Simulation of the front and rear side illumination of the CdS/CIGS thin film solar cell
In this study the effect of the rear side illumination on the CdS/CIGS thin film solar cell has been studied. The simulation program SCAPS-1D was used in this study. This program was developed for the simulation properties of the CdS/CdTe and CdS/CIGS thin film solar cells. At the rear side illumina...
Gespeichert in:
Datum: | 2011 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Науковий фізико-технологічний центр МОН та НАН України
2011
|
Schriftenreihe: | Физическая инженерия поверхности |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/77002 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Simulation of the front and rear side illumination of the CdS/CIGS thin film solar cell / A.D. Pogrebnyak, L.S. Rasheed, A.K. Allohaibee, A.K. Muhammed // Физическая инженерия поверхности. — 2011. — Т. 9, № 4. — С. 390–394. — Бібліогр.: 6 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-77002 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-770022015-02-16T03:01:47Z Simulation of the front and rear side illumination of the CdS/CIGS thin film solar cell Pogrebnyak, A.D. Rasheed, L.S. Allohaibee, A.K. Muhammed, A.K. In this study the effect of the rear side illumination on the CdS/CIGS thin film solar cell has been studied. The simulation program SCAPS-1D was used in this study. This program was developed for the simulation properties of the CdS/CdTe and CdS/CIGS thin film solar cells. At the rear side illumination the efficiency of the cell decreased as the thickness of the CIGS absorber layer increased. This was because the light is absorbed far from the junction and near the high recombination back contact region. So that the generated electron-hole pairs are recombined before they reach the junction to separate. The losses in the generated electron-hole pairs increase as the thickness of the CIGS absorber layer increase and this is clearly shown in the variation of the quantum efficiency with the absorber thickness at the rear side illumination. В цьому дослідженні було вивчено вплив освітленості тильної сторони на тонкоплівкові сонячні елементи на основі CdS/CIGS. У дослідженні застосовувалася моделююча програма SCAPS-1D. Ця програма була розроблена для моделювання властивостей сонячних елементів на основі CdS/CdTe і CdS/CIGS. При освітленості тильної сторони ККД елементу знижується, оскільки збільшується товщина абсорбуючого шару CIGS. Це відбувається в результаті того, що світло поглинається далеко від переходу, біля області контакту до тильної поверхні. Внаслідок цього, утворені електронно-діркові пари рекомбінуються до того, як досягнуть переходу для розділення. Втрати утворених електронно-діркових пар збільшуються зі збільшенням товщини абсорбуючого шару CIGS, що чітко показано в зміні квантового виходу з товщиною абсорбуючого шару при освітленості тильної сторони. В данном исследовании было изучено влияние освещенности тыльной стороны на тонко-пленочные солнечные элементы на основе CdS/CIGS. В исследовании применялась моделирующая программа SCAPS-1D. Эта программа была разработана для моделирования свойств солнечных элементов на основе CdS/CdTe и CdS/CIGS. При освещенности тыльной стороны КПД элемента снижается, так как увеличивается толщина абсорбирующего слоя CIGS. Это происходит в результате того, что свет поглощается вдали от перехода, возле области контакта к тыльной поверхности. Вследствие этого, образованные электронно-дырочные пары рекомбинируются до того, как достигнут перехода для разделения. Потери образованных электронно-дырочных пар увеличиваются с увеличением толщины абсорбирующего слоя CIGS, что четко показано в изменении квантового выхода с толщиной абсорбирующего слоя при освещенности тыльной стороны. 2011 Article Simulation of the front and rear side illumination of the CdS/CIGS thin film solar cell / A.D. Pogrebnyak, L.S. Rasheed, A.K. Allohaibee, A.K. Muhammed // Физическая инженерия поверхности. — 2011. — Т. 9, № 4. — С. 390–394. — Бібліогр.: 6 назв. — англ. 1999-8074 http://dspace.nbuv.gov.ua/handle/123456789/77002 621.715.539.376 en Физическая инженерия поверхности Науковий фізико-технологічний центр МОН та НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
