Non-model determination of the ∆(1232) parameters

The ∆(1232) resonance and pole parameters are determined from the data of pN elastic scattering analysis in the framework of a non-model approach.

Saved in:
Bibliographic Details
Date:2001
Main Author: Omelaenko, A.S.
Format: Article
Language:English
Published: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2001
Series:Вопросы атомной науки и техники
Subjects:
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/78442
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Non-model determination of the ∆(1232) parameters / A.S. Omelaenko // Вопросы атомной науки и техники. — 2001. — № 1. — С. 48-49. — Бібліогр.: 8 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-78442
record_format dspace
spelling irk-123456789-784422015-03-18T03:01:51Z Non-model determination of the ∆(1232) parameters Omelaenko, A.S. Nuclear reactions The ∆(1232) resonance and pole parameters are determined from the data of pN elastic scattering analysis in the framework of a non-model approach. 2001 Article Non-model determination of the ∆(1232) parameters / A.S. Omelaenko // Вопросы атомной науки и техники. — 2001. — № 1. — С. 48-49. — Бібліогр.: 8 назв. — англ. 1562-6016 PACS: 13.75Gx. http://dspace.nbuv.gov.ua/handle/123456789/78442 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Nuclear reactions
Nuclear reactions
spellingShingle Nuclear reactions
Nuclear reactions
Omelaenko, A.S.
Non-model determination of the ∆(1232) parameters
Вопросы атомной науки и техники
description The ∆(1232) resonance and pole parameters are determined from the data of pN elastic scattering analysis in the framework of a non-model approach.
format Article
author Omelaenko, A.S.
author_facet Omelaenko, A.S.
author_sort Omelaenko, A.S.
title Non-model determination of the ∆(1232) parameters
title_short Non-model determination of the ∆(1232) parameters
title_full Non-model determination of the ∆(1232) parameters
title_fullStr Non-model determination of the ∆(1232) parameters
title_full_unstemmed Non-model determination of the ∆(1232) parameters
title_sort non-model determination of the ∆(1232) parameters
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2001
topic_facet Nuclear reactions
url http://dspace.nbuv.gov.ua/handle/123456789/78442
citation_txt Non-model determination of the ∆(1232) parameters / A.S. Omelaenko // Вопросы атомной науки и техники. — 2001. — № 1. — С. 48-49. — Бібліогр.: 8 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT omelaenkoas nonmodeldeterminationofthe1232parameters
first_indexed 2025-07-06T02:32:24Z
last_indexed 2025-07-06T02:32:24Z
_version_ 1836863082661412864
fulltext N U C L EAR R EA C TI O N S NON-MODEL DETERMINATION OF THE ∆(1232) PARAMETERS A.S. Omelaenko National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine The ∆(1232) resonance and pole parameters are determined from the data of πN elastic scattering analysis in the framework of a non-model approach. PACS: 13.75Gx. In [1] the significant discrepancies in the pole pa- rameters of the P33 πN scattering amplitude, namely in the absolute value and phase of the corresponding to the ∆(1232) resonance residue, were discussed using a real- istic resonance model. Here we continue the discussion trying to perform model-independent evaluation of the resonance and pole parameters. The P33 amplitude of the elastic πN scattering sup- posed to be purely elastic in the ∆(1232) excitation re- gion. Corresponding element of S matrix depends on the total energy W and can be written in the following gen- eral form through real K matrix: )(1 )(1)( WiK WiKWS − += , (1) for one-channel case the K matrix element can be writ- ten in the terms of the phase shift δ33 as )(tan)( 33 WWK δ= . (2) It is well known that the right-hand side of Eq. (2) has a pole at W0≅1232 MeV and decreases as ∼q3→0 if W goes to its value at the πN