Some Multidimensional Inverse Problems of Memory Determination in Hyperbolic Equations

The local existence and the uniqueness of some multidimensional inverse problems for the second-order hyperbolic integro-di erential equations in the class of functions having certain smoothness on time variable and analyticity on a part of spatial variables are proven.

Збережено в:
Бібліографічні деталі
Дата:2007
Автор: Durdiev, D.K.
Формат: Стаття
Мова:English
Опубліковано: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2007
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/7616
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Some multidimensional inverse problems of memory determination in hyperbolic equations / D.K. Durdiev // Журн. мат. физики, анализа, геометрии. — 2007. — Т. 3, № 4. — С. 411-423. — Бібліогр.: 5 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-7616
record_format dspace
spelling irk-123456789-76162010-04-07T12:01:05Z Some Multidimensional Inverse Problems of Memory Determination in Hyperbolic Equations Durdiev, D.K. The local existence and the uniqueness of some multidimensional inverse problems for the second-order hyperbolic integro-di erential equations in the class of functions having certain smoothness on time variable and analyticity on a part of spatial variables are proven. Доведено теореми локального існування і єдності у цілому деяких багатовимірних обернених задач відтворення пам'яті для інтегро-диференціальних рівнянь гіперболічного типу другого порядку у класі функцій, що мають скінченну гладкість відносно часової змінної та аналітичних за частиною просторових змінних. 2007 Article Some multidimensional inverse problems of memory determination in hyperbolic equations / D.K. Durdiev // Журн. мат. физики, анализа, геометрии. — 2007. — Т. 3, № 4. — С. 411-423. — Бібліогр.: 5 назв. — англ. 1812-9471 http://dspace.nbuv.gov.ua/handle/123456789/7616 en Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The local existence and the uniqueness of some multidimensional inverse problems for the second-order hyperbolic integro-di erential equations in the class of functions having certain smoothness on time variable and analyticity on a part of spatial variables are proven.
format Article
author Durdiev, D.K.
spellingShingle Durdiev, D.K.
Some Multidimensional Inverse Problems of Memory Determination in Hyperbolic Equations
author_facet Durdiev, D.K.
author_sort Durdiev, D.K.
title Some Multidimensional Inverse Problems of Memory Determination in Hyperbolic Equations
title_short Some Multidimensional Inverse Problems of Memory Determination in Hyperbolic Equations
title_full Some Multidimensional Inverse Problems of Memory Determination in Hyperbolic Equations
title_fullStr Some Multidimensional Inverse Problems of Memory Determination in Hyperbolic Equations
title_full_unstemmed Some Multidimensional Inverse Problems of Memory Determination in Hyperbolic Equations
title_sort some multidimensional inverse problems of memory determination in hyperbolic equations
publisher Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
publishDate 2007
url http://dspace.nbuv.gov.ua/handle/123456789/7616
citation_txt Some multidimensional inverse problems of memory determination in hyperbolic equations / D.K. Durdiev // Журн. мат. физики, анализа, геометрии. — 2007. — Т. 3, № 4. — С. 411-423. — Бібліогр.: 5 назв. — англ.
