 Pa.
Results and discussion
Upon annealing the amorphous (aSi) defect layers produced by implantation of
N2
+ at D ≥ 1·1018 cm–2 are subjected to Solid Phase Epitaxial Re-growth (SPER).
Layers or/and precipitates composed of stoichiometric (Si3N4) or substoichi-
ometric (SiNx) nitride were formed within the buried damaged areas (Fig. 1).
Annealing under 105 Pa as well as the HT–HP treatment of Si:N at up to 1400 K
do not result in complete SPER, so processed Si:N is composed of the areas with
different microstructure. As confirmed also by X-ray measurements, nitrogen-filled
bubbles are present near Rp after processing ([4], Fig. 1). The plasma treatment
leads, first of all, to accumulation of deuterium near the sample surface. In the case
of as-implanted BSi:N samples, the near-surface deuterium peak has been detected
at a depth, d = 50 nm with cD1 = 2·1021 cm–3, while, at d = 80–250 nm the deute-
rium content remains almost constant, with cD2 = 1·1021 cm–3 (compare [2]).
Физика и техника высоких давлений 2010, том 20, № 4
55
Processing of ASi:N at 1070 K results in the formation of N-enriched zone
near Rp. Interstitial oxygen atoms always present in Cz-Si are also gettered at this
defect-containing area. As follows from the oxygen depth profile (Fig. 2), sub-
stantial part of oxygen in-diffused from the sample surface covered by thin SiO2
film is produced at the plasma treatment. The strongest deuterium accumulation is
observed just within this near-surface area, at about 20 nm depth. Just this area
contains numerous defects introduced by plasma etching itself.
Processing of ASi:N at 1270 K resulted in the formation of N-enriched plateau
at d = 100–300 nm, containing about 20 at.% of nitrogen. This suggests almost
uniform distribution of implanted nitrogen, in the form of sub-stoichiometric
Si3Nx. Deuterium introduced by the plasma treatment is accumulated mainly at
the bottom Si3Nx/Si boundary thus suggesting strong affinity of deuterium just to
defects created at this place (Fig. 3).
Fig. 2. SIMS depth profiles of nitrogen, oxygen and deuterium in ASi:N,D, prepared
from ASi:N (DN = 1018 cm–2) processed for 5 h at 1070 K under 1.1 GPa
Fig. 3. SIMS depth profiles of nitrogen and deuterium in ASi:N,D, prepared from ASi:N
processed for 5 h at 1270 K under 1.1 GPa
Fig. 1. Cross-sectional TEM image of
ASi:N processed at 1400 K under 1.1 GPa.
Si:N consists of sub-layers of different
microstructure. Very top layer is amor-
phous with mosaic-like polycrystallites
just below it. Big pores (bubbles) are ob-
served near Rp. aSi layers containing Si
nanocrystallites are visible on both sides
50 nm
Физика и техника высоких давлений 2010, том 20, № 4
56
Deuterium accumulation in BSi:N,D is more pronounced than that in ASi:N,D.
The deuterium profiles in the near-surface area of BSi:N,D prepared from
BSi:N processed at 1270 K are similar to these in BSi:N,D prepared from the as-
implanted BSi:N sample but сD2 decreased to 4·1020 and 3·1020 cm–3 after proc-
essing under 105 Pa and 1.1 GPa, respectively [2].
The BSi:N,D samples prepared from BSi:N processed at 1400 K indicate a
lowered D accumulation. Deuterium concentration exhibits minimum near Rp and
the maximum at a d ≈ 250 nm (compare Fig. 4).
A lot of deuterium is still retained, especially in the BSi:N,D samples, after
their subsequent annealing at 723 K under 105 Pa (Fig. 4).
And so the BSi:N,D sample, prepared from as-implanted BSi:N, and annealed
at 723 K, still indicates сD1 = 6·1020 cm–3 at d = 50 nm, while, at d = 150 nm, сD2
equals to about 7·1020 cm–3 (Fig. 4).