In this study the effect of the rear side illumination on the CdS/CIGS thin film solar cell has been studied. The simulation program SCAPS-1D was used in this study. This program was developed for the simulation properties of the CdS/CdTe and CdS/CIGS thin film solar cells. At the rear side illumination the efficiency of the cell decreased as the thickness of the CIGS absorber layer increased. This was because the light is absorbed far from the junction and near the high recombination back contact region. So that the generated electron-hole pairs are recombined before they reach the junction to separate. The losses in the generated electron-hole pairs increase as the thickness of the CIGS absorber layer increase and this is clearly shown in the variation of the quantum efficiency with the absorber thickness at the rear side illumination. |
format |
Article |
author |
Pogrebnyak, A.D. Rasheed, L.S. Allohaibee, A.K. Muhammed, A.K. |
spellingShingle |
Pogrebnyak, A.D. Rasheed, L.S. Allohaibee, A.K. Muhammed, A.K. Simulation of the front and rear side illumination of the CdS/CIGS thin film solar cell Физическая инженерия поверхности |
author_facet |
Pogrebnyak, A.D. Rasheed, L.S. Allohaibee, A.K. Muhammed, A.K. |
author_sort |
Pogrebnyak, A.D. |
title |
Simulation of the front and rear side illumination of the CdS/CIGS thin film solar cell |
title_short |
Simulation of the front and rear side illumination of the CdS/CIGS thin film solar cell |
title_full |
Simulation of the front and rear side illumination of the CdS/CIGS thin film solar cell |
title_fullStr |
Simulation of the front and rear side illumination of the CdS/CIGS thin film solar cell |
title_full_unstemmed |
Simulation of the front and rear side illumination of the CdS/CIGS thin film solar cell |
title_sort |
simulation of the front and rear side illumination of the cds/cigs thin film solar cell |
publisher |
Науковий фізико-технологічний центр МОН та НАН України |
publishDate |
2011 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/77002 |
citation_txt |
Simulation of the front and rear side illumination of the CdS/CIGS thin film solar cell / A.D. Pogrebnyak, L.S. Rasheed, A.K. Allohaibee, A.K. Muhammed // Физическая инженерия поверхности. — 2011. — Т. 9, № 4. — С. 390–394. — Бібліогр.: 6 назв. — англ. |
series |
Физическая инженерия поверхности |
work_keys_str_mv |
AT pogrebnyakad simulationofthefrontandrearsideilluminationofthecdscigsthinfilmsolarcell AT rasheedls simulationofthefrontandrearsideilluminationofthecdscigsthinfilmsolarcell AT allohaibeeak simulationofthefrontandrearsideilluminationofthecdscigsthinfilmsolarcell AT muhammedak simulationofthefrontandrearsideilluminationofthecdscigsthinfilmsolarcell |
first_indexed |
2025-07-06T01:23:26Z |
last_indexed |
2025-07-06T01:23:26Z |
_version_ |
1836858744379539456 |
fulltext |
390
INTRODUCTION
Copper Indium Gallium Selenide Cu(In,Ga)Se2
(CIGS) is an interesting material for solar cell
applications. CIGS is an alloy between Copper
Indium Selenide CuInSe2 (CIS) and Copper Gal-
lium Selenide CuGaSe2 (CGS) and is described
by the chemical formula CuIn1-yGaySe2 where
(y) is the ratio Ga/(Ga + In).The typical structure
of the CIGS solar cell is shown in fig. 1 [1].
CIGS has a direct band gap which is a very
desirable in photovoltaic materials. More op-
timistically, the absorption coefficient (α) of
CIGS is high around 105 cm–1 for a band gap of
1.4 eV. A polycrystalline CIGS semiconductor
has a tunable band gap that varies with the gal-
lium (Ga) content substituted in the CIGS mate-
rial. The band gap of CIS is around 1.04 eV, whe-
reas by adding Ga into the ternary system of CIS,
УДК 621.715.539.376
SIMULATION OF THE FRONT AND REAR SIDE ILLUMINATION OF THE
CdS/CIGS THIN FILM SOLAR CELL
A.D. Pogrebnyak1, L.S. Rasheed2, A.K. Allohaibee2, A.K. Muhammed1,2
1Sumy State University, Ukraine
2University of Mosul, Mosul, Set Culture, Iraq
Received 22.11.2011
In this study the effect of the rear side illumination on the CdS/CIGS thin film solar cell has been stu-
died. The simulation program SCAPS-1D was used in this study. This program was developed for
the simulation properties of the CdS/CdTe and CdS/CIGS thin film solar cells. At the rear side
illumination the efficiency of the cell decreased as the thickness of the CIGS absorber layer increased.
