Секвенціальні системи виведення для багатозначних логік

В цій роботі представлено, як можна побудувати секвенціальні числення без структурних правил (але з допустимими структурними правилами) для довільних пропозиційних скінченнозначних логік з визначником рівності (тобто скінченною множиною унарних похідних пропозиційних зв’язок...

Full description

Saved in:
Bibliographic Details
Date:2003
Main Author: Пинько, О.П.
Format: Article
Language:Ukrainian
Published: Інститут проблем математичних машин і систем НАН України 2003
Subjects:
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/731
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Секвенціальні системи виведення для багатозначних логік / Пинько О.П. // Математичні машини і системи. – 2003. – № 2. – С. 166 – 174.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:В цій роботі представлено, як можна побудувати секвенціальні числення без структурних правил (але з допустимими структурними правилами) для довільних пропозиційних скінченнозначних логік з визначником рівності (тобто скінченною множиною унарних похідних пропозиційних зв’язок зі спеціальною властивістю). Такі числення складаються з аксіом, до яких належать тільки літери, та оборотних правил виведення, які вводять комплекси пропозиційних зв’язок. Інтерпретуючи секвенції атомарними формулами першого порядку, ми відзначаємо, що зазначені числення можна інтерпретувати точними універсальними Хорновськими теоріями. При цьому процедура цілеспрямованого виведення для даних теорій, що реалізована в таких системах програмування, як АПС або Пролог, імітує процедуру оберненого виведення в зазначених численнях. Бібліогр.: 16 назв.