Local Extremums of Trigonometric Polynomial
Gespeichert in:
Datum: | 2007 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2007
|
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/7609 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Local extremums of trigonometric polynomial / I.S. Belov // Журн. мат. физики, анализа, геометрии. — 2007. — Т. 3, № 3. — С. 291-297. — Бібліогр.: 1 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-7609 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-76092010-04-07T12:00:38Z Local Extremums of Trigonometric Polynomial Belov, I.S. 2007 Article Local extremums of trigonometric polynomial / I.S. Belov // Журн. мат. физики, анализа, геометрии. — 2007. — Т. 3, № 3. — С. 291-297. — Бібліогр.: 1 назв. — англ. 1812-9471 http://dspace.nbuv.gov.ua/handle/123456789/7609 en Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
format |
Article |
author |
Belov, I.S. |
spellingShingle |
Belov, I.S. Local Extremums of Trigonometric Polynomial |
author_facet |
Belov, I.S. |
author_sort |
Belov, I.S. |
title |
Local Extremums of Trigonometric Polynomial |
title_short |
Local Extremums of Trigonometric Polynomial |
title_full |
Local Extremums of Trigonometric Polynomial |
title_fullStr |
Local Extremums of Trigonometric Polynomial |
title_full_unstemmed |
Local Extremums of Trigonometric Polynomial |
title_sort |
local extremums of trigonometric polynomial |
publisher |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України |
publishDate |
2007 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/7609 |
citation_txt |
Local extremums of trigonometric polynomial / I.S. Belov // Журн. мат. физики, анализа, геометрии. — 2007. — Т. 3, № 3. — С. 291-297. — Бібліогр.: 1 назв. — англ. |
work_keys_str_mv |
AT belovis localextremumsoftrigonometricpolynomial |
first_indexed |
2025-07-02T10:25:29Z |
last_indexed |
2025-07-02T10:25:29Z |
_version_ |
1836530459577679872 |
fulltext |
Journal of Mathematical Physics, Analysis, Geometry
2007, vol. 3, No. 3, pp. 291�297
Local Extremums of Trigonometric Polynomial
I.S. Belov
National Technical University "KhPI"
21 Frunze Str., Kharkiv, 61002, Ukraine
E-mail:bigor@kpi.kharkov.ua
Received March 23, 2005
Local extremes of the trigonometric polynomial
Bn(�) =
k=2nX
k=n
sin k�
k
are considered, and various inequalities between them are proved. In par-
ticular, the greatest and the least values of Bn(�) are found.
Key words: trigonometric polynomial, local extreme, averaging, arrange-
ment of zeroes, numerical analysis, logarithmic derivative.
Mathematics Subject Classi�cation 2000: 26A09.
Let us consider a trigonometric polynomial
Tmn(�) =
sinm�
m
+ : : :+
sinn�
n
with a derivative
T 0
mn(�) = cosm� + : : : + cosn�:
The local extremes Tmn(�), obviously, are among the points
�p : sin
n�m+ 1
2
�p = 0 and �q : cos
n+m
2
�q = 0:
For m = 1, the sequences f�pg and f�qg alternate, thus in points �p they are
local minima, and in points �q they are local maxima. Moreover, local maxima
decrease in q, and for An(�) = T1;n(�) we have ([1, p. 91])
An(�) � An(
�
n+ 1
); 0 � � � �: (1)
In the paper the similar results for local extreme of a polynomial Bn(�) = Tn;2n(�)
are obtained. This question arises, for example, when considering the series
1X
n=0
�nT2n;2n+1�1; �n = �1:
c
I.S. Belov, 2007
I.S. Belov
In the proof of estimation (1) in ([1, p. 293]) the following method of averaging
is used. Let a; b be two local extremes of An(�). Consider
An(b)�An(a) =
bZ
a
A0
n(�)d� =
�
c =
a+ b
2
; d =
b� a
2
�
=
cZ
a
[A0
n(�) +A0
n(� + d)]d�:
If the sum [A0
n(�)+A0
n(�+d)] preserves a sign in the interval [a; c], we shall obtain
the sign of di�erence An(b)�An(a). Let us put
Bn(�) =
sinn�
n
+ : : :+
sin 2n�
2n
; B0
n(�) =
cos
3n
2
� sin
n+ 1
2
�
sin �=2
: (2)
As the cos 3n�=2 frequency in (2) is approximately three times more than the
sin(n+1)�=2 one, it is convenient to consider the cos 3n�=2 zeroes in the interval
(0; �) by groups of three, and we denote
aq =
�
3n
+
2�
n
(q � 1); bq = aq +
2�
3n
=
�
n
+
2�
n
(q � 1);
cq = bq +
2�
3n
= �
�
n
+
2�
n
q; �q =
2�
n+ 1
q; q � series; q = 1; : : : ;
n+ 1
2
:
The last series is incomplete if n is odd. In this case b[(n+1)=2] = �[(n+1)=2] = �.
