Ion-induced formation of micropolycrystalline Nb1-xCx (0 ≤ x < 0.3) thick coatings with quasi-ternary phase structure

Structure and superconductivity of thick polycrystalline niobium-carbon coatings (Nb1-xCx, 0 ≤ x < 0.3) deposited from low-energy self-ion-atomic Nb- and C- fluxes onto substrates with the temperature range 500…650 K were studied by X-ray diffraction (XRD) analysis, transmission electron microsco...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2001
Hauptverfasser: Sleptsov, S.N., Sleptsov, A.N.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2001
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/78272
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Ion-induced formation of micropolycrystalline Nb1-xCx (0 ≤ x < 0.3) thick coatings with quasi-ternary phase structure / S.N. Sleptsov, A.N. Sleptsov // Вопросы атомной науки и техники. — 2001. — № 4. — С. 39-45. — Бібліогр.: 52 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-78272
record_format dspace
spelling irk-123456789-782722015-03-14T03:02:21Z Ion-induced formation of micropolycrystalline Nb1-xCx (0 ≤ x < 0.3) thick coatings with quasi-ternary phase structure Sleptsov, S.N. Sleptsov, A.N. Физика радиационных повреждений и явлений в твердых телах Structure and superconductivity of thick polycrystalline niobium-carbon coatings (Nb1-xCx, 0 ≤ x < 0.3) deposited from low-energy self-ion-atomic Nb- and C- fluxes onto substrates with the temperature range 500…650 K were studied by X-ray diffraction (XRD) analysis, transmission electron microscopy (TEM), electron diffraction, TEM of oxidic replicas and resistivity measurement method at low temperature. It is founded, that Nb1-xCx coatings with carbon concentration range 9…15 at.% have an unusual high superconducting transition temperature Tc ≈ 12 K. Dependency of critical current density of these coatings on temperature is not monotonous and have a sharp bend near TC ≈ 9.5 K Structural analysis of these coatings has revealed they have a quasi-ternary phase composition consisting of Nb(b.c.c.), subcarbide Nb₂C(c.p.h.) and metastable carbide 'NbCx' with f.c.c. structure. The results obtained are discussed from a point of view of 'NbCx' phase forming at Nb and Nb₂C phases interface. It is also shown, that Nb1-xCx coatings with carbon concentration less than 5 at.% revealed supersaturated solid solution and have TC ≈ 9.5 K. Kinetics of diffusive decomposition of niobium-carbon coatings during isothermal annealing was also investigated. Структура та надпровідність товстих полікрісталічних ніобій-вуглецевих покриттів (Nb1-xCx, 0 ≤ x < 0,3), осаджених із низькоенергетичних самоіонних-атомних Nb- и C- потоків на підкладки у температурному інтервалі 500...650 К були вивчені за допомогою рентгеноструктурного аналізу, просвічуючи електронної мікроскопії окісних реплік та методом вимірювання питомого опору при низький температурі. Було встановлено, що Nb1-xCx покриття з концентрацією вуглецю в інтервалі 9...15 ат.% мають надзвичайно високу температуру надпровідного переходу Тс ≈ 12 К. Залежність критичної щільності цих покриттів від температури не є монотонною і виявляє крутий ізгіб величин біля Тс ≈ 9,5. Структурний аналіз цих покриттів показав, що вони мають квазіпотрійний фазовий склад, що складається із Nb(ОЦК), субкарбіда Nb₂C (ГПУ) та метастабільного карбіду NbCx з ГЦК-структурою. Отриманы результати обговорюються з точки зору NbCx -фази, яка утворюється на поверхні розподілу Nb та Nb₂C-фаз. Показано також, що Nb1-xCx -покриття з концентрацією вуглецю нижче 5 ат.% виявляють пересичений твердий розчин і мають Тс ≈ 9,5 К. Була також досліджена кінетика фаз дифузного розкладу ніобій-вуглецевих покриттів у процесі ізотермічного відпалу. Структура и сверхпроводимость толстых поликристаллических ниобий-углеродных покрытий (Nb1-xCx, 0≤ x <0,3), осажденных из низкоэнергетических самоионных-атомных Nb- и C- потоков на подложки в температурном интервале 500…650 К, были изучены рентгеноструктурным анализом (ХRD), просвечивающей электронной микроскопией (TEM), дифракцией электронов, просвечивающей микроскопией окисных реплик и методом измерений идеального сопротивления при низкой температуре. Было установлено, что Nb1-xCx покрытия c концентрацией углерода в интервале 9…15 ат.% обладают необычно высокой температурой сверхпроводящего перехода Тс∼12 К. Зависимость критической плотности этих покрытий от температуры не является монотонной и обнаруживает крутой изгиб около Тс≈9,5 К. Структурный анализ этих покрытий показал, что они имеют квазитройной фазовый состав, состоящий из Nb (ОЦК), субкарбида Nb₂C (ГПУ) и метастабильного карбида NbCx c ГЦК-структурой. Полученные результаты обсуждаются с точки зрения NbCx -фазы, формирующейся на поверхности раздела Nb- и Nb₂C- фаз. Показано также, что Nb1-xCx- покрытия с концентрацией углерода ниже 5 ат.% обнаруживают перенасыщенный твердый раствор и имеют Тс ≈ 9,5 К. Была также исследована кинетика диффузного разложения ниобий-углеродных покрытий в процессе изотермического отжига. 2001 Article Ion-induced formation of micropolycrystalline Nb1-xCx (0 ≤ x < 0.3) thick coatings with quasi-ternary phase structure / S.N. Sleptsov, A.N. Sleptsov // Вопросы атомной науки и техники. — 2001. — № 4. — С. 39-45. — Бібліогр.: 52 назв. — англ. 1562-6016 http://dspace.nbuv.gov.ua/handle/123456789/78272 669-405:539.16.04 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Физика радиационных повреждений и явлений в твердых телах
Физика радиационных повреждений и явлений в твердых телах
spellingShingle Физика радиационных повреждений и явлений в твердых телах
Физика радиационных повреждений и явлений в твердых телах
Sleptsov, S.N.