work_keys_str_mv AT durdievdk somemultidimensionalinverseproblemsofmemorydeterminationinhyperbolicequations
first_indexed 2025-07-02T10:25:50Z
last_indexed 2025-07-02T10:25:50Z
_version_ 1836530480505159680
fulltext Journal of Mathematical Physics, Analysis, Geometry 2007, vol. 3, No. 4, pp. 411�423 Some Multidimensional Inverse Problems of Memory Determination in Hyperbolic Equations D.K. Durdiev Bukhara State University 11 M. Ikbol Str., Bukhara, 705018, Uzbekistan E-mail:durdiev65@mail.ru Received March 21, 2007 The local existence and the uniqueness of some multidimensional inverse problems for the second-order hyperbolic integro-di�erential equations in the class of functions having certain smoothness on time variable and analyticity on a part of spatial variables are proven. Key words: inverse problem, integro-di�erential equation, hyperbolic equation, agreement condition, uniqueness. Mathematics Subject Classi�cation 2000: 35L10. In this paper the local existence and the uniqueness of some multidimensional inverse problems for the second-order hyperbolic integro-di�erential equations in the class of functions having certain smoothness on time variable and analyticity on a part of spatial variables are proven. Unlike in paper [1], where the memory is multiplied by the solution, we consider the equations in which the memory is multiplied by the second derivative of time solution or the �rst-order di�er- ential operator with analytical coe�cients. Problems of this type often arise in applications. A distinctive feature of problems of memory determination is the dependence of unknown function both on time and on spatial variables (a multi- dimensional problem). Among the problems of �nding memory in hyperbolic integro-di�erential equations there should be mentioned papers [2, 3], where the problem with the sources distributed over the whole region is considered. In [4] the questions of uniqueness of memory determination in the wave equation on the measurement of di�used wave at the location of the point source are studied. 1. We consider an initial-boundary problem for the wave equation with memory utt � uzz �4u = tZ 0 k(x; �)utt(x; z; t� �)d�; (x; t) 2 Rn+1 ; z 2 R+; (1:1) c D.K. Durdiev, 2007 D.K. Durdiev ujt<0 � 0; uz jz=0 = �Æ 0(t) + g(x; t)�(t); (x; t) 2 Rn+1 : (1:2) Here 4 is the Laplace operator in variables (x1; : : : ; xn) := x; Æ0(t) is a deriva- tive of the Dirac delta-function; �(t) is the Heavyside function, R+ := fz 2 Rjz > 0g; g is a given smooth function. For the given function k(x; t) �nding of the func- tion u(x; t) satisfying equations (1,1),(1,2) is a well-posed problem in the space of generalized functions. We formulate the inverse problem: to determine k(x; t) via the trace of solution of problem (1,1), (1,2) on the hyperplane z = 0 for all x 2 R n, t < T , T > 0, i.e. ujz=0 = F (x; t); x 2 Rn ; t < T: (1:3) In equation (1.1) by integrating by parts we "relocate" time derivative and introducing a new function v according to the formula u = �(x; t)v(x; z; t); �(x; t) := exp[k0(x)t=2]; k0(x) := k(x; 0) from equalities (1.1), (1.2), we have