Stochastic stability of a class of partial differential equations of thermoelasticity

Àn example of stability analysis of a class of partial differential equations (in terms of Lyapunov functional) is presented. Applying Kozin’s method to construction of Lyapunov functional the sufficient conditions of stochastic stability of the heat transfer in a strip-plate are established.

Збережено в:
Бібліографічні деталі
Дата:2008
Автор: Krol, M.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладних проблем механіки і математики ім. Я.С. Підстригача НАН України 2008
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/7690
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Stochastic stability of a class of partial differential equations of thermoelasticity / M. Krol // Приклад. пробл. механіки і математики. — 2008. — Вип. 6. — С. 193-200. — Бібліогр.: 17 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-7690
record_format dspace
spelling irk-123456789-76902010-04-09T12:01:05Z Stochastic stability of a class of partial differential equations of thermoelasticity Krol, M. Àn example of stability analysis of a class of partial differential equations (in terms of Lyapunov functional) is presented. Applying Kozin’s method to construction of Lyapunov functional the sufficient conditions of stochastic stability of the heat transfer in a strip-plate are established. Виведено умови стохастичної стабільності для рівняння термопружності для тонкої пластинки. Для цього згідно з методом Козіна використано функціонал Ляпунова. Як приклад встановлено умови стохастичної стабільності рівняння термопружності для напівнескінченного стрижня. Выведены условия стохастической стабильности для уравнений термоупругости для тонкой пластинки. Для этого согласно методу Козина использован функционал Ляпунова. В качестве примера установлены условия стохастической стабильности уравнения термоупругости для полубесконечного стержня. 2008 Article Stochastic stability of a class of partial differential equations of thermoelasticity / M. Krol // Приклад. пробл. механіки і математики. — 2008. — Вип. 6. — С. 193-200. — Бібліогр.: 17 назв. — англ. 1810-3022 http://dspace.nbuv.gov.ua/handle/123456789/7690 539.3 en Інститут прикладних проблем механіки і математики ім. Я.С. Підстригача НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Àn example of stability analysis of a class of partial differential equations (in terms of Lyapunov functional) is presented. Applying Kozin’s method to construction of Lyapunov functional the sufficient conditions of stochastic stability of the heat transfer in a strip-plate are established.
format Article
author Krol, M.
spellingShingle Krol, M.
Stochastic stability of a class of partial differential equations of thermoelasticity
author_facet Krol, M.
author_sort Krol, M.
title Stochastic stability of a class of partial differential equations of thermoelasticity
title_short Stochastic stability of a class of partial differential equations of thermoelasticity
title_full Stochastic stability of a class of partial differential equations of thermoelasticity
title_fullStr Stochastic stability of a class of partial differential equations of thermoelasticity
title_full_unstemmed Stochastic stability of a class of partial differential equations of thermoelasticity
title_sort stochastic stability of a class of partial differential equations of thermoelasticity
publisher Інститут прикладних проблем механіки і математики ім. Я.С. Підстригача НАН України
publishDate 2008
url http://dspace.nbuv.gov.ua/handle/123456789/7690
citation_txt Stochastic stability of a class of partial differential equations of thermoelasticity / M. Krol // Приклад. пробл. механіки і математики. — 2008. — Вип. 6. — С. 193-200. — Бібліогр.: 17 назв. — англ.