Sleptsov, A.N.
Ion-induced formation of micropolycrystalline Nb1-xCx (0 ≤ x < 0.3) thick coatings with quasi-ternary phase structure
Вопросы атомной науки и техники
description Structure and superconductivity of thick polycrystalline niobium-carbon coatings (Nb1-xCx, 0 ≤ x < 0.3) deposited from low-energy self-ion-atomic Nb- and C- fluxes onto substrates with the temperature range 500…650 K were studied by X-ray diffraction (XRD) analysis, transmission electron microscopy (TEM), electron diffraction, TEM of oxidic replicas and resistivity measurement method at low temperature. It is founded, that Nb1-xCx coatings with carbon concentration range 9…15 at.% have an unusual high superconducting transition temperature Tc ≈ 12 K. Dependency of critical current density of these coatings on temperature is not monotonous and have a sharp bend near TC ≈ 9.5 K Structural analysis of these coatings has revealed they have a quasi-ternary phase composition consisting of Nb(b.c.c.), subcarbide Nb₂C(c.p.h.) and metastable carbide 'NbCx' with f.c.c. structure. The results obtained are discussed from a point of view of 'NbCx' phase forming at Nb and Nb₂C phases interface. It is also shown, that Nb1-xCx coatings with carbon concentration less than 5 at.% revealed supersaturated solid solution and have TC ≈ 9.5 K. Kinetics of diffusive decomposition of niobium-carbon coatings during isothermal annealing was also investigated.
format Article
author Sleptsov, S.N.
Sleptsov, A.N.
author_facet Sleptsov, S.N.
Sleptsov, A.N.
author_sort Sleptsov, S.N.
title Ion-induced formation of micropolycrystalline Nb1-xCx (0 ≤ x < 0.3) thick coatings with quasi-ternary phase structure
title_short Ion-induced formation of micropolycrystalline Nb1-xCx (0 ≤ x < 0.3) thick coatings with quasi-ternary phase structure
title_full Ion-induced formation of micropolycrystalline Nb1-xCx (0 ≤ x < 0.3) thick coatings with quasi-ternary phase structure
title_fullStr Ion-induced formation of micropolycrystalline Nb1-xCx (0 ≤ x < 0.3) thick coatings with quasi-ternary phase structure
title_full_unstemmed Ion-induced formation of micropolycrystalline Nb1-xCx (0 ≤ x < 0.3) thick coatings with quasi-ternary phase structure
title_sort ion-induced formation of micropolycrystalline nb1-xcx (0 ≤ x < 0.3) thick coatings with quasi-ternary phase structure
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2001
topic_facet Физика радиационных повреждений и явлений в твердых телах
url http://dspace.nbuv.gov.ua/handle/123456789/78272
citation_txt Ion-induced formation of micropolycrystalline Nb1-xCx (0 ≤ x < 0.3) thick coatings with quasi-ternary phase structure / S.N. Sleptsov, A.N. Sleptsov // Вопросы атомной науки и техники. — 2001. — № 4. — С. 39-45. — Бібліогр.: 52 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT sleptsovsn ioninducedformationofmicropolycrystallinenb1xcx0x03thickcoatingswithquasiternaryphasestructure
AT sleptsovan ioninducedformationofmicropolycrystallinenb1xcx0x03thickcoatingswithquasiternaryphasestructure
first_indexed 2025-07-06T02:25:51Z
last_indexed 2025-07-06T02:25:51Z
_version_ 1836862670657028096
fulltext УДК 669-405:539.16.04 ION-INDUCED FORMATION OF MICROPOLYCRYSTALLINE Nb1-xCx (0 ≤ x < 0.3) THICK COATINGS WITH QUASI-TERNARY PHASE STRUCTURE S. N. Sleptsov and A. N. Sleptsov National Scientific Center «Kharkov Institute of Physics and Technology», 1 Akademicheskaya St., Kharkov 61108, Ukraine E-mail: glss@kipt.kharkov.ua Структура и сверхпроводимость толстых поликристаллических ниобий-углеродных покрытий (Nb1-xCx, 0≤ x <0,3), осажденных из низкоэнергетических самоионных-атомных Nb- и C- потоков на подложки в температурном интервале 500…650 К, были изучены рентгеноструктурным анализом (ХRD), просвечивающей электронной микроскопией (TEM), дифракцией электронов, просвечивающей микроскопией окисных реплик и методом измерений идеального сопротивле- ния при низкой температуре. Было установлено, что Nb1-xCx покрытия c концентрацией углерода в интервале 9…15 ат.% обладают необычно высокой температурой сверхпроводящего перехода Тс∼12 К. Зависимость критической плотности этих покрытий от температуры не является монотонной и обнаруживает крутой изгиб около Тс≈9,5 К. Структурный ана- лиз этих покрытий показал, что они имеют квазитройной фазовый состав, состоящий из Nb (ОЦК), субкарбида Nb2C (ГПУ) и метастабильного карбида NbCx c ГЦК-структурой. Полученные результаты обсуждаются с точки зрения NbCx -фазы, формирующейся на поверхности раздела Nb- и Nb2C- фаз. Показано также, что Nb1-xCx- покрытия с концентраци- ей углерода ниже 5 ат.% обнаруживают перенасыщенный твердый раствор и имеют Тс ≈ 9,5 К. Была также исследована кинетика диффузного разложения ниобий-углеродных покрытий в процессе изотермического отжига. Структура та надпровідність товстих полікрісталічних ніобій-вуглецевих покриттів (Nb1-xCx, 0 ≤ x < 0,3), осадже- них із низькоенергетичних самоіонних-атомних Nb- и C- потоків на підкладки у температурному інтервалі 500...650 К були вивчені за допомогою рентгеноструктурного аналізу, просвічуючи електронної мікроскопії окісних реплік та методом вимірювання питомого опору при низький температурі. Було встановлено, що Nb1-xCx покриття з концентрацією вуглецю в інтервалі 9...15 ат.% мають надзвичайно високу температуру надпровідного переходу Тс ≈ 12 К. Залежність критичної щільності цих покриттів від температури не є монотонною і виявляє крутий ізгіб величин біля Тс ≈ 9,5. Структурний аналіз цих покриттів показав, що вони мають квазіпотрійний фазовий склад, що складається із Nb(ОЦК), субкарбіда Nb2C (ГПУ) та метастабільного карбіду NbCx з ГЦК-структурою. Отриманы результати обговорюються з точ- ки зору NbCx -фази, яка утворюється на поверхні розподілу Nb та Nb2C-фаз. Показано також, що Nb1-xCx -покриття з концентрацією вуглецю нижче 5 ат.