vtt � vzz = 4v + trk0rv +H(x; t)v + tZ 0 h(x; t� �)v(x; z; �)d�; (x; t) 2 Rn+1 ; z 2 R+; (1:4) vjt<0 � 0; vz jz=0 = �Æ 0(t)� [k0(x)=2]Æ(t) +G(x; t)�(t); (x; t) 2 Rn+1 ; (1:5) where the equation exp[�k0(x)t=2]Æ 0(t) = Æ 0(t) + [k0(x)=2]Æ(t) is used as well as the notations are introduced H(x; t) := k0t(x) + k 2 0(x)=4 + t4k0(x)=2 + (t2=2) nX i=1 k 2 0xi (x); h(x; t) := exp[�k0(x)t=2]ktt(x; t); (1:6) G(x; t) = exp[�k0(x)t=2]g(x; t): From the theory of hyperbolic equations we conclude that v � 0, t < z, x 2 Rn, z 2 R+. We represent the solution of (1.4), (1.5) as v(x; z; t) = Æ(t� z) + ~v(x; z; t)�(t� z): Using the method of separation of variables, it is not di�cult to �nd v(x; z; z + 0) = (1=2) � k0(x) + zZ 0 H(x; �)d� � =: �(x; z): 412 Journal of Mathematical Physics, Analysis, Geometry, 2007, vol. 3, No. 4 Some Multidimensional Inverse Problems of Memory Determination That is why the function F (x; t) in (1.3) should be represented as F (x; t) = Æ(t) + f(x; t)�(t); (x; t) 2 Rn+1 : (1:7) It is clear that ~v = v when t > z: For the regular part of function v(x; z; t) in the region t > z; x 2 R n, the inverse problem (1.4), (1.5), (1.3) is equivalent to the problem vtt � vzz = 4v + trk0rv +H(x; t)v + tZ 0 h(x; t� �)v(x; z; �)d�; (1:8) vjz=0 = f(x; t); vzjz=0 = G(x; t); (1:9) vjt=z+0 = �(x; z): (1:10) In equations (1.8)�(1.10) we replace the variables z; t by z1; t1 by the formulas z1 = t+ z; t1 = t� z: Then v(x; z; t) = v(x; (z1 � t1)=2; (z1 + t1)=2) := v1(x; z1; t1): The problem (1.8)� (1.10) in new variables is rewritten as the problem of �nding the functions v; k from the equations @ 2 v1(x; z1; t1) @t1@z1 = � 1 4 � 4v1 + (t1 + z1)rk0rv1=2 +H(x; (t1 + z1)=2)v1 + h(x; t1) + t1Z 0 h(x; �)v1(x; z1 � �; t1 � �)d� � ; (x; z1; t1) 2 f(x; z1; t1) j x 2 R n ; 0 � t1 � z1g := D; (1:11) v1 jt1=z1= f(x; z1); @ @z1 v1 jt1=z1= 1 2 ft(x; t) jt=z1 + 1 2 G(x; z1); z1 2 R+; x 2 R n ; (1:12) v1 jt1=0= �[x; (1=2)z1 ]; z1 2 R+; x 2 R n : (1:13) We recall that h is related to k according to the second formula of (1.6). We introduce the function w(x; z1; t1) = @ @z1 v1(x; z1; t1); t1 < z1: (1:14) Journal of Mathematical Physics, Analysis, Geometry, 2007, vol. 3, No. 4 413 D.K. Durdiev Demanding the continuity of functions v(x; z; t); w(x; z; t); when z1 = t1 = 0; x 2 R n ; from (1.12), (1.13) it is not di�cult to express k0(x); k0t(x) by the known functions: k0(x) = 2f(x; 0); k0t(x) = 2ft(x; t)jt=0 � f 2(x; 0) + 2g(x; 0): Further we will assume that in the equalities for H(x; z); G(x; t); �(x; z) instead of functions k0(x); k0t(x) their expressions by means of the latter equations are used. For simplicity we will omit index 1 in z1; t1; v1: Following [5, p. 92], we introduce the Banach space As(s > 0; r > 0) of analytical functions �(x); x 2 Rn ; with the norm k�ks := sup jxj�r 1X j�j=0 s j�j �! ����� @ j�j �(x) @x1 �1 : : : @xn �n �����; � := (�1; : : : ; �n); j�j := �1 + : : :+ �n; �! := (�1)! : : : (�)!: The following properties are obvious: if �(x) 2 As, then �(x) 2 As0 for all s0 2 (0; s), therefore, As � As0 if s0 < s. Besides, if �(x) 2 As, then @j�j�(x)=@x1�1 : : : @xn �n ks0 � C�jj�(x)jjs=(s� s 0)j�j, where the constant C� depends only on �. We denote by Ci z (As; G) a class of functions with values in As which are continuously di�erentiable i-times in z and continuous in t in the region G. For �xed (z; t) the norm of the function !