work_keys_str_mv AT krolm stochasticstabilityofaclassofpartialdifferentialequationsofthermoelasticity
first_indexed 2025-07-02T10:28:33Z
last_indexed 2025-07-02T10:28:33Z
_version_ 1836530651894906880
fulltext ISSN 1810-3022. Ïðèêë. ïðîáëåìè ìåõ. ³ ìàò. – 2008. – Âèï. 6. – Ñ. 193–200. UDK 539.3 M. Król STOCHASTIC STABILITY OF A CLASS OF PARTIAL DIFFERENTIAL EQUATIONS OF THERMOELASTICITY Àn example of stability analysis of a class of partial differential equations (in terms of Lyapunov functional) is presented. Applying Kozin’s method to construc- tion of Lyapunov functional the sufficient conditions of stochastic stability of the heat transfer in a strip-plate are established. 1. Introduction. Considerable progress has been made over the last four decades, in the study of the problem of the stochastic stability of partial diffe- rential equations. It has been initiated by the J. C. Samuels and Yu. M. Erin- ger [12] and studies by mathematicians and engineers in the vibration analysis of beams, plates, shells and heat transfer problems. Two basic models with stochastic parametric excitations have been developed in the literature, name- ly with stationary ergodic processes and white noise processes. For the models with stationary ergodic processes the stability analysis has been initiated by T. K. Caughey and A. H. Gray (jr) [6] and developed by F. Kozin [8, 9], F. Kozin and C. M. Wu [10]. A. Tylikowski has obtained several interesting results [16, 17]. The first work for the models with white noise processes has been pub- lished by U. G. Haussmann [7] who applied the obtained results to the study of a heat-transfer problem. T. Caraballo, K. Liu, and X. Mao [5, 11] genera- lized these results for instance. The new criteria of stability for string, stick and plate models with parametric white noise excitations have been obtain by A. Tylikowski [14, 15]. In this paper we will deal with problem of stability of the partial diffe- rential equation, which describe the heat-transfer in strip-plate. We use the equation of motion derived by Yu. M. Kolyano, Ya. S. Podstryhacz [4] and we assume that the parametric excitations are in the form of stationary ergodic process. We apply the Kozin’s method to determine sufficient conditions of almost sure asymptotic stability. 2. Mathematical preliminaries. The common stability properties of sto- chastic systems that have been studied in the literature have generally been related to Lyapunov stability [13]. Recognizing that stability in the Lyapunov sense is merely a uniform convergence, which respect to the initial conditions, various concepts of stability for stochastic systems can be immediately defined by invoking one of the usual modes of probability theory. That is, for instan- ce, convergence in probability and almost sure convergence. In that follows, 0 0u t x t( ; , ) will denote the n -dimensional vector solution at time t , with initial state 0x at time 0t , u will denote a suitable norm, such as an absolute value or Euclides norm, and we shell be testing the stabi- lity of the equilibrium solution 0u ≡ of the partial