% виявляють пересичений твердий розчин і мають Тс ≈ 9,5 К. Була також досліджена кінетика фаз дифузного розкладу ніобій-вуглецевих покриттів у процесі ізотермічного відпалу. Structure and superconductivity of thick polycrystalline niobium-carbon coatings (Nb1-xCx, 0≤x<0.3) deposited from low-en- ergy self-ion-atomic Nb- and C- fluxes onto substrates with the temperature range 500…650 K were studied by X-ray diffraction (XRD) analysis, transmission electron microscopy (TEM), electron diffraction, TEM of oxidic replicas and resistivity measure- ment method at low temperature. It is founded, that Nb1-xCx coatings with carbon concentration range 9…15 at.% have an unusu- al high superconducting transition temperature TC ~12 K. Dependency of critical current density of these coatings on temperature is not monotonous and have a sharp bend near TC ≈ 9.5 K Structural analysis of these coatings has revealed they have a quasi- ternary phase composition consisting of Nb(b.c.c.), subcarbide Nb2C(c.p.h.) and metastable carbide 'NbCx' with f.c.c. structure. The results obtained are discussed from a point of view of 'NbCx' phase forming at Nb and Nb2C phases interface. It is also shown, that Nb1-xCx coatings with carbon concentration less than 5 at.% revealed supersaturated solid solution and have TC ≈ 9.5 K. Kinetics of diffusive decomposition of niobium-carbon coatings during isothermal annealing was also investigated. 1. INTRODUCTION Thick coatings and thin films of carbides and ni- trides of transitional refractory metals have found wide applications in different industrial branches, since they possess both high protective properties and unique elec- trophysical characteristics which are stable in wide tem- perature region [1-5]. These coatings, as a rule, are syn- thesized in vacuum by simultaneous deposition of ion and atomic fluxes of metal and metalloid (carbon and/or nitrogen) onto substrates with temperature TS< 0.3Tm, where Tm is the melting temperature of condensable material [6-12]. At present a great amount of investigations of the influence of ion irradiation on the kinetics of coatings formation have been carried out with the purpose of op- timization of operational characteristics of metal-metal- loid coatings. It was established, that ion irradiation in- duces formation of polycrystalline coatings with nonequilibrium metastable structures (supersaturating solid solutions [13-16], new phases [17-21], polymor- phous modifications [22-27] etc.), which are absent on equilibrium state diagrams. Supersaturating solid solutions of metalloid atoms in metal matrix are the object of increased interest of many researchers. It was found, that these solid solutions can decay with the formation of precipitates of dispersion carbides (or nitrides) depending on __________________________________________________________________ ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2001. №4. Серия: Физика радиационных повреждений и радиационное материаловедение (80), с.39-45. 39 conditions of coatings syntheses. In turn, these precipi- tates can induce either polymorphous transformation of metal matrix [22,23,24] or formation of a new metastable metal-metalloid phases [10,16,19,26,28]. As a result of such structural transformations, micropolycrystalline heterophase coatings are formed. These coatings, as a rule, have anomalously high mechanical properties as well as electrophysical ones. High values of superconducting transition tempera- ture TC = 11.5…12.5 K were discovered during investi- gation of superconductivity parameters of niobium-car- bon coatings in carbon concentration range 6…20 at.% which were prepared by ion-atomic sputtering method [ 26,29]. Authors [29] suppose, that high TC values can be connected with a high-stoichiometric phase of niobium carbide which forms in these coatings. In the present work, we report a study carried out on microstructure, composition and superconductivity pa- rameters of niobium-carbon (Nb1-xCx, 0 ≤ x < 0.3) coat- ings prepared by simultaneous deposition of self-ion- atomic Nb and C fluxes. X-ray diffraction (XRD) anal- ysis, transmission electron microscopy (TEM), electron diffraction, electron microscopy of oxidic replicas and resistivity measurement method at low temperature were used in these investigations. The results thus obtained are discussed. 2. EXPERIMENTAL DETAILS Niobium-carbon coatings (100…110 µm) were pre- pared onto copper substrates (30 mm × 30 mm × 2 mm) by condensation of self-ion-atomic fluxes of metal and carbon using an atom-ionic sputtering method [30,31]. A purity of used materials was better than 99.91 at.