Modeling the mechanism of interaction of defects is in CeO2-x at high temperatures in air

The consequent of mathematical models with elements of theory probability and experimental results, calculations permitted to determinate the energy formation of: anion vacancies (uв∼0.9 eV), border and screw dislocations (u⊥∼ 1.67 eV; us ∼ 2.08 eV), and the energy of movement point defects (ud∼ 1.8...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2011
Автор: Solovyova, A.E.
Формат: Стаття
Мова:English
Опубліковано: Науковий фізико-технологічний центр МОН та НАН України 2011
Назва видання:Физическая инженерия поверхности
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/76998
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Modeling the mechanism of interaction of defects is in CeO2-x at high temperatures in air / A.E. Solovyova // Физическая инженерия поверхности. — 2011. — Т. 9, № 4. — С. 369–375. — Бібліогр.: 14 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-76998
record_format dspace
spelling irk-123456789-769982015-02-15T03:01:57Z Modeling the mechanism of interaction of defects is in CeO2-x at high temperatures in air Solovyova, A.E. The consequent of mathematical models with elements of theory probability and experimental results, calculations permitted to determinate the energy formation of: anion vacancies (uв∼0.9 eV), border and screw dislocations (u⊥∼ 1.67 eV; us ∼ 2.08 eV), and the energy of movement point defects (ud∼ 1.8 eV) and of movement the borders grain (uз ∼ 0.65 eV), strain which were connected with cooperation action point defects with admixture (0.25 eV – energy of formation center painting) in CeO2 – x at high temperatures in air. The evaporation and disintegration harden solution on the base CeO2 – x were determinate on the base obtained facts the next structure cubic phases F – F1 – C. The process oxidation at 1500 °C accompanied of disappear the border, spiral dislocations and point defects. Последовательность математических моделей с елементами теории вероятностей и экспериментальные результаты расчеты позволили найти энергии образования: анионных вакансий (uв ~ 0.9 еВ), краевых и винтовых дислокаций (u⊥ ∼ 1.67 еВ; us 2.08 eВ) и энергию движения анионных вакансій (ud ∼ 1.8 eВ), энергию напряжения, которая связана с объединением точечных дефектов с примесями, энергию образования центров окраски в структуре CeO2–х при высоких температурах на воздухе. Восстановление и распад твердого раствора приводит к фазовому превращению и появлению фаз типа F – F1 – C. Процесс окисления при 1500 °C сопровождается исчезновением краевых, винтовых дислокаций, точечных дефектов. Послідовність математичних моделей з елементами теорії ймовірностей та експериментальні результати, розрахунки дозволили знайти енергію утворення: аніонних вакансій – точкових дефектів (uв ∼ 0.9 еВ), крайових та гвинтових дислокацій (u⊥ ∼ 1.67 еВ; us ~ 2.08 eВ) та енергію руху аніонних вакансій (ud ∼ 1.8 eВ), енергію напруження яка пов’язана з єднання точкових дефектів з домішками, енергію утворення центрів окраски (0.25 eВ) у CeO2–х при високих температурах у середі повітря. Випарювання та розпад твердого розчина на базі CeO2–x утримали фазові перетворення у структурі та появи фаз F – F1 – C . Процес окислення при 1500 °C супроводжу зникати крайових та гвинтових дислокацій, точкових дефектів. 2011 Article Modeling the mechanism of interaction of defects is in CeO2-x at high temperatures in air / A.E. Solovyova // Физическая инженерия поверхности. — 2011. — Т. 9, № 4. — С. 369–375. — Бібліогр.: 14 назв. — англ. 1999-8074 PACS: 546.655.4: 536.42.11 http://dspace.nbuv.gov.ua/handle/123456789/76998 en Физическая инженерия поверхности Науковий фізико-технологічний центр МОН та НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The consequent of mathematical models with elements of theory probability and experimental results, calculations permitted to determinate the energy formation of: anion vacancies (uв∼0.9 eV), border and screw dislocations (u⊥∼ 1.67 eV; us ∼ 2.08 eV), and the energy of movement point defects (ud∼ 1.8 eV) and of movement the borders grain (uз ∼ 0.65 eV), strain which were connected with cooperation action point defects with admixture (0.25 eV – energy of formation center painting) in CeO2 – x at high temperatures in air. The evaporation and disintegration harden solution on the base CeO2 – x were determinate on the base obtained facts the next structure cubic phases F – F1 – C. The process oxidation at 1500 °C accompanied of disappear the border, spiral dislocations and point defects.
format Article
author Solovyova, A.E.
spellingShingle Solovyova, A.E.