differential equations i i u F u x t t ∂ = ∂ ( , , ) , 11i M= , , , (1) 0kA u x t =( , , ) , 0t t ≥:{ } , 21k M= , , . (2) That system has the following distinctive marks [14]: 1) occupies some region (coherent, open set) NΩ ⊂  is N -dimensional Euclidean space with a boundary 1NB − = ∂Ω , [ ]1 N Nx x x= ∈, ,  ; 2) describes the set M of the function [ ]1 Mu x t u x t u x t= ( , ) ( , ), , ( , ) , which belongs to a function space of X XΩ ≡( ) , which is called phase space and 194 M. Król satisfies the system of partial differential equations (1), (2) in region 1 1N NC + += Ω × ∆ ⊂  , where iF and kA are the differential operators, which are described by continuous, differentiable functions and related to spatial values. The space X of the points may be the set of variable parameters, which characterize the condition of the system; 3) the function u x t( , ) which characterize the system are assumed to take the values 0 0 0 0u u x t X X= ∈ Ω ⊃ Ω( , ) ( ) ( ) (3) in the plane 10 Nt +Ω × = ⊂ { } (initial conditions) and the boundary conditions 1 1 1u u x t X X= ∈ Ω ⊃ Ω( , ) ( ) ( ) . (4) In stochastic case instead of equation (1) we consider the following sto- chastic differential equation i i u F u x t t ∂ = ω ∂ ( , , , ) , 1i n= , , , (5) where ω is an element of probability space B PΓ( , , ) . Similarly, the initial and boundary conditions are determined [14]. In this paper we will use the following definitions of stochastic stability [1, 2, 17]. Definition 1. (Almost Sure Lyapunov Stability). The equilibrium solution of system (5) is said to be almost surely stable if { } 0 0 0 0 0 0 1 x t t P u t x t → ≥ = =lim sup ( ; , ) . Definition 2. (Almost Sure Asymptotic Stability). The equilibrium solution of system (5) is said to be almost surely asymptotically stable if definition 1 holds and { }0 0 0 1 T t T P u t x t →∞ ≥ = =lim sup ( ; , ) . 2. The strip-plate equation of heat transfer. Let Θ be a bounded do- main in d , where 3d ≤ , with 2C boundary. We will study the following heat transfer equation of a thickness ( )2Z = δ = const isotropic homogenous infinite strip-plate, which is averages by a integrals characteristic of tempera- ture [4] 2 2 2 2 2 2 2 2 1 1 q T T T TT aX Y c ∗ ∗ ∗ ∂ ∂ ∂ ∂+ − = + ∂ ∂ ∂τ ∂τ æ , (6) where T T X Y ∗= τ( , , ) , ∗ +τ ∈  (where + denotes the interval [ )0 ∞, ), X Y ∈ Θ, , [ ]10X d∈ , , [ ]20Y d∈ , . In this equation we use the following notation: T is the temperature, X Y Z, , are the space coordinates, ∗τ is the time, qc is the propagation of speed of the heat, 2 z t ∗ α = λ δ æ , t v a c λ = is the coefficient of thermal conductivity, vc is the coefficient of volumetric heat contents, zα is the coefficient of the given up the heat by flank, tλ is the coefficient of heat conduction. Stochastic stability of a class of partial differential equations of thermoelasticity 195 Now we assume the following initial conditions 0T = , 0T ∗ ∂ = ∂τ for 0∗τ = , (7) 0T = , 0T Y ∂ = ∂ for 0Y = and 2Y d= . (8) We introduce in this equation the following notations x Xx k = , y Yy k = , z Zz k = , k ∗ ∗ τ ττ = (9) are dimensionless coordinates