It is easy to see that the relative arrangement of zeroes in a q-series is as follows:
aq < bq < cq < �q;
�
1 � q �
n+ 1
6
�
; seriesA;
aq < bq < �q < cq;
�
n+ 1
6
< q �
n+ 1
2
�
; seriesB:
Theorem 1. Bn(aq) > Bn(bq), q = 1; : : : ; (n+ 1)=2:
P r o o f. In this case the averaging is not necessary, because in the interval
(aq � � � bq) the functions cos 3n�=2 and sin(n+ 1)�=2 preserve the sign and
cos
3n
2
� = (�1)qÆ1; sin
n+ 1
2
� = (�1)q�1Æ2; Æi > 0:
Let �q; �q+1; �q+2; �q+3 be the four consecutive zeroes of cos 3n�=2 and
sn(�) = B0
n(�) +B0
n
�
� +
2�
3n
�
+B0
n
�
� +
4�
3n
�
; �q � � � �q+1;
be the averaging of the derivative B0
n(�) in the interval (�q; �q+3). Using obvious
statements
292 Journal of Mathematical Physics, Analysis, Geometry, 2007, vol. 3, No. 3
Local Extremums of Trigonometric Polynomial
Lemma 1.
sin
�
� +
2�
3
�
+ sin � = sin
�
� +
�
3
�
and
Lemma 2.
sin� sin(� + h)� sin(�+ h) sin� = sinh sin(�� �);
it is easy to obtain an explicit expression for sn(�):
Lemma 3.
sn(�) =
sin
�
3n
cos
3n
2
�
sin
�
2
sin
�
�
2
+
�
3n
�
sin
�
�
2
+
2�
3n
� �
�
p
3 cos
�
n�
2
+
�
3
�
sin
�
2
+2 sin
�
3n
sin
n�
2
cos
�
�
2
+
�
3n
��
= s1 + s2: (3)
The unobtrusive advantage of representation (3) in comparison with (2) is in
a regular position of zeroes. The cos
�
�
2
+
�
3n
�
zeroes are in points aq and
the sinn�=2 zeroes are in points (cq + aq+1)=2. It follows, in particular, that
in the intervals (aq; bq) and (bq; cq) these functions preserve the sign. At the
same time, with the growth of q, the sin
(n+ 1)�
2
zeroes move from the interval
(cq; aq+1) to the interval (bq; cq).
Theorem 2. Bn(aq) > Bn(aq+1), q = 1; : : : ; [(n� 1)=2].
P r o o f. By Lemma 3, it is enough to check the inequality
sn(�) = s1 + s2 � 0; aq � � � bq: (4)
Let us prove that both terms in (4) are nonpositive. It follows from the relations
cos
3n�
2
= (�1)qÆ1; sin
n�
2
= (�1)q�1Æ2;
cos
�
n�
2
+
�
3
�
= (�1)qÆ3; Æi > 0;
that can easily be checked.
Journal of Mathematical Physics, Analysis, Geometry, 2007, vol. 3, No. 3 293
I.S. Belov
Theorem 3.
Bn(bq) < Bn(bq+1); q = 1; : : : ; [(n� 1)=2]:
P r o o f. In view of Lem. 3, it is enough to check the inequality
sn(�) = s1 + s2 � 0; bq � � � cq: (5)
A nonnegativity of both summands in (5) follows from the relations
cos
3n�
2
= (�1)q�1Æ1; sin
n�
2
= (�1)q�1Æ2;
cos
�
n�
2
+
�
3
�
= (�1)qÆ3; Æi > 0;
since cos 3n�=2 changes the sign, but sin(n�)=2 and cos
�
n�
2
+
�
3
�
preserve it.