Accumulated deuterium is strongly bonded to defects also in the BSi:N,D
samples prepared from Si:N processed at higher temperatures and finally annealed
at 723 K (Fig. 5).
Fig. 4. SIMS depth profiles of nitrogen, oxygen and deuterium in BSi:N,D, prepared from
as-implanted BSi:N (DN = 1.8·1018 cm–2) and finally annealed at 723 K
Fig. 5. SIMS depth profiles of nitrogen, oxygen and deuterium in BSi:N,D, prepared from
BSi:N processed for 5 h at 1270 K under 105 Pa and finally annealed at 723 K
Also the BSi:N,D sample prepared from BSi:N processed for 5 h at 1400 K
under 105 Pa, indicated, after annealing at 723 K, high deuterium concentration at
the very sample surface (сD ≈ 2·1021 cm–3). At d = 100–200 nm this concentration
is equal to about 3·1020 cm–3.
As seen in TEM patterns, the very top layer of Si:N is composed of the
polycrystalline-like material (compare Fig. 1). In effect of its presence, one can
observe sometimes a specific artefact: massive in-diffusion of deuterium as well
Физика и техника высоких давлений 2010, том 20, № 4
57
as in-diffusion and re-distribution of
other admixing atoms, especially in the
case of BSi:N prepared by heavy
nitrogen implantation (Fig. 6).
In the case of Si:N structures pre-
pared by ion implantation, the forma-
tion of aSi area takes place near Rp.
Most of implanted nitrogen atoms are
contained within this area. Upon an-
nealing, nitrogen-containing aSi is
subjected to SPER.
The processed Si:N samples indicate
the presence of buried SiNx layer con-
taining numerous nitrogen-filled bubbles.
The deuterium plasma treatment of Si:N
with different microstructure induced by
specific HT–HP processing, results in
hydrogen accumulation at the surface and
within the buried defect layers.
Deuterium concentration is the highest at the near-surface areas of the Si:N,D
samples, especially in the ones prepared from as-implanted or relatively low-
temperature-processed Si:N. This means that plasma deuterization itself intro-
duces a lot of defects within the near-surface sample areas. In spite of relatively
low temperature (T ≈ 530 K) and short time of plasma treatment (2 h), a remark-
able in-diffusion and subsequent gettering of deuterium within the deeper placed
damaged layers has been observed.
In the case of BSi:N,D, prepared by heavy nitrogen implantation, the deuterium
concentration profiles correspond roughly to these of nitrogen, suggesting a spe-
cial role of N2-filled bubbles (Fig. 1) in deuterium accumulation. A release of
about 50% of deuterium after annealing of Si:N,D (prepared from as-implanted
Si:N) at 723 K may suggest some D–N bonding.
Enhanced pressure applied during preparation of the Si:N samples affects
strongly their microstructure and thus in-diffusion and depth profiles of deuterium
after plasma treatment. The deuterium depth distribution depends crucially on the
implanted nitrogen dose (Figs 3 and 5).
Conclusions
New data concerning the formation of buried defect-containing layers in silicon
implanted with nitrogen and subjected to the post-implantation high temperature
(pressure) processing are reported. Such structures absorb deuterium from deute-
rium plasma; the deuterium accumulation and distribution within the samples are
dependent on the sample microstructure.
Specific character of SPER and of deuterium interaction with defects in as-implan-
ted and processed Si:N has been confirmed. Determination of the deuterium depth
Fig. 6. SIMS depth profiles of nitrogen,
oxygen and deuterium in BSi:N,D, prepared
from BSi:N processed for 5 h at 1270 K under
1.1 GPa and finally annealed at 723 K
Физика и техника высоких давлений 2010, том 20, № 4
58
profiles in Si:N,D, also subjected to additional anneals, can contribute to revealing
the implantation-induced and other structural defects in the SOI-like and similar
structures prepared from Si:N.
This means that the deuterium plasma treatment with subsequent determination
of depth concentration profiles of deuterium may be helpful in evaluating the Si:N
sample microstructure, especially in view of potential applicability for SOI tech-
nology.