Modeling the mechanism of interaction of defects is in CeO2-x at high temperatures in air
Физическая инженерия поверхности
author_facet Solovyova, A.E.
author_sort Solovyova, A.E.
title Modeling the mechanism of interaction of defects is in CeO2-x at high temperatures in air
title_short Modeling the mechanism of interaction of defects is in CeO2-x at high temperatures in air
title_full Modeling the mechanism of interaction of defects is in CeO2-x at high temperatures in air
title_fullStr Modeling the mechanism of interaction of defects is in CeO2-x at high temperatures in air
title_full_unstemmed Modeling the mechanism of interaction of defects is in CeO2-x at high temperatures in air
title_sort modeling the mechanism of interaction of defects is in ceo2-x at high temperatures in air
publisher Науковий фізико-технологічний центр МОН та НАН України
publishDate 2011
url http://dspace.nbuv.gov.ua/handle/123456789/76998
citation_txt Modeling the mechanism of interaction of defects is in CeO2-x at high temperatures in air / A.E. Solovyova // Физическая инженерия поверхности. — 2011. — Т. 9, № 4. — С. 369–375. — Бібліогр.: 14 назв. — англ.
series Физическая инженерия поверхности
work_keys_str_mv AT solovyovaae modelingthemechanismofinteractionofdefectsisinceo2xathightemperaturesinair
first_indexed 2025-07-06T01:23:17Z
last_indexed 2025-07-06T01:23:17Z
_version_ 1836858734086717440
fulltext 369 INTRODUCTION The grain boundaries in polycrystalline com- pounds are imperfections in the crystal structure, which promotes the release of a new phase in polymorphic transformations during decompo- sition of solid solutions [1]. The study of the processes of interaction of grain boundaries with vacancies, with impurity atoms and dislocations is an important task for creating materials with specific properties [2]. The lack of direct observations, which could explain the mechanism of interaction of defects with grain boundaries in polycrystalline mate- rials, indicate the difficulty of the experiments are therefore used data obtained from indirect experiments of interaction boundariіes with im- purity atoms and defects in oxide compounds [3 – 5]. Difficulties in determining the strength of in- teraction of defects (vacancies, impurity atoms and dislocations) and grain boundaries consist of a complex process. In addition to the elastic interaction, it also depends on the thermody- namic potentials, that arise is due to the appea- PACS: 546.655.4: 536.42.11 MODELING THE MECHANISM OF INTERACTION OF DEFECTS IS IN CeO2-x AT HIGH TEMPERATURES IN AIR A.E. Solovyova Sumy State University, Ukraine Received 30.10.2011 The consequent of mathematical models with elements of theory probability and experimental results, calculations permitted to determinate the energy formation of: anion vacancies (uв∼ 0.9 eV), border and screw dislocations (u⊥ ∼ 1.67 eV; us ∼ 2.08 eV), and the energy of movement point defects (ud∼ 1.8 eV) and of movement the borders grain (uз ∼ 0.65 eV), strain which were connected with co- operation action point defects with admixture (0.25 eV – energy of formation center painting) in CeO2 – x at high temperatures in air. The evaporation and disintegration harden solution on the base CeO2 – x were determinate on the base obtained facts the next structure cubic phases F – F1 – C. The process oxidation at 1500 °C accompanied of disappear the border, spiral dislocations and point defects. Keywords: mathematical models, theory probability, process oxidation, point defects, spiral dislocations, disintegration harden solution. Последовательность математических моделей с елементами теории вероятностей и экспери- ментальные результаты расчеты позволили найти энергии образования: анионных вакансий (uв ~ 0.9 еВ), краевых и винтовых дислокаций (u⊥ ∼ 1.67 еВ; us 2.08 eВ) и энергию движения анионных вакансій (ud ∼ 1.8 eВ), энергию напряжения, которая связана с объединением точечных