This was because the light is absorbed far from the junction and near the high recombination back
contact region. So that the generated electron-hole pairs are recombined before they reach the junction
to separate. The losses in the generated electron-hole pairs increase as the thickness of the CIGS ab-
sorber layer increase and this is clearly shown in the variation of the quantum efficiency with the ab-
sorber thickness at the rear side illumination
Keywords: cigs, thin film, solar cell, thickness, absorber layer.
В цьому дослідженні було вивчено вплив освітленості тильної сторони на тонкоплівкові сонячні
елементи на основі CdS/CIGS. У дослідженні застосовувалася моделююча програма SCAPS-1D.
Ця програма була розроблена для моделювання властивостей сонячних елементів на основі
CdS/CdTe і CdS/CIGS. При освітленості тильної сторони ККД елементу знижується, оскільки
збільшується товщина абсорбуючого шару CIGS. Це відбувається в результаті того, що світло
поглинається далеко від переходу, біля області контакту до тильної поверхні. Внаслідок цього,
утворені електронно-діркові пари рекомбінуються до того, як досягнуть переходу для роз-
ділення. Втрати утворених електронно-діркових пар збільшуються зі збільшенням товщини
абсорбуючого шару CIGS, що чітко показано в зміні квантового виходу з товщиною абсор-
буючого шару при освітленості тильної сторони.
Ключові слова: CIGS, тонкоплівкові, сонячні елементи, товщина, абсорбуючий шар.
В данном исследовании было изучено влияние освещенности тыльной стороны на тонко-
пленочные солнечные элементы на основе CdS/CIGS. В исследовании применялась модели-
рующая программа SCAPS-1D. Эта программа была разработана для моделирования свойств
солнечных элементов на основе CdS/CdTe и CdS/CIGS. При освещенности тыльной стороны
КПД элемента снижается, так как увеличивается толщина абсорбирующего слоя CIGS. Это
происходит в результате того, что свет поглощается вдали от перехода, возле области контакта
к тыльной поверхности. Вследствие этого, образованные электронно-дырочные пары реком-
бинируются до того, как достигнут перехода для разделения. Потери образованных электронно-
дырочных пар увеличиваются с увеличением толщины абсорбирующего слоя CIGS, что четко
показано в изменении квантового выхода с толщиной абсорбирующего слоя при освещенности
тыльной стороны.
Ключевые слова: CIGS, тонкопленочные, солнечные элементы, толщина, абсорбирующая
слоя.
A.D. Pogrebnyak, L.S. Rasheed, A.K. Allohaibee, A.K. Muhammed, 2011
391ФІП ФИП PSE, 2011, т. 9, № 4, vol. 9, No. 4
the band gap energy of the CIGS quaternary sys-
tem can be varied over a range of 1.04 to 1.68 eV.
This property can be used to engineer the band
gap of the CIGS when it is used as absorber layer
in the solar cell and to make a cell with a graded
band gap [2].
CIGS based solar cells have shown record ef-
ficiency (∼ 20%) for thin film devices in testing.
This places CIGS solar cells at the forefront of
the thin film solar cell industry [3]. A wide variety
of techniques has been used to fabricate CIGS.
These include Evaporation, Solemnization, Ele-
ctro deposition, Sputtering, Vapor Transport,
Spray Pyrolysis, Electrophoretic Deposition, Li-
quid Phase Epitaxial, Flash Evaporation, Laser-
Induced Synthesis and Molecular Beam Epita-
xial [4]. One of the methods that have been used
in increasing the efficiency of the thin film solar
cells is the illumination of the cell from both sides
simultaneously. In this study we will shows the
effect of the rear side illumination on the per-
formance of the CdS/CIGS thin film solar cell.
DEVICE SIMULATION
Simulation of the structure (front contact/ZnO/
CdS/CIGS/back contact) thin film solar cell was
carried out using the simulation program
SCAPS-1D. This program was developed at the
University of Gent for the simulation of the
photonic devices. For the front side illumination
the back contact was the Molybdenum. In the
rear side illumination the Molybdenum was
replaced with a transparent conducting oxide
(TCO), such as Indium Tin Oxide (ITO). ITO
has 85% transparency at 550 nm incident wave-
length [5].
RESULT AND DISCUSION
− The optical generation in the CdS/CIGS thin
film solar cell.