%. The substrates were polished mechanically to give a final mirror-like surface using 1 µm particle size alumina powder. Cleaning of substrates has been carried out by following a well-known procedure with a final rinse in alcohol. The substrates were located in multi-position heating holder, which allows to support and measure the substrates temperature during coatings deposition in the region from 500 to 650 K. The vacuum system was pumped down to 1.3×10−4 Pa. Ion energy of both metal and carbon was 250 eV and a ratio of ion-to-vapor fluxes was equal to 0.1±0.01. The deposition rate was (5.5±0.3) nm/sec. The detailed de- scription of coatings deposition can be found in [31,32]. Composition of deposited coatings was determined by means of nuclear reactions using electrostatic proton accelerator with energy beam 4.5 MeV [33]. Nuclear re- actions 13C(p,γ)14N, 12C(p,γ)13N and 13C(α,n)16O were used for determination of carbon concentration. Nitro- gen, oxygen and hydrogen concentrations were ob- tained with using nuclear reactions 15N(p,α,γ)12C, 18O(α ,p,γ)21Ne and 1H(α,γ)12C respectively [34]. The mea- surement accuracy of concentrations of carbon, nitro- gen, oxygen and hydrogen was better 1×10−2 at. %. Investigations of crystal structure and phase compo- sition of niobium-carbon coatings in initial state and af- ter thermal annealing (T = 1000 K for t = 0.3, 0.5 and 1 −5 hours) were carried out using DRON-3M X-ray diffractometer (Cu K∝- radiation) and electron micro- scopes EVM-100L and JEM-100CX both operated at 100 kV. Lattice constants of both niobium and carbides phases of deposited Nb1-xCx coatings were evaluated from the XRD patterns which have been obtained during examination of coatings in a free state (Nb1-xCx coatings, detached from a substrate). The intrinsic ori- ented microstrains (ε) of niobium matrix in the direc- tion parallel to the substrate surface were determined for samples in free state by well-known sin2ψ method [ 35, 36]. Mechanical and chemical polishes of the coatings were performed to study of coatings structure into the depth. TEM of oxidic replicas [37] was used to determine size, morphology and volume fraction of car- bide phase particles. The superconductivity parameters measurements of samples were conducted by standard four-probe DC technique in a helium cryostat. Temperature dependen- cies of resistivity of Nb1-xCx samples were obtained in the interval 4.2…300 K. Measurement accuracy of su- perconducting transition temperature TC was better than 0.01K. Critical current density (JC) was determined from the volt-ampere dependence at fixed temperature in the interval 7…15 K in zero magnetic field. 3. RESULTS AND DISCUSSION Investigation results of superconducting transition temperature of niobium-carbon coatings are shown in Fig. 1. As may be seen in Figure 1 dependence of super- conducting transition temperature has a nonmonotonous behavior as the C/Nb composition ratio increases. In the region 0 ≤ C/Nb ≤ 0.1 temperature TC depends weakly on carbon concentration and equals to (9.35±0.15) K. Transitional width ∆TC = (0.6±0.01) K in this concentration interval. TC behavior has bell-shape with a maximum TC = 12.01 K at C/Nb ≈ 0.14 in the region 0.1 < C/Nb <0.2. In this concentration interval transi- tional width increases in 2 times and it is equal to (1.2± 0.11) K. When the composition ratio increases above C/Nb > 0.16 the values of both TC and ∆TC fall drasti- cally to ~9.5 K and ~0.5 K respectively. The values of superconductivity parameters do not change in the re- gion 0.2 ≤ C/Nb < 0.3. It may be noted that the results obtained are very near to values published in works [26, 29]. It is known that electrophysical properties of super- conducting films unambiguously are determined by their structure [38-45]. Therefore, detail investigations of Nb1-xCx coatings structure have been carried out for the interpretation of their superconducting parameters. The results of these investigations have discovered un- usual behavior of both phase state and microstructure of the Nb1-xCx coatings on carbon content. These results can be described as follows.Examinations of the niobi- um-carbon coatings in the region 0≤ C/Nb< 0.05 (0≤ C < 5 at.%) by TEM and XRD revealed a polycrystalline single phase b.c.c. structure having (211) and (111) pre- ferred orientations. Figure 2 depicts the electron micro- graphs of Nb1-xCx coatings with various carbon concen- tration. No extra reflections in electron diffraction pat- __________________________________________________________________ ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2001. №4. Серия: Физика радиационных повреждений и радиационное материаловедение (80), с.39-45. 40 tern are observed, indicating that a carbide phase does not form under these conditions. The structure with no well-defined carbide precipitate often is named as 'mot- tled' structure [28]. As the carbon concentration increas- es the weight of crystallographic planes with preferred (111) orientation rises, an average size of blocks (<D>) of grains decreases from (61±3) nm to (42±5) nm, mi- crodeformation value of crystal lattice grows from 0.025% to 0.042%, and the lattice constant of Nb-ma- trix varies in the interval a = (0.33002±2 − 0.33005±3) nm. [C]/[Nb] , composition ratio T , K C 0,00 13 12 11 10 9 8 0,05 0,10 0,15 0,20 0,25 0,30 Fig. 1. Dependence of a superconducting transition temperature of niobium-carbon coatings prepared at TS = (550±10) K vs. composition ratio C/Nb. Vertical bars show a width of superconducting transition temperature ∆TC. (•) - initial state of Nb1-xCx coatings; (o) - state of Nb1-xCx coatings after thermal annealing at T = 1000 K for t = 2 h Elemental analysis showed the concentration of gases impurities are 0.1 at.% N, 0.08 at.% O and 0.51at.% H in all coatings. The dependence of lattice constant on concentration of metalloid impurity (cX in at.%) can be written as a(nm) = 0.33000×(1 + kX×cX), where kX is a constant for each impurity: kO= 0.0006±2, kH=0.00015±2 [5,46], kN=0.0008±2 [5,46,47] and kC=0.00044 [48] − 0.0012±2 [5,28,46,47]. Estimation of the lattice constant of Nb-matrix with account of given relation and concentrations of metal- loid impurities allows to conclude that gases atoms can be partially in solid solution, and the highest possible carbon content in solid solution can not exceed 0.2 at.