1. I.V. Antonova, A. Misiuk, C.A. Londos, J. Appl. Phys. 99, 033506 (2006).
2. A. Misiuk, A. Ulyashin, A. Barcz, P. Formanek, Solid State Phen. 156-158, 319
(2010).
3. A.G. Ulyashin, J.S. Christinsen, B.G. Svensson, R. Kogler, W. Skorupa, Nucl. In-
strum. Meth. Phys. Res. B253, 126 (2006).
4. J. Bak-Misiuk, I.V. Antonova, A. Misiuk, P. Formanek, P. Romanowski, Phys. Status
Solidi C6, 1580 (2009).
A. Misiuk, A. Barcz, A. Ulyashin, M. Prujszczyk, J. Bak-Misiuk, P. Formanek
ДЕФЕКТИ В Si:N, ОБРОБЛЕНОМУ ПРИ ВИСОКИХ ТЕМПЕРАТУРАХ
І ТИСКАХ, ЩО ВИЯВЛЯЮТЬСЯ ВНАСЛІДОК ТРАВЛЕННЯ
В ДЕЙТЕРІЄВІЙ ПЛАЗМІ
У роботі розглянуто ефекти впливу обробки температурним відпалом (до 1400 K) і
гідростатичним тиском (до 1.1 GPa) на дефектний склад SOI-структур (silicon-on-
insulator) на основі зразків Si:N – матеріалу, широко використовуваного в
напівпровідникових технологіях. Було отримано нові дані, що свідчать про утво-
рення прихованих дефектовміщуючих шарів в зразках кремнію, імплантованого
азотом, підданих обробці високими температурами та тиском. Такі структури ста-
ють центрами абсорбції дейтерію з плазми – його накопичення і розподіл усередині
зразка залежать від мікроструктури матеріалу. Таким чином, показано, що обробка
в дейтерієвій плазмі з подальшим визначенням концентраційних профілів по гли-
бині зразка може бути корисною для оцінки мікроструктури Si:N-зразка, особливо
зважаючи на потенційну застосовність в SOI-технологіях.
Ключові слова: Cz–Si, імплантація, азот, висока температура, високий тиск, дей-
терієва плазма, дефект, газопоглинання
A. Misiuk, A. Barcz, A. Ulyashin, M. Prujszczyk, J. Bak-Misiuk, P. Formanek
ДЕФЕКТЫ В Si:N, ОБРАБОТАННОМ ПРИ ВЫСОКИХ
ТЕМПЕРАТУРАХ И ДАВЛЕНИЯХ, ПРОЯВЛЯЮЩИЕСЯ
В РЕЗУЛЬТАТЕ ТРАВЛЕНИЯ В ДЕЙТЕРИЕВОЙ ПЛАЗМЕ
В работе рассмотрены эффекты влияния обработки температурным отжигом (до
1400 K) и гидростатическим давлением (до 1.1 GPa) на дефектный состав SOI-
Физика и техника высоких давлений 2010, том 20, № 4
59
структур (silicon-on-insulator) на основе образцов Si:N – материала, широко исполь-
зуемого в полупроводниковых технологиях. Были получены новые данные, свиде-
тельствующие об образовании скрытых дефектосодержащих слоев в образцах
кремния, имплантированного азотом, и подвергнутых обработке высокими темпе-
ратурами и давлениями. Такие структуры становятся центрами абсорбции дейтерия
из плазмы – его накопление и распределение внутри образца зависят от микро-
структуры материала. Таким образом, показано, что обработка в дейтериевой плаз-
ме с дальнейшим определением концентрационных профилей по глубине образца
может быть полезной для оценки микроструктуры Si:N-образца, особенно ввиду
потенциальной применимости в SOI-технологиях.
Ключевые слова: Cz–Si, имплантация, азот, высокая температура, высокое
давление, дейтериевая плазма, дефект, газопоглощение
|