Simulation of the front and rear side illumination of the CdS/CIGS thin film solar cell

In this study the effect of the rear side illumination on the CdS/CIGS thin film solar cell has been studied. The simulation program SCAPS-1D was used in this study. This program was developed for the simulation properties of the CdS/CdTe and CdS/CIGS thin film solar cells. At the rear side illumina...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2011
Hauptverfasser: Pogrebnyak, A.D., Rasheed, L.S., Allohaibee, A.K., Muhammed, A.K.
Format: Artikel
Sprache:English
Veröffentlicht: Науковий фізико-технологічний центр МОН та НАН України 2011
Schriftenreihe:Физическая инженерия поверхности
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/77002
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Simulation of the front and rear side illumination of the CdS/CIGS thin film solar cell / A.D. Pogrebnyak, L.S. Rasheed, A.K. Allohaibee, A.K. Muhammed // Физическая инженерия поверхности. — 2011. — Т. 9, № 4. — С. 390–394. — Бібліогр.: 6 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-77002
record_format dspace
spelling irk-123456789-770022015-02-16T03:01:47Z Simulation of the front and rear side illumination of the CdS/CIGS thin film solar cell Pogrebnyak, A.D. Rasheed, L.S. Allohaibee, A.K. Muhammed, A.K. In this study the effect of the rear side illumination on the CdS/CIGS thin film solar cell has been studied. The simulation program SCAPS-1D was used in this study. This program was developed for the simulation properties of the CdS/CdTe and CdS/CIGS thin film solar cells. At the rear side illumination the efficiency of the cell decreased as the thickness of the CIGS absorber layer increased. This was because the light is absorbed far from the junction and near the high recombination back contact region. So that the generated electron-hole pairs are recombined before they reach the junction to separate. The losses in the generated electron-hole pairs increase as the thickness of the CIGS absorber layer increase and this is clearly shown in the variation of the quantum efficiency with the absorber thickness at the rear side illumination. В цьому дослідженні було вивчено вплив освітленості тильної сторони на тонкоплівкові сонячні елементи на основі CdS/CIGS. У дослідженні застосовувалася моделююча програма SCAPS-1D. Ця програма була розроблена для моделювання властивостей сонячних елементів на основі CdS/CdTe і CdS/CIGS. При освітленості тильної сторони ККД елементу знижується, оскільки збільшується товщина абсорбуючого шару CIGS. Це відбувається в результаті того, що світло поглинається далеко від переходу, біля області контакту до тильної поверхні. Внаслідок цього, утворені електронно-діркові пари рекомбінуються до того, як досягнуть переходу для розділення. Втрати утворених електронно-діркових пар збільшуються зі збільшенням товщини абсорбуючого шару CIGS, що чітко показано в зміні квантового виходу з товщиною абсорбуючого шару при освітленості тильної сторони. В данном исследовании было изучено влияние освещенности тыльной стороны на тонко-пленочные солнечные элементы на основе CdS/CIGS. В исследовании применялась моделирующая программа SCAPS-1D. Эта программа была разработана для моделирования свойств солнечных элементов на основе CdS/CdTe и CdS/CIGS. При освещенности тыльной стороны КПД элемента снижается, так как увеличивается толщина абсорбирующего слоя CIGS. Это происходит в результате того, что свет поглощается вдали от перехода, возле области контакта к тыльной поверхности. Вследствие этого, образованные электронно-дырочные пары рекомбинируются до того, как достигнут перехода для разделения. Потери образованных электронно-дырочных пар увеличиваются с увеличением толщины абсорбирующего слоя CIGS, что четко показано в изменении квантового выхода с толщиной абсорбирующего слоя при освещенности тыльной стороны. 2011 Article Simulation of the front and rear side illumination of the CdS/CIGS thin film solar cell / A.D. Pogrebnyak, L.S. Rasheed, A.K. Allohaibee, A.K. Muhammed // Физическая инженерия поверхности. — 2011. — Т. 9, № 4. — С. 390–394. — Бібліогр.: 6 назв. — англ. 1999-8074 http://dspace.nbuv.gov.ua/handle/123456789/77002 621.715.539.376 en Физическая инженерия поверхности Науковий фізико-технологічний центр МОН та НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In this study the effect of the rear side illumination on the CdS/CIGS thin film solar cell has been studied. The simulation program SCAPS-1D was used in this study. This program was developed for the simulation properties of the CdS/CdTe and CdS/CIGS thin film solar cells. At the rear side illumination the efficiency of the cell decreased as the thickness of the CIGS absorber layer increased. This was because the light is absorbed far from the junction and near the high recombination back contact region. So that the generated electron-hole pairs are recombined before they reach the junction to separate. The losses in the generated electron-hole pairs increase as the thickness of the CIGS absorber layer increase and this is clearly shown in the variation of the quantum efficiency with the absorber thickness at the rear side illumination.