дефектов с примесями, энергию образования центров окраски в структуре CeO2–х при высоких температурах на воздухе. Восстановление и распад твердого раствора приводит к фазовому превращению и появлению фаз типа F – F1 – C. Процесс окисления при 1500 °C сопровождает- ся исчезновением краевых, винтовых дислокаций, точечных дефектов. Ключевые слова: математические модели, теория вероятности, процесс окисления, точечные дефекты, винтовые дислокации, распад твердого раствора. Послідовність математичних моделей з елементами теорії ймовірностей та експериментальні результати, розрахунки дозволили знайти енергію утворення: аніонних вакансій – точкових дефектів (uв ∼ 0.9 еВ), крайових та гвинтових дислокацій (u⊥ ∼ 1.67 еВ; us ~ 2.08 eВ) та енергію руху аніонних вакансій (ud ∼ 1.8 eВ), енергію напруження яка пов’язана з єднання точкових дефектів з домішками, енергію утворення центрів окраски (0.25 eВ) у CeO2–х при високих температурах у середі повітря. Випарювання та розпад твердого розчина на базі CeO2–x утри- мали фазові перетворення у структурі та появи фаз F – F1 – C . Процес окислення при 1500 °C супроводжу зникати крайових та гвинтових дислокацій, точкових дефектів. Ключові слова: математичні моделі, теорія ймовірності, процес окислення, точкові дефекти, гвинтові дислокації, розпад твердого розчина.  A.E. Solovyova, 2011 ФІП ФИП PSE, 2011, т. 9, № 4, vol. 9, No. 4370 rance of the boundary of the concentration gra- dients, as well as, electronic and chemical inte- ractions, that occur noticeably at a considerable distance from the grain boundary [6]. One of the most important properties of the grains is their ability to move (migration) due to the influence of the effort, the interaction of im- purity atoms, temperature, environment, etc. The sequence of movements of individual boundaries is a source of information about the structure of crystals [7]. In [8] provides information about what certa- in deviation from regular order in structure con- trol of phase transformations of cerium dioxide at high temperature annealing in air and vacuum. In the present work use mathematical models with elements of theory probability for the defi- nitions energy: the formation structural defects in of cerium dioxide at high temperatures in air; the interaction of grain boundaries with defects and movement the borders grain; strain, which were connected with co-operation action of the different defects. EXPERIMENTAL REZULTS THE MATHEMATICAL MODELS WITH ELEMENTS OF THEORY PROBABILITY USE FOR THE FORMATION STRUC- TURAL DEFECTS IN CERIUM DIOXIDE AND INTERACTION BETWEEN THEM The samples of cerium dioxide used for the stu- dies were obtained by the technology [8, 9] at 1800 °C (3 hours), 1900 °C (3 hours), 2000 °C (1 h), hardened in water. They had: mostly single-phase cubic structure of type F1 with larger unit cell parameters, and small quantity of Сe2O3 in the samples tempered from 2000 °C. All samples contained various de- fects, and grain size (∼ 100 – 138 microns), res- pectively. The microstructure of these samples is shown in fig. 1a; b; c; d: a) – samples obtained at 1800 °C had: wide grain boundaries, the color samples was of dark brown, which indicates the formation of anion vacancies, which trap the free electrons and form the centers of paints; b) – the samples obtained at 1900 °C contained: wide more angle boundaries of the grains, edge dislocations with the density equal ∼ 6⋅1013⋅1/m2, which form low angle boundaries with different orientations to the more angular borders, the color samples was black; c) – microstructure of the grains samples obtained at 2000 °C, included: the wide boun- daries of grain, the screw dislocations with dif- ferent orientations and, cracked, chipped grain, color patterns was black. Black paint samples obtained at 1900; 2000 °C indicate on the formation of new centers of pa- ints, and the presence of edge and screw disloca- tions show