(x; z; t) in As0 we denote by k!ks0(z; t). The norm of the function ! in C (As; G) is de�ned by the equality k!kC(As;G) = sup (z;t)2G k!ks0(z; t): Theorem 1. Let f(x; 0), ft(x; t)jt=0, fxi(x; 0), i = 1; : : : ; n, 4f(x; 0), g(x; 0) belong to As0, so > 0, and f(x; t), ft(x; t), ftt(x; t), g(x; t), gt(x; t) belong to C(As0 ; [0; T ]), and max[kf(x; t)ks0(t); kw0(x; z)ks0(z); kh0(x; z)ks0 (z); kk0(x)ks0 ] = R, for (z; t) 2 GT := f(z; t)j0 � t � z � Tg: Then for any � > 0 we can �nd the number a = a(s0; T;R; n), as0 < T so that for any s 2 (0; s0) there exists a unique solution of the problem (1.11)�(1.13) v(x; z; t) 2 C1 z (As0 ;Ds) ; k(x; t) 2 C 2 t (As0 ; [0; a(s0 � s)]) ; where Ds is the region on the plane z; t : Ds := f(z; t)j0 � t � z < a(s0 � s)g; and solution satis�es the following inequalities: kv � v0ks(z; t) � �; kk � k 0 ks(z) � 2� (s0 � s) ; (1:15) where h0(x; z) := 2f(x; 0) exp[�f(x; 0)z]g(x; z) � 2 exp[�f(x; 0)z]gt(x; z)jt=z 414 Journal of Mathematical Physics, Analysis, Geometry, 2007, vol. 3, No. 4 Some Multidimensional Inverse Problems of Memory Determination +(1=2)4f(x; 0) �H(x; z)f(x; z) �4f(x; z)� 2zrf(x; 0)rf(x; z) �2ftt(x; t)jt=z + (z=2) nX i=1 f 2 xi (x; 0); v0 := f(x; z); k0 := k0(x) + zk0t; (z; t) 2 Ds: P r o o f. In the beginning the problem (1.11)�(1.13) is reduced to the closed system of the Volterra type integro-di�erential equations in the area (x; z; t) 2 D. The equation for v is rewritten with the help of equation (1.14) while the equation for k is rewritten with the help of the second equation of (1.6): v(x; z; t) = v0(x; z) + zZ t w(x; �; t)d�; (1:16) k(x; z) = k 0(x) + zZ 0 (z � �) exp [f(x; 0)�] h(x; �)d�: (1:17) For �xed x 2 R n by integrating equality (1.11) on the plane (�; �) along the line � = z from the point (t; z) to the point (z; z) and using the second condition in (1.12), we can get the equation for w(x; z; t): w(x; z; t) = w0(x; z) + 1 4 zZ t [4v(x; z; �) + (z + �)rf(x; 0)rv(x; z; �) +H[x; (z + �)=2]v(x; z; �) + h(x; �) + �Z 0 h(x; �)v(x; z � �; � � �)d�]d�; (1:18) where w0(x; z) = (1=2)ft(x; t)jt=z + (1=2)G(x; z): Using equation (1.13) di�erentiated by z, when t = 0, from (1.18), we �nd zZ 0 [4v(x; z; �) + (z + �)rf(x; 0)rv(x; z; �) +H[x; (z + �)=2]v(x; z; �) + h(x; �) + �Z 0 h(x; �)v(x; z � �; � � �)d�]d� = 2ft(x; 0) +2g(x; 0)+(z=2)4f(x; 0)+(z2=4) nX i=1 f 2 xi (x; 0)�2ft(x; z)�2 exp[�f(x; 0)z]g(x; z): Journal of Mathematical Physics, Analysis, Geometry, 2007, vol. 3, No. 4 415 D.K. Durdiev The equation for h(x; t) can be easily found by di�erentiation of the latter equation on z and by using the �rst condition from (1.12): h(x; t) = h0(x; t)� zZ 0 [4w(x; z; �) + (z + �)rf(x; 0)rw(x; z; �) +�rf(x; 0)rv(x; z; �) +Hz[x; (z + �)=2]v(x; z; �) +H[x; (z + �)=2]w(x; z; �) +h(x; �)f(x; z � �) + �Z 0 h(x; �)w(x; z � �; � � �)d�]d�; (1:19) where the function