and time, where x y zk k k, , are scale coefficients, and assume that 2 2 qc a β = , (10) 2 0∗ = + τ( )æ æ æ , (11) where τ( )æ is a stationary ergodic stochastic process, whose samples are con- tinuous functions with the probability one, 0æ is a constant. If we assume, that 1xk d= , 2yk d= in coordinates (9) and using notation (10) and (11) in equation (6) we obtain 2 2 2 02 0q xx q yy qT T c T c T c k Tττ τ+ β − − + + τ =( )( )æ , (12) where 2 2 TTττ ∂= ∂τ , TTτ ∂= ∂τ , 2 2xx TT x ∂= ∂ , 2 2yy TT y ∂= ∂ , 1 20 0 x y d d x y k k    ∈ × = Ω        ( , ) , , , z z z k k δ δ ∈ −    , , 0τ ∈ +∞, )[ . 3. Stochastic stability analysis. In this section we use the Kozin’s method to the equation (6). We investigate the stability of the trivial solutions of this equation. We set the initial conditions 0T = , 0xx yyT T= = for x y ∈ ∂Ω( , ) . (13) We assumed that τ( )æ is the stationary ergodic process with the diffe- rentiable realizations with probability 1. We shell study asymptotic stability of the trivial solution 0T Tτ= = of equation (12) via a Lyapunov functional ap- proach, using Kozin’s method [8]. We define the Lyapunov functional 2 2 2 2 2 2 T T T T T TV Q T d x y x yΩ ∂ ∂ ∂ ∂ ∂ ∂ = Ω ∂ ∂ ∂τ ∂ ∂ ∂τ∫ , , , , , , , where Q is a quadratic form of its variables. We shell use the following approach. Upon expanding T x y τ( , , ) into its modes, we have 1 1 1 1 nm nm n m n m T x y T x y W nx my ∞ ∞ ∞ ∞ = = = = τ = τ = τ π π∑ ∑ ∑ ∑( , , ) ( , , ) ( ) sin ( ) sin ( ) . (14) Substituting (14) into (12) yields the model equations 2 2 2 2 2 2 02 0nm nm nm q nmW W W c n m W+ β + π + π + τ + =  ( ) ( ) ( )( )æ æ , 1 2 3n m = , , , , . 196 M. Król Using the methodology proposed by F. Kozin and C. M. Wu [10] we will deal with quadratic Lyapunov function for studying the almost sure stability properties of nmW τ( ) in the form nm nm nmV W Wτ = ×( ) 2 2 2 2 2 02 1 nmq nm Wc n m W β + π + π + τ + β× ⋅ β  ( ) ( ) ( )( )æ æ . Taking into account the properties 2 2 2 mn nm T n T x ∂ π = ∂ ( ) , 2 2 2 mn nm T m T y ∂ π = ∂ ( ) , we can apply conditions of the ortogonality of the functions nxπsin ( ) and mxπsin ( ) on 0 1,[ ] for 1 2 3n m = , , , , in order to obtain the desired Lyapu- nov functional 2 2 2 2 2 2 2 2 2 2 02 2 q x q y qV T TT T c T c T c T dτ τ Ω τ = + β + β + + + Ω∫( ) ( )æ . (15) The time-derivative of the functional (15) along the solution of the equation (12) is given by: 2 2 2 2 02 2 q dV T T T T TT c d ττ τ τ τ Ω τ = + + β + β + +τ ∫( ) ( ) ( )æ 2 2 q x x q y yc T T c T T dτ τ + + Ω , (16) where 2 x TT xτ ∂= ∂ ∂τ , x TT x ∂= ∂ , 2 y TT yτ ∂= ∂ ∂τ , y TT y ∂= ∂ . Substitution Tττ , determined by equation (12) into (16), yields the time- derivative of the functional (15) in the form 2 2 dV V U d τ = − β τ + τ τ ( ) ( ) ( ) , (17) where new functional U τ( )has the form 2 2 3 2 2 2 2 2 2 2 2 02 2 q x q y qU T TT T c T c T c Tτ τ Ω τ = β + β + β + β + β + β −∫( ) æ 2 2 2 2 2 2 q q x q yc TT T c T c Tτ τ− τ − β − β − β −( )æ 2 2 2 2 2 2 0q qc T c T d− β τ − β Ω( )æ æ . (18) Using the dependencies of integrating by parts as for every pair of ele- ments T and Tτ : x x xxT