%. The latter does not contradict the experimental results of works [28,46,49]. Therefore, carbon excess can form very fine (≤ 1 nm) carbide precipitates (not detectable by TEM) in the host matrix as well as at the boundaries of blocks (grains). The latter case really takes place in coatings so far as the density of blocks boundaries increases in ~2 times with carbon concentra- tion growth. XRD examinations of the carbon-doped niobium coat- ings prepared in the composition ratio region 0.05≤ C/Nb<0.2 (5≤C<17at. %) showed a heterophase mi- cropolycrystalline structure which consists of Nb-ma- trix and Nb2C precipitates. Fig. 3 shows a typical θ-2θ scan for a niobium-carbon coating obtained at substrate temperature below 600 K. It is necessary to note, that a noticeable broadening of diffraction peaks of both phas- es as well as an increased background have been ob- served for Nb1-xCx samples with carbon concentration 9…15 at.%. a b Fig. 2. A bright-field electron micrograph and corre- sponding electron diffraction pattern of Nb1-xCx coat- ings deposited onto substrate with temperature (550± 10) K. a - 0.53 at.% C; b - 3.54 at.% C The precipitates have a hexagonal W2C-type struc- ture with the lattice constants a= 0.31262±4 nm and c= 0.4968±2 nm which are very near to published values [1,2,49]. The lattice constant of Nb matrix does not change in this concentration region and equals to a = 0.33005±4 nm. Crystallographic planes (110) and (111) are preferred orientation planes for Nb2C and Nb phases respectively. Microdeformation value of Nb-matrix ris- es from 0.05% to 0.3% as the carbon concentration rises up to ~12 at.%. Further increase of carbon concentra- tion leads to decrease of ε-value down to ~0.06%. Aver- age size of blocks of Nb grains is <D> = (40±5) nm and depends weakly on carbon contents in coatings. __________________________________________________________________ ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2001. №4. Серия: Физика радиационных повреждений и радиационное материаловедение (80), с.39-45. 41 However, <D> for the Nb2C precipitates depends on carbon concentration as follows: (36±3), (17±3) and (32 ±3) nm for ranges 5 ≤ C < 9 at. %, 9 ≤ C ≤ 15 at. % and 15 < C < 17 at. % consequently. Layerwise analysis of structure of Nb1-xCx coatings using oxidic replicas method and electron diffraction has allowed to detail and supplement XRD analysis data. The results of these investigations have confirmed the formation of two polycrystalline Nb and Nb2C phases in the region 5≤C< 9 at.% (see Fig. 4). Fig. 3. XRD pattern from a Nb1-xCx (7.5 at.% C) coating deposited onto substrate with temperature (550±10) K. The major X-ray diffraction peaks are indexed to the Nb and Nb2C phases Furthermore, it was established that for this concen- tration region a volume fraction of Nb2C phase increas- es from ∼0.18 up to 0.23 with rising of the carbon con- centration. TEM of oxidic replicas of Nb1-xCx (9≤C≤15 at. %) coatings has revealed the extended areas of a new phase around Nb2C precipitates in Nb-matrix such as that depicted in Fig. 5. The micrograph shows that area width of the new phase increases as the size of Nb2C precipitates decreases. Electron diffraction examina- tions of this phase showed f.c.c. NaCl-type structure with the lattice constant 0.445 nm. Moreover, in this concentration region great deviation (~40%) of volume fraction of the Nb2C phase from an equilibrium value was found. The similar deviations were also revealed in [29]. It may be noted that the formation of such struc- ture occurs in the region of an eutectic composition C = (12±2) at.% [1,2,5,49]. The structure of Nb1-xCx (17≤C<23 at.%) coatings is qualitatively similar to niobium-carbon coatings with the concentration C= 5…9 at.%. Volume fraction of Nb2C phase in these coatings is close to a thermodynamic equilibrium value at carbon contents more than 18 at.%. Let's discuss obtained results. It is know, that super- conducting transition temperature of Nb2C phase is ∼9.1 K [4,44,45], and TC of niobium changes from ~5 to ~9.7 K and depends on purity of niobium matrix [4,38-41]. As shown in [4,42,43], increasing of dispersity of niobi- um matrix leads to increase TC on 0.3…0.5 K, and for- mation of high-dispersion metal-metalloid precipitates in Nb-matrix induces the increasing of ∆TC and JC. Then, on the basis of these data and obtained experimental results it is possible to conclude that TC ~ 9.5 K for Nb1-xCx coat- ings in concentration regions C/Nb<0.05 and C/Nb > 0.16 corresponds to the superconducting transition tem- perature of niobium matrix. High value ∆TC ~ 0.5 K can be stipulated by strain of a matrix lattice as a result of nucleating of Nb2C phase for C/Nb< 0.05 region and as a result of the increasing of volume fraction of the sub- carbide precipitates for C/Nb > 0.16 region. Fig. 4. A bright-field electron micrograph of oxidic replica from a Nb1-xCx (7.2 at.% C) coating deposited onto substrate with temperature (550±10) K. Bright formations are attributed to Nb2C precipitates and gray field is a niobium matrix In the region 0.11≤C/Nb≤0.175 (9≤C≤15 at.%), as it is shown above, considerable growth of TC and ∆TC val- ues are observed. High-dispersion precipitates with f.c.c. structure (a = 0.445 nm) were detected in the same region. It is known [1,2,49], there is only carbide NbCx (0.72≤ x ≤ 1) with f.c.c. structure in Nb-C system. For this phase superconducting temperature and lattice constant increases (TC = 0.32…14 K and a = (0.4430… 0.44707) nm) as carbon concentration grows from ~42 to 50 at.