On influence of external low frequency helical perturbation on tokamak edge plasma

Gespeichert in:
Bibliographische Detailangaben
Datum:2002
Hauptverfasser: Pankratov, I.M., Omelchenko, A.Ya., Olshansky, V.V.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2002
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/77815
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:On influence of external low frequency helical perturbation on tokamak edge plasma / I.M. Pankratov, A.Ya. Omelchenko, V.V. Olshansky // Вопросы атомной науки и техники. — 2002. — № 5. — С. 3-5. — Бібліогр.: 5 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-77815
record_format dspace
spelling irk-123456789-778152015-03-08T21:40:24Z On influence of external low frequency helical perturbation on tokamak edge plasma Pankratov, I.M. Omelchenko, A.Ya. Olshansky, V.V. Magnetic confinement 2002 Article On influence of external low frequency helical perturbation on tokamak edge plasma / I.M. Pankratov, A.Ya. Omelchenko, V.V. Olshansky // Вопросы атомной науки и техники. — 2002. — № 5. — С. 3-5. — Бібліогр.: 5 назв. — англ. 1562-6016 PACS: 52.55.Fa http://dspace.nbuv.gov.ua/handle/123456789/77815 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Magnetic confinement
Magnetic confinement
spellingShingle Magnetic confinement
Magnetic confinement
Pankratov, I.M.
Omelchenko, A.Ya.
Olshansky, V.V.
On influence of external low frequency helical perturbation on tokamak edge plasma
Вопросы атомной науки и техники
format Article
author Pankratov, I.M.
Omelchenko, A.Ya.
Olshansky, V.V.
author_facet Pankratov, I.M.
Omelchenko, A.Ya.
Olshansky, V.V.
author_sort Pankratov, I.M.
title On influence of external low frequency helical perturbation on tokamak edge plasma
title_short On influence of external low frequency helical perturbation on tokamak edge plasma
title_full On influence of external low frequency helical perturbation on tokamak edge plasma
title_fullStr On influence of external low frequency helical perturbation on tokamak edge plasma
title_full_unstemmed On influence of external low frequency helical perturbation on tokamak edge plasma
title_sort on influence of external low frequency helical perturbation on tokamak edge plasma
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2002
topic_facet Magnetic confinement
url http://dspace.nbuv.gov.ua/handle/123456789/77815
citation_txt On influence of external low frequency helical perturbation on tokamak edge plasma / I.M. Pankratov, A.Ya. Omelchenko, V.V. Olshansky // Вопросы атомной науки и техники. — 2002. — № 5. — С. 3-5. — Бібліогр.: 5 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT pankratovim oninfluenceofexternallowfrequencyhelicalperturbationontokamakedgeplasma
AT omelchenkoaya oninfluenceofexternallowfrequencyhelicalperturbationontokamakedgeplasma
AT olshanskyvv oninfluenceofexternallowfrequencyhelicalperturbationontokamakedgeplasma
first_indexed 2025-07-06T02:01:22Z
last_indexed 2025-07-06T02:01:22Z
_version_ 1836861130684760064
fulltext MAGNETIC CONFINEMENT ON INFLUENCE OF EXTERNAL LOW FREQUENCY HELICAL PERTURBATION ON TOKAMAK EDGE PLASMA I.M. Pankratov, A. Ya. Omelchenko, V.V. Olshansky Institute of Plasma Physics, National Science Center “Kharkov Institute of Physics and Technology” Akademicheskaya str., 1, 61108 Kharkov, Ukraine PACS: 52.55.Fa 1. INTRODUCTION The Dynamic Ergodic Divertor (DED) of TEXTOR is installed to control plasma edge behaviour [1]. The DED helical coils create a specific topology of magnetic field at the plasma edge, where external DED helical perturbations with poloidal number m and toroidal number n are resonant on the magnetic surfaces ( )resrq = nm (q(r) - safety factor) (see, e.g., [2, 