growing stress in the samples. The mechanism of formation defects in ce- rium dioxide can be described of the next formula СеО2 → Се1-х 4+ Сех 3 + О2–х/2 €х /2 , where, € – anion vacancy, x – a deviation from regular order in structure . Change the color of the samples at 1900 °С; 2000 °С due to the fact, that there is some proba- bility of the process Се3+ + € → Се4+ + centers of paints. The more of these complexes are in structure of cerium dioxide it is the stronger change the color of the samples, the parameter of lattice in- crease considerable form consist of Се3+. The in- crease in the unit cell parameter of cerium dio- xide in F1-phase indicates the formation of a solid Fig. 1. The microstructure of samples of cerium dioxide, received of tempering from temperature: а) – 1800 °С, X 340; b) – 1900 °С, X340; c) – 1900 °С, X17000; d) – 2000 °С, X340; e) – 2000 °С (3 hour), X340 – evaporation of cerium dioxide. a) b) c) d) e) MODELING THE MECHANISM OF INTERACTION OF DEFECTS IS IN CeO2-x AT HIGH TEMPERATURES IN AIR 371 solution with increasing stress in the lattice, which lead to the formation of edge and screw dislocations. The experimental results showed, that at: 1800 °С (х = 0.202); 1900 °С (х = 0.308); 2000 °С – х = 0.500), where x – a deviation from regular order in structure. The microstructure of these samples showed, that in cerium dioxide there is a certain complex defects at each temperature. Probably, these pro- cesses have the property of the ordinary and can be consistently investigate. CALCULATE OF THE ENERGY OF MIGRATION BOUNDARY OF THE GRAIN Perhaps, the energy of formation of the anion vacancy, the centers of paints, the dislocations, the migration boundary grain and the mobility of defects in the structure determined by the Boltzmann equation for various states of the system: p[A(T)] = A0⋅exp (–u/kT), where А0 is about – the total frequency of the oscillations of atoms starting positions of the lattice, and A is a function of the physical parameters of the system depending on the temperature. For two states of a solid at temperatures Т1;Т2 , use the relative pro- bability of finding the energy states of a rigid body can be determined: p[A(T1)]/p[A(T2)] = exp(–u/kT1)/exp(–u/kT2), (1) where: u – the energy state of a solid; k – Bolt- zmann constant; that K – temperature solid state. v1 = v0exp(–u/kT1); v2 = v0exp(–u/kT2 ), (2) where v0 – the common velocity of movement of defects, performed with the initial position; A(T) = v1; v2 – the rate of the migration boundary grain at different temperatures; u – the energy of the migration boundary grain. Relation: v1/v2 = exp [– k u (1/T1 – 1/T2)], (3) or 1 2 1 2 1 2 ln v u T T v k T T  −=     ; then 1 2 1 2 1 2 lnT T vu k T T v = − . (4) The energy of migration of grain can to de- termine at the change of values of the grain of samples at different temperatures or the velocity of the migration boundaries of grain over a wide temperature range of annealing. The energy of migration boundaries of grain in of cerium dioxide, determined by this method is: ug ∼ 0.65 eV at 1800 – 1900 °С. The activa- tion energy of the process recovery in cerium dio- xide is uv ∼ 0.9 eV. Since these processes are in- terrelated, it is obvious, can assume that the dif- ference in uv – ug∼ 0.25 eV, and to obtain the energy formation of centers of paints (anion vac- ancy + electron) in the structure of cerium dio- xide equal 0.25 eV. These relations, energy (mig- ration of the grains; these centers of paints) are connected with elastic stresses in the lattice of cerium dioxide. The energy of migration boundaries of grain in of cerium dioxide at temperatures 1900 – 2000 °С it equal ug ∼ 0.85 eV. This value is com- parable with the activation energy of the forma- tion of anion vacancies, which indicates a signi- ficant change in the chemical composition of the cationic and anionic sub lattices of cerium dio- xide, and the