% [1-4,44, 45, 49,50]. Then, obtained experi- mental results allow to conclude, that founded high-dis- persion f.c.c. phase is a nonequilibrium ‘NbCx’ phase. The formation of this phase can explain decreasing of volume fraction of Nb2C precipitates, on the one hand, and increasing of microdeformation of Nb-matrix, on the other hand. It is necessary to note, the formation of metastable ‘NbCx’ phase was founded by authors [51] in ‘low-carbon’ alloy obtained by high-velocity quench- ing and this phase was indexed as tetragonal distortion of the cubic NbCx structure. Moreover, the formation of nonequilibrium phase with f.c.c. structure at the inter- face of Nb-matrix and Nb2C precipitates is like the polymorphous transformation of host matrix Nb(b.c.c.) → Nb(f.c.c.) which can be induced by high-dispersion __________________________________________________________________ ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2001. №4. Серия: Физика радиационных повреждений и радиационное материаловедение (80), с.39-45. 42 metal-metalloid precipitates [22,24]. However, this process takes place when metal-met- alloid precipitates have a f.c.c. structure [22]. In our case, the Nb2C precipitates, as shown above, have a hexagonal structure. Moreover, as shown in [22], the system consisting of three phases Nb(b.c.c.) + Nb(f.c.c.) + Nb2C(c.p.h.) cannot be realized because its free volume energy is higher than the energy of Nb(f.c.c.) + NbC(f.c.c.) system. a b Fig. 5 A bright-field electron micrograph of an oxidic replica from a Nb1-xCx (11.2 at.% C) deposited onto sub- strate with temperature (550±10) K. Bright formations are attributed to precipitates of a Nb2C phase, gray field is a Nb-matrix and dark fields around precipitates correspond to a nonequilibrium phasе(a). Electron diffraction pattern of a nonequilibrium phase with the f.c.c. NaCl-type structure (b) The measurements data of critical current density as well as the investigations results of both microstructures and superconducting temperature of Nb1-xCx samples af- ter high-temperature annealing are additional arguments confirming 'NbCx' phase presence in coatings with con- centration (9…15) at.% C. Temperature dependencies of critical current density of Nb1-xCx coatings are pre- sented in Fig. 6. As may be seen in Fig. 6, for niobium- carbon coating with 'NbCx' phase there is a 'stair' on JC(T) dependence which is allocated near superconduct- ing temperature of niobium matrix. Such effect takes place in heterophase systems which have superconduct- ing phases with different values TC and JC [3,4]. Isothermal annealing of Nb1-xCx coatings leads to change of their structural state and superconducting pa- rameters. For example, aging of coatings with 1…5 at.% C at T= 1000 K for t= 0.3 h induces the decay of solid solution and the formation of very fine (~2 nm) precipitates visible through structure factor contrast. The precipitates grow up to ~4 and ~15 nm for the an- nealing time 0.5 and 2 h respectively. At the same time thermal annealing of samples with C = 9…15 at.% causes dissolution of 'NbCx' phase, growth of Nb2C pre- cipitates (<D> = 45 nm for t = 1 h, <D> = 63 nm for t = 5 h) and increasing of their volume fraction. 'NbCx' phase is disappearing completely after annealing for t = 1 h (see Fig. 7). 8,0 8,5 9,0 9,5 10,0 10,5 11,0 11,5 12,0 100 101 102 103 104 105 T , K J C , A / c m 2 Fig. 6. Dependencies of a critical current density of the Nb1-xCx coatings on temperature. () - Nb1-xCx coating with 11.2 at.% C at the initial state; (∆) - Nb1-xCx coat- ing with 11.2 at.% C after thermal annealing at T = 1000 K for t = 1 h and (o) - Nb coating with the residu- al carbon content 0.2 at.% Fig. 7. A bright-field electron micrograph of an oxidic replica from a Nb1-xCx (11.2 at.% C) coating which has been annealed at T =1000 K for t = 1 h. Bright forma- tions are attributed to precipitates of a Nb2C phase and gray field is a Nb-matrix As a result the superconducting temperature of coatings is falling down to ~9.5 K (see Fig. 1) and the __________________________________________________________________ ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2001. №4. Серия: Физика радиационных повреждений и радиационное материаловедение (80), с.39-45. 43 'stair' on JC(T) dependence is disappearing (see Fig. 6). The detailed description of kinetics of diffusive decom- position of Nb1-xCx (9…15 at.% C) coatings will be pre- sented in the next report. 4. CONCLUSION Results of this investigation can be summarized as follows: 1. High-rate condensation of self-ion-atomic fluxes of niobium and carbon onto substrates with TS = (500… 650) K forms polycrystalline single phase coatings with b.c.c. structure when carbon concentration does not ex- ceed 5 at.%. Isothermal annealing of samples at T = 1000 K for t < 1 h does not lead to formation of a well- defined carbide phase. 2. The heterophase polycrystalline structure consist- ing of Nb (b.c.c.) matrix and Nb2C (c.p.h.) precipitates is formed in the intervals 5…8 at.% C and 16…23 at.% C. Volume fraction of Nb2C phase in these concentra- tion regions is close to a thermodynamic equilibrium value. 3. The structure of Nb1-xCx (9 ≤ C ≤ 15 at.%) coat- ings represents a quasi-ternary micropolycrystalline composition consisting of Nb(b.c.c.), Nb2C(c.p.h.) and 'NbCx'(f.c.c.) phases. Metastable 'NbCx' phase is formed at Nb and Nb2C phases interface. 