3]). However, this topology was investigated using vacuum DED field perturbations without the plasma response. Remind, that the m = 12, n = 4 perturbation field structure is chosen as a standard DED operation regime. The interaction of an external helical field with a plas- ma was investigated also in the CSTN- IV tokamak [4]. In the present paper the influence of plasma response to DED helical perturbation penetration is considered in cylindrical geometry. Analytical solutions of perturbations are found and their numerical investigation is carried out. 2. BASIC EQUATIONS We start from magnetohydrodynamic equations ( ) [ ]BJVVV ×+− ∇=     ∇+ ∂ ∂ c p t 1ρ , (1a) tc rot ∂ ∂−= BE 1 , JB c rot π4= (1b) and Ohm’s law ( σ - conductivity) [ ]      ×+= BVEJ c 1σ . (2) We consider a current carrying cylindrical plasma whose axis is taken to be as the z direction. The external axial magnetic field 0zB is large with respect to the poloidal magnetic field 0θB produced by the axial current. The perturbation values depend on the azimuthal angle θ , the coordinate z and the time t as ( )[ ]tkzmi ωθ −−exp , Rnk = , R plays the role of the tokamak major radius, ω is the frequency of the external perturbation. For perturbations of radial components of plasma velocity ~ rV and magnetic field ( ) π ρ4~ rrBrB = the linearized version of Eqs. (1), (2) take the form: ( ) ( ) ( ) ( ) ( ) ( )rBrF dr drF dr drrFriVrFrimrV dr dr dr d rr         ++=    +− 22222 ~ 2 2 2 2 2~ 4 3 444 2 π ρ ωπ ρ ωπ ρ ωδπ ρ ωδ , (3) ( ) ( ) ~ 222 2 2 2 4 )(1 rrVrFirBik r mrB dr dr dr d r π ρ ωδδ −=    −+− , ( π σ ωδ 4c= , ( ) 000 zkBB r mrF −== θkB ). (4) The perturbations ~ zV and ~ zB are small and for simplicity we put 0~~ == zz BV . We use approximation of an incompressible plasma motion 0~ =Vdiv , neglect the p∇ term, variations of the plasma density ρ and conductivity σ (compare with [5]). The value ( )rF is equal to zero inside the plasma, ( ) 0=resrF , when ( ) nmrq res = ( ( ) 00 θRBrBrq z= ). The region near resrr ≈ is the resonant (interaction) zone. Inside and near the interaction zone Eq. (3) have the next general solution normalized to the value ( ) ( ) ( )π ρπ ρ 44 ⋅== rkrICrBV m vac rrA ( ( )krI m - modified Bessel and ( ) ( )zH 2,1 41 - Hankel functions): ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,rrfor 4 3exp 4 3exp 4 3exp 4 3exp15.0 4 3exp15.0 4 3exp 24 res )1( 41 22 41 )2( 41 0 0 0 1 41 0 )1( 41 21 41 2 2 2 22 ≥                      +             −         −        −−        +        = ∫∫ ∫∫ ++ −++ z az z zazm r uRiuuHduizHuRiuHudu uRiuuHduiuRiuuHduiizH krI zr rV πππ ππππ (5) Problems of Atomic Science and Technology. 2002. № 5. Series: Plasma Physics (8). P. 3-5 3 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,rrfor 4 3exp 4 3exp 4 3exp 4 3exp15.0 4 3exp15.0 4 3exp 24 res 0 )1( 41 22 41 )2( 41 0 0 1 41 0 0 )1( 41 21 41 2 2 2 22 ≤                      +             −         −        −−        +        = ∫∫ ∫∫ −− +−− z z z azzm r uRiuuHduizHuRiuHudu uRiuuHduiuRiuuHduiizH krI zr rV πππ ππππ (6) where ( ) ( )                 + ⋅ +    ⋅ ±=± 45222 2 2 243 21 1 4 3 42 1 u F dr drF dr dr r r Q i uQ r r krI uR resresm π ρ ωπ ρ ω δ δ , (7) ( ) ( ) ( ) resresres rrrQrrz −= 212δ , RnSVQ zA ω= , π ρ40zzA BV = , ( ) resrrqrqS == |' . (8) In the ( )uR ± term the radius r is a function of u : ( ) ( ) uQrrur resres δ21 ±= , a - the minor plasma radius. Outside the resonant zone ( ) ( )rFrVr 24π ρ ω−≈± . The same result we obtain from Eqs. (5), (6) in the case 12 > >z . We assume that the radial vacuum perturbation of magnetic field ~ rB dominates in the plasma and in the right side of Eq. (3) we take ( ) ( )krCIrB m= (the vacuum perturbation of the magnetic field) . From Eq. (3), (5), (6) it