format Article
author Pogrebnyak, A.D.
Rasheed, L.S.
Allohaibee, A.K.
Muhammed, A.K.
spellingShingle Pogrebnyak, A.D.
Rasheed, L.S.
Allohaibee, A.K.
Muhammed, A.K.
Simulation of the front and rear side illumination of the CdS/CIGS thin film solar cell
Физическая инженерия поверхности
author_facet Pogrebnyak, A.D.
Rasheed, L.S.
Allohaibee, A.K.
Muhammed, A.K.
author_sort Pogrebnyak, A.D.
title Simulation of the front and rear side illumination of the CdS/CIGS thin film solar cell
title_short Simulation of the front and rear side illumination of the CdS/CIGS thin film solar cell
title_full Simulation of the front and rear side illumination of the CdS/CIGS thin film solar cell
title_fullStr Simulation of the front and rear side illumination of the CdS/CIGS thin film solar cell
title_full_unstemmed Simulation of the front and rear side illumination of the CdS/CIGS thin film solar cell
title_sort simulation of the front and rear side illumination of the cds/cigs thin film solar cell
publisher Науковий фізико-технологічний центр МОН та НАН України
publishDate 2011
url http://dspace.nbuv.gov.ua/handle/123456789/77002
citation_txt Simulation of the front and rear side illumination of the CdS/CIGS thin film solar cell / A.D. Pogrebnyak, L.S. Rasheed, A.K. Allohaibee, A.K. Muhammed // Физическая инженерия поверхности. — 2011. — Т. 9, № 4. — С. 390–394. — Бібліогр.: 6 назв. — англ.
series Физическая инженерия поверхности
work_keys_str_mv AT pogrebnyakad simulationofthefrontandrearsideilluminationofthecdscigsthinfilmsolarcell
AT rasheedls simulationofthefrontandrearsideilluminationofthecdscigsthinfilmsolarcell
AT allohaibeeak simulationofthefrontandrearsideilluminationofthecdscigsthinfilmsolarcell
AT muhammedak simulationofthefrontandrearsideilluminationofthecdscigsthinfilmsolarcell
first_indexed 2025-07-06T01:23:26Z
last_indexed 2025-07-06T01:23:26Z
_version_ 1836858744379539456
fulltext 390 INTRODUCTION Copper Indium Gallium Selenide Cu(In,Ga)Se2 (CIGS) is an interesting material for solar cell applications. CIGS is an alloy between Copper Indium Selenide CuInSe2 (CIS) and Copper Gal- lium Selenide CuGaSe2 (CGS) and is described by the chemical formula CuIn1-yGaySe2 where (y) is the ratio Ga/(Ga + In).The typical structure of the CIGS solar cell is shown in fig. 1 [1]. CIGS has a direct band gap which is a very desirable in photovoltaic materials. More op- timistically, the absorption coefficient (α) of CIGS is high around 105 cm–1 for a band gap of 1.4 eV. A polycrystalline CIGS semiconductor has a tunable band gap that varies with the gal- lium (Ga) content substituted in the CIGS mate- rial. The band gap of CIS is around 1.04 eV, whe- reas by adding Ga into the ternary system of CIS, УДК 621.715.539.376 SIMULATION OF THE FRONT AND REAR SIDE ILLUMINATION OF THE CdS/CIGS THIN FILM SOLAR CELL A.D. Pogrebnyak1, L.S. Rasheed2, A.K. Allohaibee2, A.K. Muhammed1,2 1Sumy State University, Ukraine 2University of Mosul, Mosul, Set Culture, Iraq Received 22.11.2011 In this study the effect of the rear side illumination on the CdS/CIGS thin film solar cell has been stu- died. The simulation program SCAPS-1D was used in this study. This program was developed for the simulation properties of the CdS/CdTe and CdS/CIGS thin film solar cells. At the rear side illumination the efficiency of the cell decreased as the thickness of the CIGS absorber layer increased. This was because the light is absorbed far from the junction and near the high recombination back contact region. So that the generated electron-hole pairs are recombined before they reach the junction to separate. The losses in the generated electron-hole pairs increase as the thickness of the CIGS ab- sorber layer increase and this is clearly shown in the variation of the quantum efficiency with the ab- sorber thickness at the rear side illumination Keywords: cigs, thin film, solar cell, thickness, absorber layer. В цьому дослідженні було вивчено вплив освітленості тильної сторони на тонкоплівкові сонячні елементи на основі CdS/CIGS. У