T d T T dτ τ Ω Ω Ω = − Ω∫ ∫ , 2 x xxT d TT d Ω Ω Ω = − Ω∫ ∫ , y x xxT T d T T dτ τ Ω Ω Ω = − Ω∫ ∫ , 2 y yyT d TT d Ω Ω Ω = − Ω∫ ∫ , Stochastic stability of a class of partial differential equations of thermoelasticity 197 and taking into account the fact, that the V τ( ) satisfies the initial conditions (13), we can introduce the functional U τ( ) in the form 2 2 2 2 2 2 22 2q qU c TT c T dτ Ω  τ = β − τ + β β − τ Ω ∫( ) ( ) ( )( ) ( )æ æ . (19) We look for a function λ , which satisfies the following inequality U Vτ ≤ λ τ( ) ( ) . (20) The function λ is defined as a minimum of the ratio /U V with respect to permissible functions T and Tτ , which satisfy the initial conditions (13). Since the minimum is the particular case of the stationary point, we can ap- ply the calculus of variations and we consider the variation problem 0U Vδ − λ =( ) . After solving the equation of the variations we obtain 2 2 22 2 2qc T T T Tτ τ Ω  β − τ − λ + β δ + ∫ ( ) ( )( )æ 2 2 2 2 2 22 2 2q qc T c Tτ+ β − τ + β β − τ − ( ) ( )( ) ( )æ æ 2 2 2 2 2 02 4 2 2 2 0q xx q yy qT T c T c T c T v dτ − λ β + β − − + δ Ω =( )æ  . (21) Taking into account the independence of variations appearing in integrals (18) we find that the square brackets in (21) are equal zero 2 2 22 2 2 0qc T T Tτβ − τ − λ + β =( ) ( )( )æ , (22) 2 2 22 2qc T Tτβ − τ + β −( ) ( )( )æ 2 2 2 2 2 02 4 2 2 2 0q xx q yy qT T c T c T c Tτ− λ β + β − − + =( )æ . (23) We calculate Tτ from equation (22) and substitute it into equation (23). Then we obtain a partial differential equation for the function T x y τ( , , ) : 2 2 2 2 2 2 2 2 2 2 2 q q c T T c T β − τ − λβ  β − τ + β − λ  ( ) ( ) ( ) ( ) æ æ 2 2 22 2 2 2 qc T Tβ − τ − λβ − λ β + λ ( )( )æ 2 2 2 2 2 04 2 2 2 0q xx q yy qT c T c T c T  + β − − − =  æ . (24) It is easy to notice, that the n -order approximation of the solution of (24) in the form 1 1 nm n m T T nx my ∞ ∞ = = = τ π π∑ ∑ ( ) sin ( ) sin ( ) (25) satisfies initial conditions (13). Substituting (25) into equation (24), we obtain an algebraic equation with respect to the variable λ for every pair n m( , ) . We denote these variables by nmλ . As a function λ we select the maximum of variables nmλ , which satisfy inequality (20). Finally the function λ has the form 2 2 2 1/22 2 2 2 21 2 0 2 2 q n m q c c n m=  β − τ λ =    β − π + π +   , , , ( ) max ( ) ( )( ) æ æ . (26) 198 M. Król After substituting inequality (20) to equation (17), we obtain the differen- tial inequality of functional V τ( ) . Solving this inequality, we obtain the upper estimation of the functional V τ( ) (lemma 2.1 [3]) 0 10 2V V s ds τ  τ ≤ − β − λ τ  τ   ∫( ) ( ) exp ( ) . If τ( )æ is an ergodic and stationary process and we replace the mean va- lue of the temperature by the corresponding mean value of the set of realiza- tions, we obtain the condition of almost sure asymptotic stability with respect to the following measure of temperature T V= , (27) where τ → ∞ in the form Eβ ≥ λ[ ] . To derive the sufficient conditions of the almost sure instability we look for a function η , which satisfies the inequality U Vτ ≥ η τ( ) ( ) . Watching