threshold (W0 is the point where the phase shift δ33 passes through value 90° and q is the c. m. momentum). These feathers have such a sol- id experimental and theoretical basement that introduc- ing them explicitly in parameterization of the K matrix element cannot be treated as some kind of a real model restriction: )( )( )()( 0 0 0 3 3 WF WWWq WqWK − Γ = . (3) In Eq. (3) Γ0 is the experimental width of the ∆ (1232) resonance, and function F(W) contains all dy- namics of the P33 amplitude aside from the threshold be- havior and the pole property. In the framework of any specific resonance description F(W) presents the energy dependence of the experimental width. For example, in [2,3] one can find many model variants of F(W). In any phenomenological model with explicit background on level with the resonance interaction the total K matrix element also can be presented in form (3) with F(W) de- pending on the background parameters. Quite similar situation takes place in more complicated dynamical models ([4], for example). In searching the non-model description of the P33 amplitude we use power series for F(W) up to some maximal degree n: ...)()(1)( 2 0201 +−+−+= WWcWWcWF . (4) Actually, this approach is a model-independent base for determination of the resonance and pole parameters of the P33 amplitudes in region of the ∆(1232) excitation, if the used series has sufficient converging near the point W0. Using the K matrix gives an advantage of treating the most simple series expansion with real coefficients. In addition, in the complex W plane a circle of a fixed radius covers the maximal number of experimental points when its center is situated on the real axe. An in- terval of real axes from ∼(W0 − Γ0/2) up to ∼(W0 + Γ0/2) seems be the most preferable in the role of the corre- sponding mathematical vicinity, as in this case the re- gion of convergence in the complex plane W reaches the pole position on the second Riemann’s sheet. 1. 2. obtained from the SAID system (http://said.- phys.vt.edu). Data from different energy intervals W1...W2 were fitted by χ2 method with using Eqs. (2), (3) and (4) for calculation of the phase shift δ33. As all but SM99s solutions are given without errors we have used an arbitrary error 0.25° for each point. So, W0, Γ0 and coefficients c1...n are free parameters (n≤4). Parame- ters W0, Γ0, coordinates of the pole in the complex W plate Re Wp, Im Wp, absolute value res and phase ϕ of the residue are presented in the table. n in (4) was re- stricted by the maximal value at which the fit is mean- ingful. The numbers of used points N and the χ2 per number of degree of freedom are indicated, too. As it follows from the first five lines of the table, all parameters, mentioned above, are practically the same for n equal 3 and 4. This situation is illustrated by the 48 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2001, № 1. Series: Nuclear Physics Investigations (37), p. 48-49. figure, too. Results of fitting on the narrower energy in- terval confirm this observation. The small shifts in val- ues of being the most sensitive residue parameters give some measure of real errors. It is interesting to note that for SM99 fits on the full energy interval W from 1100 MeV to 1350 MeV give practically the same re- sults as the fits with the data in vicinity of W0. These an- swers are in accordance with the resonance model ([1]). The most plausible rounded values of obtained parame- ters are Γ0=115.3 MeV; Re Wp=1211.5 MeV; Im Wp=- 50.8 MeV; |res|=53.1 MeV; ϕ=46.7°. Ana- lyses W1, MeV W2, MeV N n χ2/d.f. W0, MeV Γ0, MeV Re Wp, MeV Im Wp, MeV |res|, MeV ϕ, deg. SP99 1180 1260 17 0 .83D+02 1230.88 128.15 1204.29 -40.93 35.84 -61.32 17 1 .40D+00 1232.66 116.72 1208.73 -51.89 55.44 -55.42 17 2 .17D-02 1232.53 115.19 1211.65 -51.33 54.92 -46.50 17 3 .21D-03 1232.53 115.32 1211.56 -50.84 53.11 -46.73 17 4 .23D-03 1232.53 115.32 1211.53 -50.84 53.11 -46.87 SP99 1160 1280 25 0 .21D+03 1229.14 119.77 1204.57 -39.52 34.85 -59.45 25 1 .21D+01 1232.68 118.64 1208.08 -51.66 54.40 -56.21 25 2 .13D-01 1232.55 115.17 1211.64 -51.50 55.30 -46.67 25 3 .27D-03 1232.53 115.28 1211.60 -50.92 53.40 -46.63 25 4 .22D-03 1232.53 115.30 1211.51 -50.92 53.37 -46.98 SP99s 1180 1260 5 0 .15D+03 1230.51 132.19 1202.92 -41.41 36.11 -62.40 5 1 .28D+01 1232.49 114.82 1209.21 -52.32 56.92 -54.72 5 2 .54D+00 1231.83 112.21 1214.34 -48.64 49.39 -36.62 SP99s 1160 1280 7 0 .30D+03 1230.01 135.91 1201.51 -41.79 36.32 -63.40 7 1 .59D+01 1232.89 116.12 1209.03 -53.59 59.06 -55.67 7 2 .11D+01 1232.14 112.18 1213.60 -50.72 54.42 -40.64 7 3 .53D+00 1232.04 113.87 1211.87 -47.85 44.98 -45.38 SP99 1100 1350 51 2 .33D+00 1232.63 116.33 1210.78 -51.84 55.65 -48.97 51 3 .63D-02 1232.55 115.22 1211.66 -51.09 53.89 -46.52 51 4 .20D-03 1232.53 115.30 1211.53 -50.91 53.34 -46.89 KA84 1180 1260 17 2 .50D+00 1231.27 116.35 1212.18 -51.89 55.56 -39.55 1160 1280 25 2 .88D+00 1231.32 118.15 1208.68 -52.15 55.89 -50.23 25 3 .80D+00 1231.40 117.86 1208.41 -54.10 62.73 -51.82 KP80 1180 1260 10 1 .79D+00 1230.94 116.62 1207.00 -49.78 51.51 -55.53 10 2 .68D+00 1230.91 115.12 1210.53 -50.04 52.29 -44.68 KP80 1160 1280 13 1 .20D+01 1231.00 118.21 1206.46 -50.50 52.44 -56.36 13 2 .46D+00 1230.92 115.36 1209.81 -50.14 52.52 -46.99 13 3 .52D+00 1230.93 115.31 1209.84 -50.32 53.15 -46.93 KP80 1100 1350 23 2 .16D+01 1231.01 116.90 1208.45 -50.93 53.76 -50.80 23 3 .67D+00 1230.92 115.31 1209.79 -49.63 50.68 -47.17 23 4 .69D+00 1230.94 115.10 1210.07 -49.95 51.63 -46.29 The resonance and pole parameters for solution SM99 vs total number of free parameters n+2 Good convergence of the procedure discussed for solution SM99 can be partially conditioned by a form of the energy-dependent parameterization. Nevertheless such convergence for SM99s as for solutions from pre- vious analyses is not reached. This can be considered as an argument in favor of additional measurements of elastic scattering in the first resonance excitation region. REFERENCES 3. A.S. Omelaenko. Determining the ∆(1232) pole pa- rameters // VANT, 2000, № 2, p. 3-6. 4. S.S. Vasan. Determination of the position and residues of the ∆++ and ∆0 poles // Nucl. Phys. 1976, v. B106, p. 535-545. 5. A.S. Omelaenko. Determination of the mass and width of ∆(1232) P33 resonance in the phenomeno- logical approach inspired by the Lippman-Schwinger 49 equation // Yad. Fiz. 1992, v. 55, p. 1050-1060 (Sov. J. Nucl. Phys. 1992, v. 55, p. 591-597). 6. A.S. Omelaenko. Determination of the mass and width of ∆(1232) resonance within the framework of a nonrelativistic model with a separable potential // Ukr. Fiz. J. 1996, v. 41, p. 524-529. 7. A. Arndt, R.L. Workman, I.I. Strakovsky, M. Pavan. Partial-wave analysis of πN-scattering. Eprint nucl- th/9807087 (submitted to Phys. Rev. C). 8. R. Koch, E. Pietarinen. Low-energy πN partial wave analysis // Nucl. Phys. 1980, v. A336, p. 331-346. ??????? ??????? ????? ? ???????. 2000, ?2. ?????: ??????-?????????? ???????????? (36), ?. 3-6. 50 A.S. Omelaenko National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine PACS: 13.75Gx. obtained from the SAID system (http://said.phys.vt.edu). Data from different energy intervals W1...W2 were fitted by 2 method with using Eqs. (2), (3) and (4) for calculation of the phase shift 33. As all but SM99s solutions are given without errors we have used an arbitrary error 0.25 for each point. So, W0, 0 and coefficients c1...n are free parameters (n4). Parameters W0, 0, coordinates of the pole in the complex W plate Re Wp, Im Wp, absolute value res and phase  of the residue are presented in the table. n in (4) was restricted by the maximal value at which the fit is meaningful. The numbers of used points N and the 2 per number of degree of freedom are indicated, too.