Generation due to monochromatic light
source describe by the following equation
( ) ( )0 expPG y y
Ahv
α= −α . (1)
The spectrum of the light used in the simu-
lation results is the standard one-sun illumination
also called AM1.5. The total generation is the
sum of wavelengths generation.
Fig. 2 illustrates the total generation due to
AM1.5. The generation by short and long wave-
lengths light in the CdS/CIGS cell is illustrated
in fig. 3a and fig. 3b respectively. Short wave-
lengths light (λ ≤ 400 nm) are strongly absorbed
and hence there is no significant deep generation
and most of generation processes will occur in
the CdS buffer layer and ZnO widow layer. Long
wavelengths light (λ ≥ 600 nm) which have
smaller absorption coefficient (α ) shows
absorption and generation rate rather deep in the
cell and most of the absorption will occur in the
CIGS absorber layer.
− B. The output parameters.
The dependence of the output parameters
(Voc, Jsc, FF%, η% and QE(λ)) of the CdS/CIGS
Fig. 1. Structure of the CIGS solar cell.
Fig. 2. Total generation due to one-sun illumination in the
baseline cell.
a)
A.D. POGREBNYAK, L.S. RASHEED, A.K. ALLOHAIBEE, A.K. MUHAMMED
G
en
er
at
io
on
/R
ec
om
b.
(
sm
–3
⋅s–1
)
G
en
er
at
io
on
/R
ec
om
b.
(
sm
–3
⋅s–1
)
392
cell on the absorber layer thickness for both front
and rear side illumination is shown in fig. 4. For
front side illumination both the open circuit
voltage (Voc) and the short circuit current density
(Jsc) of the cell was increased when the thickness
of the absorber layer increased from 200 nm to
3000 nm. Voc remains high unless the absorber
layer thickness is less than 500 nm. When the
thickness of the CIGS increased this will allow
the longer wavelengths of the illumination to be
absorbed (as shown in fig. 3b) which in turn
contribute in the electron-holes pair generation.
Thus Voc and Jsc increased as the absorber layer
thickness increased. This will result in increasing
in the fill factor (FF%) and the efficiency (η%)
of the cell. If the absorber layer thickness
reduced, the high recombination back contact
region will be very close from the depletion
region. Thus the electrons will be captured easily
by the back contact for the recombination
process. Therefore, fewer electrons will
contribute in the generation process. The result
was reduction in the output parameters for thin
absorber. For the rear side illumination it is
required most of the light to be absorbed in the
bulk part of the CIGS absorber layer. For the rear
side illumination and thick absorber the absorbed
light generate carriers in the bulk part of the
absorber and often far from the electric field of
the junction and near the high recombination
back contact region so that and at the same
absorber thickness Voc and Jsc for the rear side
illumination will be less than what found in the
front side illumination as shown in fig. 4.
Also at the rear side illumination Voc increa-
sed as the thickness of the absorber layer increa-
sed from 200 nm to 600 nm because the photons
will be absorbed near the junction, and the ge-
nerated electron-hole pairs will have strong pro-
bability to be separated. For absorber thickness
above 600 nm the photons absorbed far from the
electric field so that Voc decreased when the ab-
sorber thickness increased to 3000 nm. Jsc decre-
ased when the absorber layer thickness increased
for rear side illumination because the photons
will be absorbed near the high recombination
back contact region and far from the space charge
region. The reduction in Voc and Jsc will causes
a reduction in FF% and η%. As shown in fig. 4.
For front side illumination the longer wave-
lengths photons will be absorbed deeper within
the CIGS layer (as shown in fig. 3b). So that the
effect of the CIGS absorber layer thickness on
the quantum efficiency (QE(λ)) has been oc-
Fig. 3. Generation due to (a) short wavelengths (λ ≤ 400
nm) and (b) long wavelengths (λ ≥ 600 nm) in the CdS/
CIGS solar cell.
b)
Fig. 4. The dependence of the output parameters of on
the absorber layer thickness for front and back side illu-
mination.
SIMULATION OF THE FRONT AND REAR SIDE ILLUMINATION OF THE CdS/CIGS THIN FILM SOLAR CELL
ФІП ФИП PSE, 2011, т. 9, № 4, vol. 9, No. 4
G
en
er
at
io
on
/R
ec
om
b.