the derivation of the function can check it λ . The function η equals to the mini- mum of nmλ given by (26) and suitable estimation of the functional V τ( ) has the form 0 10 2V V s ds τ  τ ≥ η − β τ  τ   ∫( ) ( ) exp ( ) . The condition of almost sure asymptotic instability for the stationary and ergodic process has the form Eβ ≤ η[ ] . The obtained results can be summarized in the following criteria. Criterion 1. The trivial solution of the partial differential equation (12) is almost sure asymptotic stable with respect to the norm (27) if the following conditions are satisfied (i) process τ( )æ is stationary and ergodic; (ii) Eβ ≥ λ[ ] , where 2 2 2 1/22 2 2 2 21 2 0 2 2 q n m q c c n m=  β − τ λ =    β − π + π +   , , , ( ) max ( ) ( )( ) æ æ . Criterion 2. The solution of the partial differential equation (12) is almost sure asymptotic unstable with respect to the norm (27) if the following condi- tions are satisfied i) process τ( )æ is stationary and ergodic; (ii) Eβ ≤ η[ ] , where 2 2 2 1/22 2 2 2 21 2 0 2 2 q n m q c c n m=  β − τ η =    β − π + π +    , , , ( ) min ( ) ( )( ) æ æ . Example. We consider a particular case of system (6). If we assumed that 2 2 T X ∂ ∂ is equal zero in equation (6), then this equation we can rewrite in the form Stochastic stability of a class of partial differential equations of thermoelasticity 199 2 2 2 2 2 2 1 1 q T T TT aY c ∗ ∗ ∗ ∂ ∂ ∂− = + ∂ ∂τ ∂τ æ , (28) where T T Y ∗= τ( , ) , ∗ +τ ∈  (where + denotes the interval 0 ∞, )[ ), Y ∈ Θ . Now we assume the following initial conditions 0T = , 0T ∗ ∂ = ∂τ for 0∗τ = , 0T = , 0T Y ∂ = ∂ for 20Y d∈ ( , ) . Now we introduce the following notations y Yy k = , z Zz k = , k ∗ τ ττ = (29) are dimensionless coordinates and time, where y zk k, are scale coefficients, like in equation (6). Using notation (10), (11) and (29) in equation (28) we obtain 2 2 02 0q yy qT T c T c k Tττ τ+ β − + + τ =( ( ))æ (30) where 2 2 TTττ ∂= ∂τ , TTτ ∂= ∂τ , 2 2yy TT y ∂= ∂ , 20y d∈ = Ω( , ) , z z z k k  δ δ∈ −    , , 0τ ∈ +∞, )[ , with the simplified initial conditions (13). Now we shell look for the Lyapunov functional using the method describe above as defined in (15). The functionals V τ( ) and U τ( ) for equation (30) have the form as follows 2 2 2 2 2 2 2 2 02 2 q y qV T TT T c T c T dτ τ Ω τ = + β + β + + Ω∫( ) ( )æ , 2 2 2 2 2 2 22 2q qU c TT c T dτ Ω  τ = β − τ + β β − τ Ω ∫( ) ( ) ( )( ) ( )æ æ . Again we wish to determine the λ so that satisfies the inequality U Vτ ≤ λ τ( ) ( ) and we apply the variational calculus to solve the problem 0U Vδ − λ =( ) . (31) After applying the straightforward computations, we find the sequence of mλ that satisfies (31) to be 2 2 2 1/22 2 2 21 2 0 2 2 q n m q c c m=  β − τ λ =   β − π +  , , , ( ) max ( )( ) æ æ[ ] . 4. Conclusions. The major conclusions are that the Lyapunov’s method is an effective tool of solving the stability problem of strip-plate. The explicit criteria developed in the paper define the stability region in terms of the excitation process and physical characteristic of strip-plate. The analytical for- mulas defining the stability regions are obtained using the calculus of varia- tions. 