4. Formation of 'NbCx' phase leads to increasing of superconducting transition temperature of niobium-car- bon coatings up to ~12 K and explains considerable de- creased (~40%) of Nb2C volume fraction in comparison with a thermodynamic equilibrium value. Thermal annealing of these coatings at T = 1250 K for t ≥ 1 h causes dissolution of 'NbCx' phase and growth of both the volume fraction and the precipitates size of Nb2C phase. Authors would like to express their gratitude to Pro- fessor A. Bakai and Professor V. Finkel for helpful dis- cussions. They are also indebted to Dr. V. Bryk, Dr. O. Borodin and Dr. V. Shulaev and Dr. A. Sokol (Kharkov Polytechnical University, Ukraine) for carrying out TEM analysis and interpretation of some of electron micrographs. Authors would like to thank Dr. V. Kras- norutskiy (STC «Nuclear Fuel Cycle», Ukraine), Dr. J. Cannon IV (Department of Energy, U.S.A.) and Dr. M. Souknov (Kharkov University of Electronics, Ukraine) for technical and financial supporting in preparation of this manuscript. REFERENCES 1.E.K.Storms. The refractory carbides. New York and London: Academic Press, 1967, 304 p. 2.G.V.Samsonov (ed.). Carbides and alloys on their base. Kiev: «Naukova Dumka», 1976, 267 p. 3.T.Lunhman and D.Dew-Hughes. Metallurgy of super- conducting materials. New York and London: Academic Press, 1979, 245 p. 4.E.M.Savitskiy Superconducting materials. Moscow:”Metallurgy”, 1976, 295 p. 5.G.S.Burhanova and Yu.V.Yefimova (ed.). Refractory metals and alloys. Moscow: “Metallurgy”, 1986, 352 p. 6.J.A.Thornton. High rate thick film growth //Ann. Rev. Mater. Sci. 1977, v.7, p 239-260. 7.G.K.Wolf, M.Barth, W.Ensinger, and M.Hans. Ion- beam-assisted deposition for low temperature formation of coatings //Vacuum. 1990, v.41(4-6), p.1308-1309. 8. B.O.Johanson, U.Heimerson, M.K.Hibbs and J.- E.Sundgren. Reactively magnetron sputtered Hf-N films. I. Composition and structure//J. Appl. Phys. 1985, v.58(8), p.3104-3111. 9.O.Burat, D.Bouchier, V.Stambouli and G.Gautherin. Characterization and growth mechanisms of boron ni- tride films synthesized by ion-beam-assisted deposition //J. Appl. Phys. 1990, v. 68(6), p.2780-2790. 10.A.S.Bakai, S.N.Sleptsov, L.V.Bulatova, L.V.Polyakov , and A.N.Sleptsov . The structural-phase state of thick Cr-C coatings deposited by reactive atom- ion sputtering //Ukrainian Journal of Physics. 1995, v.40(8), p.832-836 (in Russian). 11.O.Knotek, A.Barimani, B.Bosserhoff, and F.Loffler Structure and properties of magnetron-sputtered Ti-V-N coatings //Thin Solid Films. 1990, v.193/194, p.557- 564. 12.J.-E.Sundgren. Ion-assisted film growth: modifica- tion of structure and chemistry //Vacuum. 1990, v.41(4- 6), p.1347-1349. 13.A.Aubert, J.Danroc, A.Gaucher and TJ.Perrat Hard chrome and molybdenum coatings produced by physi- cal vapor deposition //Thin Sold Films. 1985, v.126(1- 2)., p.61-67. 14.G.Cholvy, J.L.Derep and M.Gantois Characteriza- tion and wear resistance of coatings in the Cr-C-N ternary system deposited by physical vapor deposition //Thin Sold Films. 1985, v.126(1-2), p.51-60. 15.S.K.Sharma . and J.P.Morlevat Structure of reactive- ly sputtered chromium-carbon films //Thin Sold Films. 1988, v.156(2), p.307-314. 16. V.F.Rybalko, A.N.Morozov., I.S.Martynov and S.A.Karpov. Effects of irradiation with inert and reac- tive gas ions on the Fe and Cr film structure//Radiat. Eff. and Defects in Solids. 1998, v.145, p.107-114. 17.M.Naka, S.Hanada and I.Okamoto Structure chromium-carbon films formed by CVD method //Proc. of the 5th Intern. Conf. on Rapidly Quenched Metals. Wursburg. 3-7 September 1984. Elsevier Sci. Publ., 1985, p.361-364. 18.S.N.Sleptsov, L.V.Bulatova, Yu.I.Polyakov and A.N.Sleptsov Low-energy ion bombardment during Cr:C films deposition from vapor phase: Effects on mi- crostructure and phase state //Abstr. of the 8th Intern. Meet. on Radiation Processing. (Sect. 7). Beijing. 13-18 September 1992. Edited by Wu Jilan. Press. IMR Cen- ter, p.5. 19.V.Nolfi Frank Jr. (ed.). Phase transformation during irradiation. London and New York: Applied Science Publishers, 1983. 20.V.N.Bykov, V.A.Trojan, ZG.Gdorovtseva and V.S.Khaimovich Phase transformation in thin solid films by ion bombardment //Phys. Stat. Sol. (a). 1975, v.32, p.53-57. 21. V.F.Rybalko, A.N.Morozov, I.S.Martynov and S.A.Karpov Effects of irradiation with inert and reac- __________________________________________________________________ ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2001. №4. Серия: Физика радиационных повреждений и радиационное материаловедение (80), с.39-45. 44 tive gas ions on the Fe and Cr film structure //Radiat. Eff. and Defects in Solids. 1998, v.145, p.107-114. 22.K.L.Chopra., M.R.ndlett and R.H.Duff Face-cen- tered cubic modification in sputtered films of tantalum, molybdenum, tungsten, rhenium, hafnium and zirconi- um //Phil. Mag. 1967, v.16(140), p.261-273. 23.P.V.Pavlov, D.I.Tetelbaum, A.V.Pavlov and E.I..Zorin Structural transformation under bombard- ment of iron, nickel, molybdenum by argon, nitrogen and carbon ions //Doklady Akademii Nauk SSSR. 1974, v.217, p.330-335 (in Russian) 24.A.S.Bakai, G.G.Kvachantiradze Induced polymor- phous transformation in metals//Voprosy Atomnoy Nau- ki i Tekhniki. Ser.: Radiation Damage Physics and Radiation Technology. 1987, Issue 2(40), p.42-52 (in Russian). 25.J.M.Belli, F.FKomarov and V.S.Tishkov Chemical combination formation in transitional metals by ion bombardment // Phys. Stat. Sol. (a). 1978, v.45, p.343- 349. 26.S.N.Sleptsov, A.S.Bakai, I.G.Marchenko, Yu.I.Polyakov and .A.N.Sleptsov Induced polymor- phous transitions by low-energy ion bombardment dur- ing Nb:C films deposition // Abstr. of the 8th Intern. Meet. on Radiation Processing. (Sect. 7). Beijing. 13-18 September 1992. Edited by Wu Jilan. Press. IMR Cen- ter. P. 9. 27.V.F.Zelensky, I.M.Neklydov, I.S.Martynov., A.N.