дослідженні застосовувалася моделююча програма SCAPS-1D. Ця програма була розроблена для моделювання властивостей сонячних елементів на основі CdS/CdTe і CdS/CIGS. При освітленості тильної сторони ККД елементу знижується, оскільки збільшується товщина абсорбуючого шару CIGS. Це відбувається в результаті того, що світло поглинається далеко від переходу, біля області контакту до тильної поверхні. Внаслідок цього, утворені електронно-діркові пари рекомбінуються до того, як досягнуть переходу для роз- ділення. Втрати утворених електронно-діркових пар збільшуються зі збільшенням товщини абсорбуючого шару CIGS, що чітко показано в зміні квантового виходу з товщиною абсор- буючого шару при освітленості тильної сторони. Ключові слова: CIGS, тонкоплівкові, сонячні елементи, товщина, абсорбуючий шар. В данном исследовании было изучено влияние освещенности тыльной стороны на тонко- пленочные солнечные элементы на основе CdS/CIGS. В исследовании применялась модели- рующая программа SCAPS-1D. Эта программа была разработана для моделирования свойств солнечных элементов на основе CdS/CdTe и CdS/CIGS. При освещенности тыльной стороны КПД элемента снижается, так как увеличивается толщина абсорбирующего слоя CIGS. Это происходит в результате того, что свет поглощается вдали от перехода, возле области контакта к тыльной поверхности. Вследствие этого, образованные электронно-дырочные пары реком- бинируются до того, как достигнут перехода для разделения. Потери образованных электронно- дырочных пар увеличиваются с увеличением толщины абсорбирующего слоя CIGS, что четко показано в изменении квантового выхода с толщиной абсорбирующего слоя при освещенности тыльной стороны. Ключевые слова: CIGS, тонкопленочные, солнечные элементы, толщина, абсорбирующая слоя.  A.D. Pogrebnyak, L.S. Rasheed, A.K. Allohaibee, A.K. Muhammed, 2011 391ФІП ФИП PSE, 2011, т. 9, № 4, vol. 9, No. 4 the band gap energy of the CIGS quaternary sys- tem can be varied over a range of 1.04 to 1.68 eV. This property can be used to engineer the band gap of the CIGS when it is used as absorber layer in the solar cell and to make a cell with a graded band gap [2]. CIGS based solar cells have shown record ef- ficiency (∼ 20%) for thin film devices in testing. This places CIGS solar cells at the forefront of the thin film solar cell industry [3]. A wide variety of techniques has been used to fabricate CIGS. These include Evaporation, Solemnization, Ele- ctro deposition, Sputtering, Vapor Transport, Spray Pyrolysis, Electrophoretic Deposition, Li- quid Phase Epitaxial, Flash Evaporation, Laser- Induced Synthesis and Molecular Beam Epita- xial [4]. One of the methods that have been used in increasing the efficiency of the thin film solar cells is the illumination of the cell from both sides simultaneously. In this study we will shows the effect of the rear side illumination on the per- formance of the CdS/CIGS thin film solar cell. DEVICE SIMULATION Simulation of the structure (front contact/ZnO/ CdS/CIGS/back contact) thin film solar cell was carried out using the simulation program SCAPS-1D. This program was developed at the University of Gent for the simulation of the photonic devices. For the front side illumination the back contact was the Molybdenum. In the rear side illumination the Molybdenum was replaced with a transparent conducting oxide (TCO), such as Indium Tin Oxide (ITO). ITO has 85% transparency at 550 nm incident wave- length [5]. RESULT AND DISCUSION − The optical generation in the CdS/CIGS thin film solar cell. Generation due to monochromatic light source describe by the following equation ( ) ( )0 expPG y y Ahv α= −α . (1) The spectrum of the light used in the simu- lation results is the standard one-sun illumination also called AM1.5. The total generation is the sum of wavelengths generation. Fig. 2 illustrates the total generation due to AM1.5. The generation by short and long wave- lengths light in the CdS/CIGS cell is illustrated in fig. 3a and fig. 3b respectively. Short wave- lengths light (λ ≤ 400 nm) are