presence of edge and screw dislo- cations in these samples indicate significant plastic deformation. Increased energy of migration of grains and the presence of screw dislocations at 2000 °С is the evidence about of evaporation cerium dioxi- de, which proceeds with the transition in Се2О3-х and its evaporation by screw dislocations. According to [10], cerium oxide melts at abo- ut ∼ 2150 °С. These data indicate that before mel- ting cerium oxide evaporates in the form of non regular order in structure of oxides. CALCULATE OF THE ENERGY OF FORMATION EDGE AND SCREW DISLOCATIONS On the deviation from regular order in structure at temperatures of 1800° – 1900° – 2000 °С de- fine the magnitude of the formation energy edge and screw dislocations, the density of defects determined from the experiment (fig. 1). By formula (1) in the cerium dioxide can de- termine the energy of formation of line defects, where the quantity A(T) – x – deviation from the regular order in structure of cerium dioxide at a suitable temperature, u – formation energy of the dislocation. A.E. SOLOVYOVA ФІП ФИП PSE, 2011, т. 9, № 4, vol. 9, No. 4 ФІП ФИП PSE, 2011, т. 9, № 4, vol. 9, No. 4372 The energy of formation of an edge dislo- cation in cerium dioxide in 1800 – 1900 °С, u⊥ ∼ 1.67 eV and the energy of a screw dislocation in the interval 1900 – 2000 °С: uв ∼ 2.08 eV. The magnitude of the formation energy of the dislocation in the grains of cerium dioxide can be estimated directly from the experience. Since the experimentally observed shift of the unit cell parameter for short distances, for small shear strain, Hooke’s law is valid. Poisson’s coefficient v = 0.515, the module shear for cerium dioxide, according to [11] can be determined at different temperatures by extrapolating the straight-line relationship to the desired temperature set point. Using these data can be to estimate the energy of formation of edge dislocations on the formula, as follows: ud = ∫f⋅βdS, (5) where f – average power (per unit area of S), which is attached to a point on the surface of the crystal during the process of displacement; β – Burger vector of the dislocation [12 – 14]. As a result of these shifts occur in the crystal lattice strain, which under certain values lead to plastic deformation. The stresses in the crystals, which are a function of bias, that leaded to the formation of certain concentrations of disloca- tions and may be determined by X-ray method using the following equation: 00 0 0 2 1 0.515 a aa aE v a a     −−σ = = µ +           ∑ , (6) where σ – stress in the crystal, E – Young’s mo- dulus; ν – Poisson’s ratio; µ – shear modulus, a – setting the unit cell strained cubic crystal, a0 – the lattice parameter of the unstressed crystal. Force f can be determined depending on: f = ∑(σ2 – σ1)/ρ, (7) where σ1; σ2; σ3 – stress in the crystal at different temperatures; ρ – density of dislocations. The energy of formation of dislocations is determined consistently by the formula: ud ∼ f ⋅(a2. – а1) – for an edge dislocation, (8) ud ∼ f ⋅(a3 – a2) – for a screw dislocation, where а1;2;3 – the lattice strain of a cubic crystal. In this way the energy of formation have been defined edge and screw dislocations, which occur at 1900; 2000 °C, respectively. The presence of screw dislocations in the structure of cerium dioxide indicates the destru- ction of the cationic in sub lattice and the be- ginning of evaporation. The evaporation takes place on the following reaction: solid solution based on F1 with a certain amount of Се3+ enters Се2О3-х, which evaporates on the screw disloca- tions. In this form the dislocation pipes of various diameters in height of the dislocation (fig. 1e) and the length of the tube on both sides can see the process of evaporation of cerium oxide, as well as glide of the dislocations. OXIDATION OF SAMPLES OF CERIUM DIOXIDE AT LOWER TEMPERATURES IN AIR 1) Samples of cerium