200 M. Król 1. Ãèõìàí È. È., Äîðîãîâöåâ A. ß. Îá óñòîé÷èâîñòè ðåøåíèé ñòîõàñòè÷åñêèõ äèô- ôåðåíöèàëüíûõ óðàâíåíèé // Óêð. ìàò. æóðí. – 1968. – 17, ¹ 6. – Ñ. 3–21. 2. Ãèõìàí È. È., Ñêîðîõîä A. Â. Ñòîõàñòè÷åñêèå äèôôåðåíöèàëüíûå óðàâíåíèÿ. – Êèåâ: Íàóê. äóìêà, 1968. – 354 ñ. 3. Õàñüìèíñêèé Ð. Ç. Óñòîé÷èâîñòü ñèñòåì äèôôåðåíöèàëüíûõ óðàâíåíèé ïðè ñëó÷àéíûõ âîçìóùåíèÿõ èõ ïàðàìåòðîâ. – Ìîñêâà: Íàóêà, 1969. – 367 ñ. 4. Ïîäñòðèãà÷ ß. Ñ., Êîëÿíî Þ. Ì. Îáîáùåííàÿ òåðìîìåõàíèêà. – Êèåâ: Íàóê. äóìêà, 1976. – 310 ñ. 5. Caraballo T., Liu K. On exponential stability criteria of stochastic partial equation // Stoch. Proc. Appl. – 1999. – 83. – P. 289–301. 6. Caughey T. K., Gray A. H. (Jr.) On the almost sure stability of linear dynamic systems and stochastic coefficients // Trans. ASME. J. Appl. Mech. – 1965. – 32. – P. 365–372. 7. Haussmann U. G. Asymptotic stability of the linear Ito equation in infinite solution // J. Math. Anal. Appl. – 1978. – 65. – P. 219–235. 8. Kozin F. On almost sure stability of linear systems with random coefficients // J. Math. and Phys. – 1963. – 42. – P. 59-67. 9. Kozin F. Stability of the linear stochastic systems // Lect. Notes in Math. – Berlin: Springer-Verlag. – 1972. – 294. – P. 186–229. 10. Kozin F., Wu C. M. On the stability of linear stochastic differential equations // Trans. ASME. J. Appl. Mech. – 1973. – 40. – P. 87–92. 11. Liu K., Mao X. Exponential stability of non-linear stochastic evolution equations // Stoch. Processes and their Appl. – 1998. – 72, No. 2. – P. 173–193. 12. Samuels J. C., Eringen Yu. M. On stochastic linear systems // J. Math. and Phys. – 1959. – 78. – P. 83–103. 13. Skalmierski B., Tylikowski A. Stabilność układów dynamicznych. – Warszawa: Wyd-wo Nauk. PWN, 1973. – 174 s. 14. Tylikowski A. Dynamic stability of rotating shafts // Ing.-Archiv. – 1981. – 50. – P. 41–48. 15. Tylikowski A. Stability of non-linear plate // Òrans. ASME. J. Appl. Mech. – 1978. – 45. – P. 583–585. 16. Tylikowski A. Stochastyczna stateczność ciągłych układów dynamicznych // Zeszyty Nauk. Politechniki Śl. (Gliwice). – Automatyka. – 1972. – ¹ 20. 17. Tylikowski A. Stochastyczna stateczność układów ciągłych. – Warszawa: Wyd-wo Nauk. PWN, 1991. – 230 s. СТОХАСТИЧНА СТАБІЛЬНІСТЬ ДЕЯКОГО КЛАСУ ДИФЕРЕНЦІАЛЬНИХ РІВНЯНЬ ТЕРМОПРУЖНОСТІ У ЧАСТИННИХ ПОХІДНИХ Âèâåäåíî óìîâè ñòîõàñòè÷íî¿ ñòàá³ëüíîñò³ äëÿ ð³âíÿííÿ òåðìîïðóæíîñò³ äëÿ òîíêî¿ ïëàñòèíêè. Äëÿ öüîãî çã³äíî ç ìåòîäîì Êîçiíà âèêîðèñòàíî ôóíêö³îíàë Ëÿïóíîâà. ßê ïðèêëàä âñòàíîâëåíî óìîâè ñòîõàñòè÷íî¿ ñòàá³ëüíîñò³ ð³âíÿííÿ òåðìîïðóæíîñò³ äëÿ íàï³âíåñê³í÷åííîãî ñòåðæíÿ. СТОХАСТИЧЕСКАЯ СТАБИЛЬНОСТЬ НЕКОТОРОГО КЛАССА ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ТЕРМОУПРУГОСТИ В ЧАСТНЫХ ПРОИЗВОДНЫХ Âûâåäåíû óñëîâèÿ ñòîõàñòè÷åñêîé ñòàáèëüíîñòè äëÿ óðàâíåíèé òåðìîóïðóãîñòè äëÿ òîíêîé ïëàñòèíêè. Äëÿ ýòîãî ñîãëàñíî ìåòîäó Êîçèíà èñïîëüçîâàí ôóíêöèî- íàë Ëÿïóíîâà.  êà÷åñòâå ïðèìåðà óñòàíîâëåíû óñëîâèÿ ñòîõàñòè÷åñêîé ñòà- áèëüíîñòè óðàâíåíèÿ òåðìîóïðóãîñòè äëÿ ïîëóáåñêîíå÷íîãî ñòåðæíÿ. Politechnika of Rzeszów, Rzeszów, Poland Received 12.08.08