(
sm
–3
⋅s–1
)
393ФІП ФИП PSE, 2011, т. 9, № 4, vol. 9, No. 4
curred in the region extended from λ = 520 nm
to λ = 1200 nm as shown in fig. 5. For thick
absorber layer the generation process has been
occurred far from the back contact region so that
the quantum efficiency will increase when the
absorber layer thickness increase.
Fig. 6 shows QE(λ) of the cell for the rear
side illumination (red) as compared with QE(λ)
for the front side illumination for 500 nm absor-
ber thickness. In this figure the losses in the ab-
sorbed photons due to the absorption far from
the electric field and near the high recombination
back contact region for the rear side illumination
is evident. The losses are high for the photons
which have large absorption coefficient (small
wavelengths).
The dependence of the quantum efficiency for
the rear side illumination on the CIGS absorber
thickness is shown in fig. 7. The thickness was
0.25 µm, 0.5 µm and 1µm. The photons which
have a large absorption coefficient (low wave-
length) have a high generation probability in a
thiabsorber (below 0.5 nm) because it will gene-
rate electron-hole pairs near the electric field. The
quantum efficiency at low wavelength is high
for the rear side illumination as compared with
front side illumination because the high-energy
photons will be absorbed by CdS buffer layer at
front side illumination. The effect of the rear-si-
de illumination on the Light/Dark J-V curves and
the quantum efficiency (QE(λ)) of the CdS/CIGS
thin film solar cell has been studied practically
by T. Nakada et. al. [5]. He took the effect of the
CIGS absorber layer thickness and the concen-
tration of Gallium (Ga) at the rear-side illumina-
tion on the output parameters and the quantum
efficiency into consideration. A good agreement
between these practical results and the found si-
mulation results.
CONCLUSION
At the front side illumination the light needed to
pass through the window and buffer layer and
this will results in a losses in the number of the
photons in the absorber layer. When the thickness
of the CIGS absorber layer increased the effi-
ciency of the cell increased due to the high pro-
bability of absorption for the long wavelength
photons. While at the rear side illumination the
incident light will absorbed in the bulk part of
the absorber layer but near the high recombina-
tion back contact region.
Fig. 5. Variation of the quantum efficiency of the baseline
cell with the thickness of the absorber layer.
Fig. 6. Quantum efficiency at front and rear side illumi-
nation for 500 nm CIGS absorber thickness.
Fig. 7. The dependence of the quantum efficiency on the
absorber thickness for the rear-side illumination as com-
pared with the front side illumination.
A.D. POGREBNYAK, L.S. RASHEED, A.K. ALLOHAIBEE, A.K. MUHAMMED
394
So that when the thickness of the CIGS ab-
sorber layer increase the electron-hole pairs will
generate far from the electric field of the junction
and near the high recombination back contact
region. Therefore the generated electron-hole
pairs will recombine by the back contact before
they separated by the electric field of the junction.
REFERENCES
1. Jef P. and Vladimir A. Thin film solar cells fabri-
cation, characterization and applications. – John
Wiley&Sons Ltd, 2006.
2. Jeffery. L.G., Richard. J.S., and Youn J.L. Nume-
rical modeling of graded band gap CIGS solar
cells. – ECE Technical Reports, 1994.
3. Nakada T., Kanda Y., Kijima S., Komiya Y., Oh-
mori D., Ishizaki H., and Yamada N. Bifacial
SIMULATION OF THE FRONT AND REAR SIDE ILLUMINATION OF THE CdS/CIGS THIN FILM SOLAR CELL
ФІП ФИП PSE, 2011, т. 9, № 4, vol. 9, No. 4
CIGS Thin Film Solar Cells//20th European Pho-
tovoltaic Solar Energy Conference. – 2005.
4. Joseph B., Manoj P.K., Vajdyan V.K. Studies on
preparation and characterization of indium do-
ped oxide films by chemical spray deposition//
Bull. Mater. Science. – 2005. – Vol. 28, № 5. –
P. 487-493.
5. Ingrid R., Stephen G., Joel D., Timothy J.C.,
Wyatt K.M., and Miguel A.C. Required material
roperties for high-efficiency CIGS modules. –
National Renewable Energy Laboratory, 2009.
6. Sushea M., Christoulakis S., Moschovisk K., et.
al. Nanostruktured ZnO and ZAO transparen thin
filma by sputtering-surface characterization//
Rev. Advan. Mater. Scien. – 2005. – Vol. 10. –
P. 335-340.
|