- Morozov, S.V.Pistryak and V.F.Rybalko On the nature of ion bombardment-indused phase transformations in films of transition metals// Radiat. Eff. and Defects in Solids. 1990, v.115, p.31-43. 28.R.K.Viswanadham and C.A.Wert. Electron micro- scopic study of precipitation in the system niobium-car- bon// J. of the Less-Common Metals. 1976, v.48, p.135- 150. 29.A.S.Bakai, S.N.Sleptsov, A.N.Sleptsov and M.A.Tikhonovskiy The ion-induced structural-phase state of niobium-carbon condensates deposited from ion-plasma fluxes// Ukrainian Journal of Physics. 1995, v.40(8), p.827-831 (in Russian). 30.V.A.Belous, G.N.Kartmazov, V.S.Pavlov, V.V.Sa- fonov and P.A.Markov. Ion-plasma methods for coat- ings deposition. Ion-atomic sputtering method: Preprint KhFTI. N 88-31, Moscow: TcNIIAtominform, 1988 (in Russian). 31..S.N.Sleptsov, L.V.Bulatova, I.G.Marchenko, A.N.Sleptsov and Yu.I.Polyakov. Structural state of thick niobium coatings deposited from self-ion-atomic fluxes // Voprosy Atomnoy Nauki i Tekhniki. Ser.: Radiation Damage Physics and Radiation Technology. 1993, v.1(60), p.62-69 (in Russian). 32.I.V.Aleksenko, L.V.Bulatova, N.P.Dikiy , S.V.Zarya, G.N.Kartmazov, T.V.Kostritsa, Yu.V.Lukirskiy., N.P.- Matyash, P.V.Platonov, Yu.I.Plyakov, S.N.Sleptsov and T.P.Chernyayeva. Parameters investigation of both mi- cro- and substructure of thick coatings deposited from high-density atomic and ion-atomic fluxes in vacuum // Voprosy Atomnoy Nauki i Tekhniki. Ser.: Radiation Damage Physics and Radiation Technology. 1987, IS- SUE 1(2), p.73-82 (in Russian). 33.Yu. P.Antuf’ev, N.P.Dikiy and V.D.Zabolotniy. Us- ing of the nuclear reactions for study of the chemical composition of a material // Voprosy Atomnoy Nauki i Tekhniki. Ser.: General Nuclear Physics. 1987, v.1(37), p.61-64 (in Russian). 34.Yu.P.Antuf’ev, N.P.Dikiy, V.D.Zabolotniy, A.S.Litvi- nenko and P.P.Matyash. The determination of the ele- mental composition of a material and depth distribution of impurity atoms using the momentary radiation of nu- clear reactions // Voprosy Atomnoy Nauki i Tekhniki. Ser.: Radiation Damage Physics and Radiation Technology. 1990, ISSUE 3(54), p.100-105 (in Russian). 35.V.Valvoda and J.Musil. X-ray analysis of strain in ti- tanium nitride layers // Thin Solid Films. 1987, v.149, p. 49-60. 36.M.Barral, J.L.Lebrun., J.M.Sprauel and G.Maeder X-ray macrostress determination on textured material // Metallurgical Transactions. 1987, v.18(A), p.1229- 1238. 37.G.Maeder X-Ray diffraction and stress measurement // Chemica Scripta. 1986, v.26(A), p. 23-31. 38.A.A.Sokol, G.V.Izyumskaya, Yu.I.Polyakov, S.N.Sleptsov and V.M.Shulaev Application of the oxi- dic replicas for electron-microscopy investigation of the dispersed-strengthened composition coatings on the base of niobium // Zavodskaya Laboratoriya. 1990, v.11, p.76-77 (in Russian). 39.G.Heim and E.Kay Ion implantation during film growth and its effect on the superconducting properties of niobium // J. Appl. Phys. 1975, v.46(9), p.4006-4011. 40.A.F.Mayadas, R.B.Laibowitz and J.J.Cuomo Electri- cal characteristic of rf-sputtered single-crystal niobium films //J.Appl. Phys. 1972, v.43(2), p.1287-1289. 41.V.P.Belevskiy and I.V.Gusev The influence of ion bombardment during deposition on both the structure and electrical properties of niobium films // Voprosy Atomnoy Nauki i Tekhniki. Ser.: Radiation Damage Physics and Radiation Technology. 1987, v.1(39), p.101-108 (in Russian). 42.D.W.Face, S.T.Ruggiero and D.E.Prober. Ion-beam deposition of Nb and Ta refractory superconducting films // J. Vac. Sci. Technol. (A). 1985, v.1(2), p.326- 330. 43.A.P.Dem’yanchuk, E.V.Kovalenko and N.V.S- tul’chikova. The influence of structure of niobium films on superconductig properties under electrical current // Fizika Tverdogo Tela. 1982, v.24(8), p.2403-2406 (in Russian). 44.A.Ya.Vinnikov, O.V.Zharikov and Ch.V.Kopetskiy Dependence of the critical current from the size grain in the polycrystalline niobium // Pisma v ZhETF. 1974, v.19(1), p.7-9 (in Russian). 45.A.L.Giorgi, E.G.Szklars and E.K.Storms. Effect of composition on the superconducting transition tempera- ture of tantalum carbide and niobium carbide // Phys. Rev. 1962,v.125(3), p.837-838. 46.G.F.Hardy and J.K.Hulm. The superconductivity of some metal compound // Phys. Rev. 1954 ,v.93(5), p.1004-1016. 47.G.V.Zaharova, I.A.Popov, L.V.Zhorova and __________________________________________________________________ ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2001. №4. Серия: Физика радиационных повреждений и радиационное материаловедение (80), с.39-45. 45 B.V.Fedin. Niobium and its alloys. Moscow: “Metallur- gy”, 1961, 369 p. (in Russian). 48.F.T.Sisco and E.Epremian (ed.). Columbium and Tantalum. New York and London: John Wiley, 1963. 49. H.W.Kihg Bull. Alloy Phase Diagrams. 1981, v. 2, p.402. 50.J.F.Smith, O.N.Carlson and R.R.De Avillez. The nio- bium-carbon system // Journal of Nuclear Materials. 1987,v. 148, p.1-16. 51.E.K.Storms and N.H.Krikorian The variation of lat- tice parameter with carbon content of niobium carbide // J. Phys. Chem. 1959, v. 63(10), p.1747-1749. 52.M.I.Pochon, C.R.McKimsey, R.A.Perkins and W.D.- Forgeng // Reactive Metals. Vol. 2. Edited by Clough W.R., New York, Interscience Publishers, 1959, p.327. __________________________________________________________________ ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2001. №4. Серия: Физика радиационных повреждений и радиационное материаловедение (80), с.39-45. 46 ION-INDUCED FORMATION OF MICROPOLYCRYSTALLINE Nb1-xCx (0  x  0.3) THICK COATINGS WITH QUASI-TERNARY PHASE STRUCTURE 2. EXPERIMENTAL DETAILS 3. RESULTS AND DISCUSSION 4. CONCLUSION References