h0(x; t) is determined in Th. 1. The equations (1.16)�(1.19) represent a closed system of integro-di�erential equations for the functions v, k, w, h in the area DT = GT �R n. For convenience we introduce the function vector �(x; z; t) = (�1; �2; �3; �4) := (v; k; w; h): We rewrite the system (1.16)�(1.19) as an operator equation � =M�; (1:20) where M = (M1; : : : ;M4) is de�ned by the right sides of equations (1.16)�(1.19), and � 0 =M(0); �0 = (�01; � 0 2; � 0 3� 0 4) := (v0; k 0 ; w0; h0): We de�ne the iterations for equation (1.20): � i+1 =M� i ; i = 0; 1; 2; : : : ; �i = (�i1; : : : ; � i 4) (1:21) and � i+1 � � i := i ; i = 0; 1; 2; : : : ; i = ( i 1; : : : ; i 4): Let the sequence of numbers a0; a1; : : : ; ai; : : : be determined by the expressions ai+1 = ai=(1 + (i + 1)�2), i = 0; 1; 2; : : : . Here a0 is a �xed positive number. The number a0 < T=s0 will be chosen later. With the numerical sequence a� we link the sequence of enclosed �elds Fi = f(z; t; s)j0 < s < s0; 0 � t � z < ai(s0 � s)g: The following lemma is valid. Lemma. If the conditions of Th. 1 for any �xed � > 0 and any i = 0; 1; 2; : : : are ful�lled, then there exist a0 2 (0; T=s0), a0 = a0(R; s0; �; n) and �i = �i(R; s0; �; n) > 0; such that for each s 2 (0; s0) � i 1; i 3 � 2 C(As;Dsi), 416 Journal of Mathematical Physics, Analysis, Geometry, 2007, vol. 3, No. 4 Some Multidimensional Inverse Problems of Memory Determination � i 2; i 4 � 2 C (As; [0; ai(s0 � s)]), Dsi := f(z; t)j0 � t � z < ai(s0 � s)g, and the following inequalities are valid: k i 1ks(z; t) � �iz ai(s0 � s)� z ; k � j ks(z; t) � �iaiz [ai(s0 � s)� z]2 ; j = 2; 3; k i 4ks(z) � �ia 2 i z [ai(s0 � s)� z]3 ; (z; t; s) 2 Fi; (1:22) k� i+1 1 � � 0 1ks(z; t) � �; k� i+1 j � � 0 jks(z; t) � 2� s0 � s j = 2; 3; k� i+1 4 � � 0 4ks(z) � 4� (s0 � s)2 ; (z; t; s) 2 Fi+1: (1:23) We use the Nirenberg method and its modi�cation, developed in [5] to prove the lemma. Using estimate [5, p. 92] @ j�j �(x) @x1 �1 :::@xn �n s0 � C� k�(x)ks (s� s0)j�j ; (1:24) it is not di�cult to check that inequalities (1.22), (1.23) are satis�ed when i = 0, besides �0 is proportional to a0. We determine the validity of these inequalities for any i using the induction method. We assume that if the statement of the lemma is valid for i � � and prove that, then it is valid for i = � + 1, as well. Using the inductive assumption, we �nd that �+1 2 C(As;Ds(�+1)). Besides, from (1.20) we �nd k �+1 1 ks(z; t) � zZ t k � 3 ks(�; t)d� � zZ t ��a��d� [a�(s0 � s)� �]2 � ��a�z [a�(s0 � s)� z] � a0 ��z a�+1(s0 � s)� z ; k �+1 2 ks(z) � zZ 0 k � 4 ks(�)d� � a0 ��a�+1z [a�+1(s0 � s)� z]2 ; k �+1 3 ks(z; t) � 1 4 zZ t fk4 � 1 ks(z; �) + 2TR nX j=1 k @ @xj � 1 ks(z; �) +Rk � 1 ks(z; �) + k � 4 ks(�) + �Z 0 [k � 4 ks(�)k� �+1 1 js(z � �; � � �) Journal of Mathematical Physics, Analysis, Geometry, 2007, vol. 3, No. 4 417 D.K. Durdiev +k��4ks(�)k � 1 ks(z � �; � � �)]d�gd�: Using inequality (1.24) to estimate k4 � 1 ks; k @ @xj � 1 ks; j = 1; 2; : : : ; n; and assuming that s0 = s 0(�) = (s+ s0 � �=an)=2; we get k �+1 3 ks(z; t) � 1 4 zZ t f 16na2� [a�(s0 � s)� �]2 � 2��z a�(s0 � s)� z + 8TRna� a�(s0 � s)� � � 2��z a�(s0 � s)� z + 2R��z a�(s0 � s)� z + ��a 2 �� [a�(s0 � s)� �]3 + �Z 0 [ ��a 2 ��(�+R) (a�(s0 � s)� �)3 + 4�+Rs 2 0 (s0 � s)2 � 2��z a�(s0 � s)� z ]d�gd� � c1a0 a�+1��z [a�+1(s0 � s)� z]2 ; where c1 = c1(s0; n; a0; �;R; T ): In the latter inequality it is used that a2� � a�+1a0 are valid for any � � 1. Moreover, a3� � a 2 �+1a0 for � � 1. These inequalities can be easily checked by the method of mathematical induction. The latter inequalities are used to estimate the function �+1 4 . Similarly, for �+1 4 we obtain k �+1 4 ks(z) � c2a0 a 2 �+1��z [a�+1(s0 � s)� z]3 ; where c2 = c2(s0; n; a0; �;R; T ): It is obvious that ci; i = 1; 2, in the latter estimates are monotonically nonde- creasing functions of the s0; a0 parameters. From the estimations made above it follows that (1.22) is valid when i = � + 1; if we assume that ��+1 = a0c��; where c = max(1; s0; c1; c2): (1:25) Now we show that inequalities (1.23) are also satis�ed when i = � + 1, if the number a0 is chosen properly. For (x; z; t) 2 F�+2 k� �+2 1 � � 0 1ks(z; t) � �+1X j=0 k j 1ks(z; t) � �+1X j=0 �jz aj(s0 � s)� z 418 Journal of Mathematical Physics, Analysis, Geometry, 2007, vol. 3, No. 4 Some Multidimensional Inverse Problems of Memory Determination � �0 �+1X j=0 (a0c) j � aj aj+1 � 1 � � �0 �+1X j=0 (a0c) j(j + 1)2; k� �+2 � � 0 ks(z; t) � �+1X j=0 k j ks(z; t) � 2�0 s0 � s �+1X j=0 (a0c) j(j + 1)4; = 2; 3; k� �+2 4 � � 0 4ks(z) � �+1X j=0 k j 4ks(z) � 4�0 (s0 � s)2 �+1X j=0 (a0c) j(j + 1)6: That is why inequalities (1.23) are satis�ed when i = � + 1; if the number a0 is chosen so that a0c < 1; �0 1X j=0 (a0c) j(j + 1)6 � �: (1:26) It is clear that a0 can be always chosen to be so small that inequalities (1.26) are satis�ed. Thus the validity of the lemma is proven. Further we assume that the number a0 is chosen from the conditions (1.26). In order to complete the proof of Th. 1, we should note that under the chosen value of a0 the �i sequence uniformly converges in the norm of space C(As;Ds); a = limai; the limiting function belongs to C(As;Ds) and provides the solution of the operator equation (1.20). The limit transition in the �rst two in- equalities (1.23), when (x; z; t) 2 F = f(z; t; s)j0 < s < s0; 0 � t � z < a(s0 � s)g leads to the values coinciding with (1.15). The uniqueness of the constructed so- lution is established by using the described above technics based on the standard method [5, p. 103]. We indicate a few settings of inverse problems of memory determination which could be studied by the above methods. 2. Find the functions u(x; z; t); k(x; t) that satisfy the following equalities: utt � uzz �4u = tZ 0 k(x; �)ut(x; z; t � �)d�; (x; t) 2 Rn+1 ; z 2 R+; (2:1) ujt<0 � 0; uz jz=0 = �g(x)Æ0(t); (x; t) 2 Rn+1 ; (2:2) ujz=0 = g(x)Æ(t) + f(x; t)�(t); (x; t) 2 Rn+1 ; (2:3) where g(x); f(x; t) are given smooth functions. The solution of problem (2.1),(2.2) is represented as u(x; z; t) = g(x)Æ(t � z) + ~u(x; z; t)�(t� z): (2:4) Journal of Mathematical Physics, Analysis, Geometry, 2007, vol. 3, No. 4 419 D.K. Durdiev We introduce the function ~u(x; (z � t)=2; (z + t)=2) := v(x; z; t): As in Part 1, the problem (2.1)�(2.3) can be replaced by the equivalent problem of �nding the functions v(x; z; t); k(x; t) in the region z > t > 0; x 2 Rn from the equations @ 2 v(x; z; t) @t@z = � 1 4 � 4v + k0(x)v � g(x)h(x; t) � tZ 0 h(x; �)v(x; z � �; t� �)d� � ; (x; z; t) 2 f(x; z; t) j x 2 Rn ; 0 � t � zg := D; (2:5) v jt=z= f(x; z); @ @z v jt=z= 1 2 ft(x; t)jt=z ; z 2 R+; x 2 R n ; (2:6) v jt=0= 1 2 k0(x)z; z 2 R+; x 2 R n ; (2:7) in which k0 := k(x; 0) = 1=g(x)[ft(x; t)jt=0 +4g(x)]; h(x; t) := kt(x; t); t > 0: With respect to problem (2.5)�(2.7) the analogue of Th. 1 is valid. Theorem 2. Let � g(x); 1=g(x); (@=@z)f(x; z)jz=0 ; (@ 3 =@ 2 xi@z)f(x; z)jz=0 2 As0, s0 > 0, i = 0; 1; : : : ; n; � f(x; z); (@=@z)f(x; z); (@2=@2z)f(x; z) 2 C (As0 ; [0; T ]), when some �xed s0 > 0, T > 0, whereas max [kg(x)ks0 ; kf(x; z)ks0 ; kfz(x; z)ks0 ; 1=kg(x)ks0 ; k4g(x)ks0 ; kfzz(x; z)ks0 ; ] = R; for t 2 [0; T ] and the consistency condition is satis�ed: fz(x; z)jz=0 +4g(x) = g(x)fz(x; z)jz=0: Then for any � > 0 the number a 2 (0; T=s0) can be found such that for any s 2 (0; s0) there exists the unique solution of problem (2.5)�(2.7) v(x; z; t) 2 C 1 z (As0 ; Ds) ; k(x; t) 2 C 1 t (As0 ; [0; a(s0 � s)]), where the Ds �eld is determined in Th. 1, and for the solution inequalities (1.15) are valid with the functions v0 = f(x; z); k0(x) = 1 g(x) [ft(x; t)jt=0 +4g(x)]: 3. Find the functions u(x; z; t); k(x; t) that satisfy the following equalities: utt � uzz � Lu = tZ 0 k(x; �)L0u(x; z; t� �)d�; (x; t) 2 Rn+1 ; z 2 R+; (3:1) ujt<0 � 0; uzjz=0 = �g(x)Æ0(t); (x; t) 2 Rn+1 ; (3:2) 420 Journal of Mathematical Physics, Analysis, Geometry, 2007, vol. 3, No. 4 Some Multidimensional Inverse Problems of Memory Determination ujz=0 = g(x)Æ(t) + f(x; t)�(t); (x; t) 2 Rn+1 : (3:3) Here L = nX i=1;j=1 aij(x) @ 2 @xi@xj + L0; L0 = nX i=1 bi(x) @ @xi + c(x); aij , bi, c, g, f (1 � i; j � n) are given smooth functions. Problem (3.1)�(3.3), when aij = Æij , bi = 0, where Æij is the Kronecker sym- bol, was studied in paper [1]. In the case of inequality (1.24) let us estimate the di�erential expressions Lu;L0u with analytical coe�cients. We assume that functions aij, bi, c(x), 1 � i, j � n, are the elements of As0 , s0 > 0, and d := max 1�i;j�n kaijks0 ; b0 := max 1�i;j�n kbiks0 ; c0 := kcks0: For the operators L0; L from (1.24) it follows: kL0�ks0 � c1 s� s0 k�ks; kL�ks0 � c2 (s� s0)2 k�ks; s 0 2 (0; s); c1 := ne �1 b0 + s0c0; c2 := 4n2e�2d+ c1s0: The solution of problem (3.1), (3.2) is represented as u(x; z; t) = �(x; z)Æ(t � z) + ~u(x; z; t)�(t� z); (3:4) and we make use of the method of separation of variables [5, p. 29]. Denoting ~u(x; z; z + 0) =: �(x; z); we put (3.4) in (3.1), (3.2) and �nd �(x; z) � �(x) = g(x); �(x; z) = (z=2)Lg(x); x 2 Rn ; z 2 R+: (3:5) It is not di�cult, using equalities (3.4), (3.5), to replace the inverse problem (3.1)�(3.3) by initial-characteristic problem with Cauchy data on z = 0. It should be noted that when t > z the equality u = ~u takes place, then the functions u(x; z; t); k(x; z) satisfy the equations utt � uzz � Lu = L0g(x)k(x; t � z) + t�zZ 0 k(x; �)L0u(x; z; t��)d�; (x; z; t) 2 G := f(x; z; t)jx 2 Rn ; t > z > 0g; (3:6) ujz=0 = f(x; t); uzjz=0 = 0; x 2 Rn ; t 2 R+; (3:7) ujz=0 = 1 2 zLg(x); x 2 Rn ; t 2 R+: (3:8) Journal of Mathematical Physics, Analysis, Geometry, 2007, vol. 3, No. 4 421 D.K. Durdiev Further, the problem (3.6)�(3.8) is reduced to the following system of integro- di�erential equations for u; ut; k: u(x; z; t) = u0(x; z; t) + 1 2 Z Z 4(z;t) [Lu(x; �; �) � L0g(x)k(x; � � �) + ���Z 0 k(x; )L0u(x; �; � � )d ]d�d�; (3:9) ut(x; z; t) = u0t(x; z; t) + 1 2 Z z �z [Lu(x; z � j�j; t+ �)� L0g(x)k(x; t � z + j�j+ �) + t�z+j�j+�Z 0 k(x; )L0u(x; z � j�j; t+ � � )d ]sgn�d�; (3:10) k(x; z) = k0(x; z) + 2 L0g(x) z=2Z 0 [Lut(x; �; z � �) + 1 2 �L0g(x)k(x; z � 2�) + z�2�Z 0 k(x; )L0ut(x; �; z � � � )d ]d�; (3:11) where u0(x; z; t) = 1 2 [f(x; t+ z) + f(x; t� z)]; k0(x; z) = 1 L0g(x) [(1=4)zL2 g(x) � 2ftt(x; t)jt=z ]; 4(z; t) = f(�; �)j0 � � � z; t� z + � � � � t+ z � �; t > zg: For the system (3.9)�(3.11) the following theorem is valid. Theorem 3. Assume that the consistency conditions of f(x; 0) = 0, ft(x; t)jt=0 = (1=2)Lg(x), are satis�ed, besides (aij ; bi; c; g)(x) 2 As0 ; 1 � i; j � n; [f(x; t); ft(x; t); ftt(x; t)] 2 C(As0 ; [0; T ]); max[kfks0(t); kftks0(t); kfttks0(t); kL0gks0 ; 1=kL0gks0 ; kL 2 gks0 ] = R; 422 Journal of Mathematical Physics, Analysis, Geometry, 2007, vol. 3, No. 4 Some Multidimensional Inverse Problems of Memory Determination for t 2 [0; T ], R > 0. Then a 2 (0; T=2); as0 < T=2 can be found such that for any s 2 (0; s0) in the region GT \f(x; z; t)jx 2 R n ; 0 � z � a(s0� s)g there exists the unique solution of the system (3.9)�(3.11), for which (u(x; z; t); ut(x; z; t)) 2 C(As0 ; PsT ) k(x; z) 2 C(As0 ; [0; a(s0 � s)]); PsT := GT \ f(z; t)j0 � z � a(s0 � s)g; moreover, ku� u0ks(z; t) � R0; kk � k0ks(t) � R0 (s0 � s)2 ; kut � u0tks(z; t) � R0 (s0 � s) ; (z; t) 2 PsT ; R0 = R0(R;T; s0; n) is a constant. Theorems 2 and 3 are proved similarly to Th. 1. R e m a r k 1. The solution of the inverse problem suggests the unique con- tinuation on the variable t from the interval [0; a(s0 � s)] onto the interval [0; T ] for any T (see [1]). R e m a r k 2. Under appropriate conditions similar results hold when the operator 4 from Parts 1,2 is replaced by the operator L, de�ned in Part 3. References [1] D.K. Durdiev, A Multi-Dimensional Inverse Problem for Equation with Memory. � Sib. Mat. J. 35 (1994), No. 3, 574�582. (Russian) [2] A. Lorensi, An Identi�cation Problem Related to a Nonlinear Hyperbolic Integro- Di�erential Equation. � Nonlinear Analysis: Theory, Meth., Appl. 22 (1994), 297� 321. [3] J. Janno and L. Von Welfersdorf, Inverse Problems for Identi�cation of Memory Kernels in Viscoelasticity. � Math. Meth. Appl. Sci. 20 (1997), No. 4, 291�314. [4] A.L. Bukhgeim and G.V. Dyatlov, A Uniqueness in one Inverse Problem of Memory Determination. � Sib. Mat. J. 37 (1996), No. 3, 52�53. (Russian) [5] V.G. Romanov, Stability in Inverse Problems. Scienti�c World, Moscow, 2005. (Russian) Journal of Mathematical Physics, Analysis, Geometry, 2007, vol. 3, No. 4 423