strongly absorbed and hence there is no significant deep generation and most of generation processes will occur in the CdS buffer layer and ZnO widow layer. Long wavelengths light (λ ≥ 600 nm) which have smaller absorption coefficient (α ) shows absorption and generation rate rather deep in the cell and most of the absorption will occur in the CIGS absorber layer. − B. The output parameters. The dependence of the output parameters (Voc, Jsc, FF%, η% and QE(λ)) of the CdS/CIGS Fig. 1. Structure of the CIGS solar cell. Fig. 2. Total generation due to one-sun illumination in the baseline cell. a) A.D. POGREBNYAK, L.S. RASHEED, A.K. ALLOHAIBEE, A.K. MUHAMMED G en er at io on /R ec om b. ( sm –3 ⋅s–1 ) G en er at io on /R ec om b. ( sm –3 ⋅s–1 ) 392 cell on the absorber layer thickness for both front and rear side illumination is shown in fig. 4. For front side illumination both the open circuit voltage (Voc) and the short circuit current density (Jsc) of the cell was increased when the thickness of the absorber layer increased from 200 nm to 3000 nm. Voc remains high unless the absorber layer thickness is less than 500 nm. When the thickness of the CIGS increased this will allow the longer wavelengths of the illumination to be absorbed (as shown in fig. 3b) which in turn contribute in the electron-holes pair generation. Thus Voc and Jsc increased as the absorber layer thickness increased. This will result in increasing in the fill factor (FF%) and the efficiency (η%) of the cell. If the absorber layer thickness reduced, the high recombination back contact region will be very close from the depletion region. Thus the electrons will be captured easily by the back contact for the recombination process. Therefore, fewer electrons will contribute in the generation process. The result was reduction in the output parameters for thin absorber. For the rear side illumination it is required most of the light to be absorbed in the bulk part of the CIGS absorber layer. For the rear side illumination and thick absorber the absorbed light generate carriers in the bulk part of the absorber and often far from the electric field of the junction and near the high recombination back contact region so that and at the same absorber thickness Voc and Jsc for the rear side illumination will be less than what found in the front side illumination as shown in fig. 4. Also at the rear side illumination Voc increa- sed as the thickness of the absorber layer increa- sed from 200 nm to 600 nm because the photons will be absorbed near the junction, and the ge- nerated electron-hole pairs will have strong pro- bability to be separated. For absorber thickness above 600 nm the photons absorbed far from the electric field so that Voc decreased when the ab- sorber thickness increased to 3000 nm. Jsc decre- ased when the absorber layer thickness increased for rear side illumination because the photons will be absorbed near the high recombination back contact region and far from the space charge region. The reduction in Voc and Jsc will causes a reduction in FF% and η%. As shown in fig. 4. For front side illumination the longer wave- lengths photons will be absorbed deeper within the CIGS layer (as shown in fig. 3b). So that the effect of the CIGS absorber layer thickness on the quantum efficiency (QE(λ)) has been oc- Fig. 3. Generation due to (a) short wavelengths (λ ≤ 400 nm) and (b) long wavelengths (λ ≥ 600 nm) in the CdS/ CIGS solar cell. b) Fig. 4. The dependence of the output parameters of on the absorber layer thickness for front and back side illu- mination. SIMULATION OF THE FRONT AND REAR SIDE ILLUMINATION OF THE CdS/CIGS THIN FILM SOLAR CELL ФІП ФИП PSE, 2011, т. 9, № 4, vol. 9, No. 4 G en er at io on /R ec om b. ( sm –3 ⋅s–1 ) 393ФІП ФИП PSE, 2011, т. 9, № 4, vol. 9, No. 4 curred in the region extended from λ = 520 nm to λ = 1200 nm as shown in fig. 5. For thick absorber layer the generation process has been occurred far from the back contact region so that the quantum efficiency will increase when