dioxide, obtained at 1800 – 1900 – 2000 °С temperatures, were subjected to oxidative annealing at lower temperatures in air (1600 – 1400 °C – 20 hours). It was found that the samples obtained at 1800 °C are oxidized. This process is accompa- nied by a decrease in the lattice parameter and the transition phase of type F1 → F. By changing the unit cell parameter were de- termined residual deviation from regular order in structure at 1600 – 1400 °C and with help of formula (1) is defined by the migration energy of anion vacancies equal ud ∼ 1.8 eV at phase transformation F1 → F. The free energy migration of defect determi- ned by the relationship: F ∼ (ud – TSd), (9) where ud – energy migration of defects, T – tem- perature K; Sd – entropy. The frequency of transition determined by: vd ∼ Bv0exp(–ud/kT), (10) where (10) is B – factor ∼ exp(Sd/k) > 1. A defect in the crystal is moving in the direc- tion of the force, the rate of this drift is described by the Einstein relation vd = Dd F/kT, (11) where Dd ∼ D0exp(–Q/kT) – (the law of Flick), (12) Table 1 Т, К α*, nm σ, Н/m2 ρ, m–2 U, eV 2073 0,5417 15⋅107 – – 2173 0,5425 17⋅107 6⋅1013 1,67 ⊥ – edge dislocation 2273 0,5435 27⋅107 3⋅1013 2,08 s - screw dislocation *α0 = 0,5409 nm. – phase type F 1 unstressed crystal. MODELING THE MECHANISM OF INTERACTION OF DEFECTS IS IN CeO2-x AT HIGH TEMPERATURES IN AIR 373 where is D0 – called the frequency factor; Q = (uv + ud) – the energy of activation. The heterogeneity in the solid phase at tem- peratures leads to the formation of gradients con- centration of defects, it cause of force. Thus, the Einstein relation leads to the flow of defects: vd ∼ Dd⋅gradn, (13) where Dd – is the coefficient diffusion of defects; n – concentration of anion vacancies and for ce- rium dioxide is: n ∼ x/4, coefficient D0 ∼ 9.5⋅10–5. We find the parameters of the unit cell and values x at the temperatures: x – at 1600 °C and 1400 °C and determine the velocity of flow: at 1600 °C: vd ∼ 2⋅10–13 m2/s and velocity of movement boundaries of grain ∼ 2.2⋅10–10 m/s; at 1400 °С: vd ∼ 2.5⋅10–15 m2/s, velocity of mo- vement boundaries of grain ∼ 1.4⋅10–10 m/s. 2) The samples, cerium dioxide, obtained at 1900 °С and with consisting of the borders dislo- cations investigated by high-temperature X-ray at 1500 °С in air with different exposures (tabl. 2). The exposures of simple at 1500 °С (30 – 240 minutes) observation a jump of parameter of the phase cubic type F1 and appear on X-ray lines characteristic for Се2О3 (fig. 2). The intensity of these lines increases with increasing exposure time to 360 minute, indicating a significant concentration of this phase. The microstructure of these samples is shown in (fig. 3a, b, c, d). After holding of the samples in during 120 minute was drift on the grain boundaries, and the shift in one direction. Further holding of the samples at this temperature leads to a square plate on these borders and these crystals can be seen as the lists an open book. Then there is a marked increase in individual of the phase cubic type C of cerium dioxide and the velocity increase equal ∼ 1.1⋅10–9 m/s. This value is an order of magnitude greater than the rate of migration of grain boundaries of cerium dioxide at temperatures of 1400 – 1600 °С, that indicates a large rate of formation of free complexes containing Се3+, the decay of solid solutions based on F1, which the grating was very tense, and the microstructure contains mixed the phases: F1 and C-type of ce- rium oxide. 