Theorem 4. Bn(cq) > Bn(cq+1); q = 1; : : : ; [n�1
2
].
P r o o f. As in the proof of Th. 2, it is enough to check the inequality
sn(�) = s1 + s2 � 0; aq � � � cq+1: (6)
Similarly to the case above, it follows from the relations
cos
3n�
2
= (�1)q�1Æ1; cos(
n�
2
+
�
3
) = (�1)qÆ2; Æi > 0;
that s1 � 0. At the same time, sin n�
2
as well as s2 in (6) changes the sign in the
point (cq + aq+1)=2 = q2�=n. Moreover, the numerical analysis shows that for
small q the sum s1 + s2 near the point aq+1 takes positive values. Therefore, for
the estimation of
Z
aq+1
cq
s2(�)d� one more averaging is necessary. For h 2 (0; �
3n
)
we put �1 = 2�=q�h; �2 = 2�=q+h. Then cos 3n�1=2 = cos 3n�2=2. Therefore,
for �(h) = s2(�1) + s2(�2) we have
�(h) = s2(�1) + s2(�2) = 2 sin2
�
3n
cos
3n
2
�1 sin
n
2
�1
�
2
4 cos
�
�1
2
+ �
3n
�
sin �1
2
sin
�
�1
2
+ �
3n
�
sin
�
�1
2
+ 2�
3n
� +
cos
�
�2
2
+ �
3n
�
sin �2
2
sin
�
�2
2
+ �
3n
�
sin
�
�2
2
+ 2�
3n
�
3
5 < 0;
294 Journal of Mathematical Physics, Analysis, Geometry, 2007, vol. 3, No. 3
Local Extremums of Trigonometric Polynomial
since �1 < �2. Finally,
aq+1Z
cq
s2(�)d� =
cq+aq+1
2Z
cq
s2(�)d� +
aq+1Z
cq+aq+1
2
s2(�)d� =
2�
n
qZ
0
�(h)dh < 0;
and Theorem 4 is proved.
Theorem 5. Bn(Aq) > Bn(cq); q = 1; : : : ; [(n+ 1)=6].
P r o o f. In this case, for aq � � � bq we put
sn(�) = B0
n(�) +B0
n(� + 2�=3n)
=
cos 3n
2
�
sin �
2
sin( �
2
+ �
3n
)
�
2 sin
n+ 1
2
� sin
�
6n
cos
�
�
2
+
�
6n
�
�2 sin
��
6
+
�
6n
�
sin
�
2
cos
�
(n+ 1)
�
2
+
�
6
+
�
6n
��
: (7)
As cos 3n�=2 = (�1)qÆ, Æ > 0, aq � � � bq; it is enough to check the positivity
of the square brackets, multiplied by (�1)q�1, that is equivalent to the inequality
sin
n+ 1
2
�
�
sin
�
6n
cos
�
�
2
+
�
6n
�
+ 2 sin2
��
6
+
�
6n
�
sin
�
2
�
� sin
��
3
+
�
3n
�
sin
�
2
cos(n+ 1)
�
2
; (8)
with odd q, and we have the opposite inequality for even q. For de�niteness we
consider the case with an odd q. In (8) let us omit a positive term 2 sin2
��
6
+
�
6n
�
� sin
�
2
. Then we are restricted with the interval aq � � �
�
n+ 1
+
2�
n
(q � 1),
because cos(n+ 1)�=2 � 0 holds on the interval �
n+1
+ 2�
n
(q � 1) � �, and (8) is
obvious. After division by positive sin(n+ 1)�=2, in the case of odd q we obtain
the inequality
sin �
6n
cos
�
�
2
+ �
6n
�
sin �
2
� sin
��
3
+
�
3n
�
cot
(n+ 1)�
2
;
or
sin
�
3n
cot
�
2
� sin
��
3
+
�
3n
�
cot
(n+ 1)�
2
� 2 sin2
�
6n
: (9)
Journal of Mathematical Physics, Analysis, Geometry, 2007, vol. 3, No. 3 295
I.S. Belov
Lemma 4.
cot (n+1)�
2
cot �
2
decreases monotonously when
aq � � �
�
n+ 1
+
2�
n
(q � 1):
P r o o f. A nonnegativity of the logarithmic derivative of fraction follows
immediately from the well-known inequality j sin(n�)j � nj sin �j and from the
positivity sin(n+ 1)� when aq � � �
�
n+ 1
+
2�
n
(q � 1).