the absorber layer thickness increase. Fig. 6 shows QE(λ) of the cell for the rear side illumination (red) as compared with QE(λ) for the front side illumination for 500 nm absor- ber thickness. In this figure the losses in the ab- sorbed photons due to the absorption far from the electric field and near the high recombination back contact region for the rear side illumination is evident. The losses are high for the photons which have large absorption coefficient (small wavelengths). The dependence of the quantum efficiency for the rear side illumination on the CIGS absorber thickness is shown in fig. 7. The thickness was 0.25 µm, 0.5 µm and 1µm. The photons which have a large absorption coefficient (low wave- length) have a high generation probability in a thiabsorber (below 0.5 nm) because it will gene- rate electron-hole pairs near the electric field. The quantum efficiency at low wavelength is high for the rear side illumination as compared with front side illumination because the high-energy photons will be absorbed by CdS buffer layer at front side illumination. The effect of the rear-si- de illumination on the Light/Dark J-V curves and the quantum efficiency (QE(λ)) of the CdS/CIGS thin film solar cell has been studied practically by T. Nakada et. al. [5]. He took the effect of the CIGS absorber layer thickness and the concen- tration of Gallium (Ga) at the rear-side illumina- tion on the output parameters and the quantum efficiency into consideration. A good agreement between these practical results and the found si- mulation results. CONCLUSION At the front side illumination the light needed to pass through the window and buffer layer and this will results in a losses in the number of the photons in the absorber layer. When the thickness of the CIGS absorber layer increased the effi- ciency of the cell increased due to the high pro- bability of absorption for the long wavelength photons. While at the rear side illumination the incident light will absorbed in the bulk part of the absorber layer but near the high recombina- tion back contact region. Fig. 5. Variation of the quantum efficiency of the baseline cell with the thickness of the absorber layer. Fig. 6. Quantum efficiency at front and rear side illumi- nation for 500 nm CIGS absorber thickness. Fig. 7. The dependence of the quantum efficiency on the absorber thickness for the rear-side illumination as com- pared with the front side illumination. A.D. POGREBNYAK, L.S. RASHEED, A.K. ALLOHAIBEE, A.K. MUHAMMED 394 So that when the thickness of the CIGS ab- sorber layer increase the electron-hole pairs will generate far from the electric field of the junction and near the high recombination back contact region. Therefore the generated electron-hole pairs will recombine by the back contact before they separated by the electric field of the junction. REFERENCES 1. Jef P. and Vladimir A. Thin film solar cells fabri- cation, characterization and applications. – John Wiley&Sons Ltd, 2006. 2. Jeffery. L.G., Richard. J.S., and Youn J.L. Nume- rical modeling of graded band gap CIGS solar cells. – ECE Technical Reports, 1994. 3. Nakada T., Kanda Y., Kijima S., Komiya Y., Oh- mori D., Ishizaki H., and Yamada N. Bifacial SIMULATION OF THE FRONT AND REAR SIDE ILLUMINATION OF THE CdS/CIGS THIN FILM SOLAR CELL ФІП ФИП PSE, 2011, т. 9, № 4, vol. 9, No. 4 CIGS Thin Film Solar Cells//20th European Pho- tovoltaic Solar Energy Conference. – 2005. 4. Joseph B., Manoj P.K., Vajdyan V.K. Studies on preparation and characterization of indium do- ped oxide films by chemical spray deposition// Bull. Mater. Science. – 2005. – Vol. 28, № 5. – P. 487-493. 5. Ingrid R., Stephen G., Joel D., Timothy J.C., Wyatt K.M., and Miguel A.C. Required material roperties for high-efficiency CIGS modules. – National Renewable Energy Laboratory, 2009. 6. Sushea M., Christoulakis S., Moschovisk K., et. al. Nanostruktured ZnO and ZAO transparen thin filma by sputtering-surface characterization// Rev. Advan. Mater. Scien. – 2005. – Vol. 10. – P. 335-340.