3) The samples, cerium dioxide, obtained at 2000 °С and with consisting of the screw dis- Table 2 The values of parameters of phase F1-type fluorite of cerium dioxide at 1500 °С in air Tame exposures, min а, nm at direction [311] 30 0,5528 60 0,5528 120 0,5526 180 0,5525 240 0,5521 300 0,5521 360 0,5521 A.E. SOLOVYOVA Fig. 2. X-ray diffractions of phase transformation F1-type fluorite of cerium dioxide at 1500 °С in air, received at: 1 – 60; 2 – 120; 3 – 240; 4 – 600; 5 – 1200 minutes, • – the phase of F1-type, � – the phase C-type. a) b) c) d) Fig. 3. The microstructure samples of phase F1 type fluorite of cerium dioxide at 1500 °С in air: a) – 120; b) – 240; c) – 600; d) – 1200, (tame exposures, minutes), X340. ФІП ФИП PSE, 2011, т. 9, № 4, vol. 9, No. 4 ФІП ФИП PSE, 2011, т. 9, № 4, vol. 9, No. 4374 locations which was obtained at 2000 °С and then annealed at 1500 °С in air with different exposures (fig. 4). The oxidation process is accom-panied by the gradual disappearance of the rotation and screw dislocations, increasing the width of the cracks and chips. Isolation of C-type cubic phase of cerium oxide in these sam- ples is considerably less, indicating that evapo- ration of the cubic phase of C-type on the screw dislocations at 2000 °С. CONCLUSION Modeling the mechanism of interaction of defects is in CeO2–x at high temperatures in air, was founded on the mathematical models with elements of theory probability, which use for the formation of the structural defects in cerium dioxide and interaction between them. The evaporation of cerium dioxide in interval of temperatures 1800 – 2000 °С in air be a) b) Fig. 4. The microstructure of samples of cerium dioxide, which obtained at 2000 °С, and then annealed at 1500 °С in the air: а) – 600, b) – 1200, ( tame exposures, minutes), X340. accompanied appearance definite complex of defects (the boundary of grain – anions vacancy, center of paint; the boundary of grain - border and spiral dislocations). The mathematical calculations and experi- mental results, realization on the by high-tempe- rature X-ray diffraction – the change of parame- ters in the unit cell, composition of phases and the microstructure of samples of cerium dioxide as at evaporation, so and at oxidation per missed to define the correctly methods at of interaction of defects in structure of cerium dioxide. REFERENCES 1. Li I.C. The grain boundaries-defects are in crystals//J. Appl. Physics.– 1962. – Vol. 35. – P. 2958-2961. 2. Bondar V.G., Gavrilyuk V.P., Konevskii V.S. Ce3+ scintillation with high energy divide Semicon- ductor Physics//Quantum Electronics and Optoelectronics. – 2001. – Vol. 4. – P. 131-133. 3. Vlasov A.N. Complexes of two ions of the im- purity-vacancy in solid solutions CeO2 – rare earth element oxide//Kristallografiya. – 1978. – Vol. 23. – P. 1278-1279. 4. Elesin V.F. On the mechanism of formation of defect clusters in solids//Dokl. – 1988.– Vol. 298, № 6. – P. 1377-1379. 5. Miloslavsky A.G., Suntsov A.N. Defects in the structure and electron transfer in S i O2//Physics and Technology of High Pressure. – 2000. – Vol. 10. – P. 61-66. 6. Solovyova A.E., Shvangiradze R.R. The study of the conditions of formation of anion vacancies in polycrystalline Al2 O3//Izv. Akad. Neorgan. Math. – 1977. – Vol. 13. – P. 1633-1636. 7. Prosandeev S.A., Fesenko A.V., Savchenko V.P. Electronic structure of point defects in oxides of transition elements//Ukr. nat. Journal. – 1987. – vol. 32. – P. 1690-1698. 8. Solovyova A.E. The influence of structural de- fects on phase transitions in oxide crystals with a fluorite structure with thermal effect//Dopov. natsіonal. akad. Scien. of Ukraine. – 2004. – Vol. 1. – P. 62-69. 9. Solovyova A.E.//Auth. St. № 745882. – 1980. 10. Shevchenko V.J., Barinov S.M. Technical cera- mics. – M.: House of Science, 1993. – 185 p. 11. Samsonov G.V. Physical-chemical properties of oxides. – M.: Metallurgy, 1978. – 471 p. 12. Uert C., Tom R. Dream Solid State Physics. – M.: World, 1969. – 557 p. MODELING THE MECHANISM OF INTERACTION OF DEFECTS IS IN CeO2-x AT HIGH TEMPERATURES IN AIR 375 13. Mirkin L.I. Handbook of X-ray analysis of poly crystals. – M.: Univ. Phys.-Mathem. Lit., 1961. – 863 p. A.E. SOLOVYOVA ФІП ФИП PSE, 2011, т. 9, № 4, vol. 9, No. 4 14. Matare G. Electronics defects in semiconductors. – M.: World, 1974. – 463 p.