follows that the half width of the interaction (resonant) zone r∆ is of the order of ( ) 212~ Qrr res⋅∆ δ . (9) From Eq. (4) we obtain the contribution to the radial magnetic field perturbation of the plasma motion response ( ( ) ( ) ( )rBrBrB r vac rr 1 ~ += ) with ( ) ( ) ( )rVrFrW r ±+= 24 1 π ρ ω (10) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )         ′′′′′−′′′′= ∫∫ r a resm m mm r resm m m res res vac r r rW krI rkIrkKrrdkrIrW krI rkIrrdkrK r ri rB rB 0 2 2 1 1 δ . (11) The same for the poloidal component ( ( ) ( ) ( )rBrBrB vac 1 ~ θθθ += , ( )zKm′ = dzdK m , ( ) dzdIzI mm =′ ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )         ′′′′′−′′′′′= ∫∫ r resm m m r a resm m mm res res vac r rW krI rkIrrdkrKrW krI rkIkrKrrdkrI m kr rB rB 0 2 2 1 '1 δ θ . (12) 3. COMPUTATIONAL RESULTS 3.1 Tokamak CSTN-IV First, we present calculations for the CSTN-IV experiment [4] ( R =0.4 m, a =0.1 m, resr =7,5 cm, m=6, n=1, 0zB =0.086 T, pln =1.5⋅ 1018 m-3). Fig. 1. Profiles ( ) ( )res vac rr rBrB ~ , ( ) ( )res vac r rBrB ~ θ The tendency in the ~ rB and ~ θB behavior is the same as it is in the CSTN-IV experiment ( f=20 kHz, δ =2 cm). Fig. 2. The radial profile of the velocity rV 4 0 1 2 ~ rB ~ rB vac rB 5 6 7 8 9 0 1 2 r (cm) ~ θB ~ θB vacBθ 0 1 2 3 4 5 6 7 8 9 10 -0.4 0 0.4 r (cm) rVRe rVIm rV A very wide interaction region width r∆ is observed. In Ref. [4] the theoretical estimate r∆ ~ 4 mm was declared. In the figures the vertical dashed line shows the resonant radius position. 3.2 TEXTOR-DED Here the calculations for the TEXTOR-DED tokamak are presented ( R =1.75 m, a =0.47 m, resr =43 cm, m=12, n=4, 0zB =2.25 T, pln =1019 m-3). CONCLUSIONS It is shown that for the high frequency ( ~> 10 kHz) the radial component of the perturbation field ~ rB is amplified inward of plasma from the interaction zone. This theoretical result confirms the CSTN-IV tokamak measurements. For a lower frequency ( ~< 1kHz) ~ rB is only attenuated in the plasma between the resonant zone and antenna. Note, that for TEXTOR-DED the poloidal magnetic field component of the vacuum perturbation is practically 5 40 41 42 43 44 45 -0.5 0.0 0.5 r (cm) -0.5 0.0 0.5 -0.5 0.0 0.5 35 40 45 50 55 0 5 10 0 5 10 0 5 10 r (cm) rV rVIm rVRe rVRe rVIm rVRe rVIm ~ rB ~ rB vac rB ~ rB vac rB vac rB ~ rB a) a) b) b) c) c) Fig. 3. The radial profile of the velocity rV : a) f =10 kHz, δ =0.7 cm; b) f =1 kHz, δ =2.2 cm; c) f =100 Hz, δ =6.96 cm. Fig. 4. Profiles ( ) ( )res vac rr rBrB ~ : a) f =10 kHz, δ =0.7 cm; b) f =1 kHz, δ =2.2cm;c) f =100 Hz, δ =6.96 cm. completely compensated by the plasma perturbation response at resrr = . The width of the resonant zone r∆ for TEXTOR- DED is of the order of 0.5 cm (or larger). It is much larger than the ion gyroradius. For the CSTN-IV experiment the width of the interaction region is very wide. This work was carried out in the frame of the WTZ project UKR-01/003 between Germany and Ukraine. REFERENCES 1. Fusion Engineering and Design.//Special issue: Dynamic Ergodic Divertor (37). 1997. 2. K.H. Finken, S.S. Abdullaev, A. Kaleck, G.H. Wolf// Nucl. Fusion.(39),1999,p. 637. 3. M.V. Jakubowski, S.S. Abdullaev, K.H. Finken, M. Kobayashi// Problems of Atomic Science and Technolog.Series:Plasma Physics.(7),2002, N4,p. 42 4. M. Kobayashi,T.Tuda,K.Tashiro et al.// Nucl. Fusion (40), 2000, p.181. 5. B. Basu, B. Coppi// Nucl. Fusion. (17), 1977,p. 1245. 6 I.M. Pankratov, A. Ya. Omelchenko, V.V. Olshansky Institute of Plasma Physics, National Science Center “Kharkov Institute of Physics and Technology” Akademicheskaya str., 1, 61108 Kharkov, Ukraine 1.INTRODUCTION BASIC EQUATIONS We start from magnetohydrodynamic equations 3.COMPUTATIONAL RESULTS CONCLUSIONS REFERENCES