A Multidimensional Version of Levin's Secular Constant Theorem and its Applications

We study holomorphic almost periodic functions on a tube domain with the spectrum in a cone. We extend to this case Levin's theorem on a connection between the Jessen function, secular constant, and the Phragmen-Lindeloof indicator. Then we obtain a multidimensional version of Picard's the...

Full description

Saved in:
Bibliographic Details
Date:2007
Main Authors: Favorov, S.Yu., Girya, N.
Format: Article
Language:English
Published: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2007
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/7613
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:A multidimensional version of Levin's secular constant theorem and its applications / S.Yu. Favorov, N. Girya // Журн. мат. физики, анализа, геометрии. — 2007. — Т. 3, № 3. — С. 365-377. — Бібліогр.: 14 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:We study holomorphic almost periodic functions on a tube domain with the spectrum in a cone. We extend to this case Levin's theorem on a connection between the Jessen function, secular constant, and the Phragmen-Lindeloof indicator. Then we obtain a multidimensional version of Picard's theorem on exceptional values for our class.