By Lemma 4, cot
(n+ 1)�
2
�
cot(n+ 1)�=6n
cot �=6n
cot �=2 and inequality (9) follows
from the inequality
cot
�
2(n+ 1)
[1 + cos
�
3n
� sin
��
3
+
�
3n
�
cot(n+ 1)
�
6n
] � sin
�
3n
:
The last inequality, except, perhaps, some initial values n, is given by the following
Lemma 5. sin
��
3
+
�
3n
�
cot(n+ 1)
�
6n
�
3
2
:
The proof of Lem. 5 follows from the inequality
sin
��
3
+ 2�
�
cot
��
6
+ �
�
� 3=2; 0 � � �
�
2
;
with � = �=6n. The case of even q is considered in a similar way, and Th. 5 is
completely proved.
The relation between Bn(bq) and Bn(cq), q = 1; : : : ; [(n + 1)=6], is a little more
complicated. Using the averaging over zero �q =
2�
n+ 1
q, similar to that applied
in Th. 4, we receive
Proposition 1. If �q = 2�q=(n + 1) > (bq + cq)=2, that holds when 0 � q �
(n� 1)=3, then Bn(bq) < Bn(cq), otherwise Bn(cq) < Bn(bq).
From Theorems 3 and 4 it follows that Bn(bq) monotonously increases in q,
and Bn(cq) monotonously decreases. The following theorem is valid.
Theorem 6. Bn(b0) < Bn(c[n�1
2
]).
P r o o f. Really,
Bn(b0) = Bn
��
n
�
=
2nX
k=n
sin k�
n
k
= [k = l + n] = �
nX
l=0
sin l�
n
l + n
' �
Z 1
0
sin(�t)
l + t
dt = �0:433785:
296 Journal of Mathematical Physics, Analysis, Geometry, 2007, vol. 3, No. 3
Local Extremums of Trigonometric Polynomial
On the other hand, for example, when n is even
Bn
�
c
j
n�1
2
j
�
= Bn
�
� �
�
3n
�
=
2nX
k=n
sin(k� � k�
3n
)
k
=
2nX
k=n
(�1)k+1 sin
k�
3n
k
= (�1)n+1
nX
l=0
(�1)l
sin(�
3
+ l�
3n
)
l + n
= (�1)n+1
n
2X
l=0
"
sin(�
3
+ l�
3n
)
l + n
�
sin(�
3
+ (l+1)�
3n
)
l + 1 + n
#
:
As �����
"
sin(�
3
+ l�
3n
)
l + n
�
sin(�
3
+ (l+1)�
3n
)
l + 1 + n
#����� � 2 sin �
3n
1 + n
+
1
(l + n)(l + n+ 1)
;
then ���Bn
�
c[n�1
2
]
���� � 2 ln 2 sin
�
3n
+
1
2n
;
Bn(b0) < Bn
�
c[n�1
2
]
�
; n > 6:
For initial values n the inequality is checked by direct calculation. Theorem 6 is
proved.
As above, let �q = 2�q=(n+ 1), q = 1; : : : ; [(n� 1)=2], be the zeroes of
sin(n+ 1)�=2 in the q-series. The following assertion is valid.
Proposition 2.
Bn(�q) � Bn(cq); Bn(�q) � Bn(aq+1);
Bn(cq) � Bn(aq+1); 1 � q � [(n+ 1)=6] ;
Bn(cq) � Bn(�q); Bn(cq) � Bn(aq+1);
Bn(�q) � Bn(aq+1); [(n+ 1)=6] < q � [(n� 1)=2] : (10)
The �rst and the second inequalities in (10) can be easily checked without
averaging as in Th. 1. The last inequalities can be proved similarly to Th. 5, but
the proofs are more cumbersome because of the di�erence of denominators in �q
and cq, aq+1.
References
[1] G. Polia and G. Szego, Tasks and Theorems from Analysis. 2. Gostechteoretizdat,
Moscow, 1956.
Journal of Mathematical Physics, Analysis, Geometry, 2007, vol. 3, No. 3 297
|