Dependence of the γ³He → pd cross sections on the nuclear wave functions in the giant resonance region

The differential cross section and the asymmetry coefficient for the two-body ³He break up by linearly polarized photons are calculated with the wave functions for Reid soft core, Paris and Bonn potentials.

Збережено в:
Бібліографічні деталі
Дата:2001
Автор: Kotlyar, V.V.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2001
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/78444
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Dependence of the γ³He → pd cross sections on the nuclear wave functions in the giant resonance region / V.V. Kotlyar // Вопросы атомной науки и техники. — 2001. — № 1. — С. 53-54. — Бібліогр.: 16 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-78444
record_format dspace
spelling irk-123456789-784442015-03-18T03:01:50Z Dependence of the γ³He → pd cross sections on the nuclear wave functions in the giant resonance region Kotlyar, V.V. Nuclear reactions The differential cross section and the asymmetry coefficient for the two-body ³He break up by linearly polarized photons are calculated with the wave functions for Reid soft core, Paris and Bonn potentials. 2001 Article Dependence of the γ³He → pd cross sections on the nuclear wave functions in the giant resonance region / V.V. Kotlyar // Вопросы атомной науки и техники. — 2001. — № 1. — С. 53-54. — Бібліогр.: 16 назв. — англ. 1562-6016 PACS: 21.45.+v, 25.10.+s, 25.20.-x, 27.10.+h. http://dspace.nbuv.gov.ua/handle/123456789/78444 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Nuclear reactions
Nuclear reactions
spellingShingle Nuclear reactions
Nuclear reactions
Kotlyar, V.V.
Dependence of the γ³He → pd cross sections on the nuclear wave functions in the giant resonance region
Вопросы атомной науки и техники
description The differential cross section and the asymmetry coefficient for the two-body ³He break up by linearly polarized photons are calculated with the wave functions for Reid soft core, Paris and Bonn potentials.
format Article
author Kotlyar, V.V.
author_facet Kotlyar, V.V.
author_sort Kotlyar, V.V.
title Dependence of the γ³He → pd cross sections on the nuclear wave functions in the giant resonance region
title_short Dependence of the γ³He → pd cross sections on the nuclear wave functions in the giant resonance region
title_full Dependence of the γ³He → pd cross sections on the nuclear wave functions in the giant resonance region
title_fullStr Dependence of the γ³He → pd cross sections on the nuclear wave functions in the giant resonance region
title_full_unstemmed Dependence of the γ³He → pd cross sections on the nuclear wave functions in the giant resonance region
title_sort dependence of the γ³he → pd cross sections on the nuclear wave functions in the giant resonance region
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2001
topic_facet Nuclear reactions
url http://dspace.nbuv.gov.ua/handle/123456789/78444
citation_txt Dependence of the γ³He → pd cross sections on the nuclear wave functions in the giant resonance region / V.V. Kotlyar // Вопросы атомной науки и техники. — 2001. — № 1. — С. 53-54. — Бібліогр.: 16 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT kotlyarvv dependenceoftheg3hepdcrosssectionsonthenuclearwavefunctionsinthegiantresonanceregion
first_indexed 2025-07-06T02:32:29Z
last_indexed 2025-07-06T02:32:29Z
_version_ 1836863088156999680
fulltext DEPENDENCE OF THE γ3He→pd CROSS SECTIONS ON THE NUCLEAR WAVE FUNCTIONS IN THE GIANT RESONANCE REGION V.V. Kotlyar National Science Center "Kharkov Institute of Physics and Technology", Kharkov, Ukraine The differential cross section and the asymmetry coefficient for the two-body 3He break up by linearly polarized photons are calculated with the wave functions for Reid soft core, Paris and Bonn potentials. PACS: 21.45.+v, 25.10.+s, 25.20.-x, 27.10.+h. The differential cross section for the reaction 3He pd at photon energies E<25 MeV was shown [1] to de- pend substantially on choice of the nuclear wave func- tions (WFs). The calculations were performed in momentum space with the Faddeev WFs for 3N bound state for Reid soft core (RSC), Paris and Bonn poten- tials. The Siegert theorem was applied in [1] to take into consideration a part of the interaction current effects in the electric multipoles. Explicitly the meson exchange currents (MEC) were treated in [2,3] where parametrization [4] of the 3He WF for RSC potential was used. It was demonstrated [2,3] that the MEC contributions sizably increase the values of the cross section reducing discrepancies between the re- sults of the calculations and the experimental data. Role of the interaction currents and rescattering in the pd system was studied [5-9] in the proton-deuteron radiative capture. Area of energies examined in [5-9] corresponds to lab γE ≤ 139.1 MeV in the 3He photodisin- tegration. Results [7-9] allow one to single out a kine- matic region where the effects of final state interaction (FSI) do not appear to be crucial for the cross section of  3Hepd and give an opportunity to scrutinize manifesta- tion of the P- and D-components of the 3N bound state WF. Aim of this paper is to carry on investigation [3] and to study dependence of the energy and angular distribu- tions of the cross section and the beam asymmetry on the 3He WFs using precise numerical solutions of the Faddeev equations obtained in Ref. [10]. The observables are computed with the nuclear cur- rent including contributions from convection and spin currents, the two-body currents generated by pion ex- change (πEC). The Riska model is taken for the latter. The πNN form factors in the operators of MEC are chosen in the monopole form with the cut-off parameter Λπ=1.2 GeV. The reaction amplitudes are calculated in the framework of Refs. [2,3], where details regarding the techniques can be found. In Fig. 1 the differential cross sections obtained with the Hannover-Helsinki WF [4] for RSC potential and the Bochum-Cracow WFs [10] for Bonn and Paris potentials are compared with the results of Ref. [1]. According to the present calculations there is only a rather moderate dependence of the cross section on the nuclear WFs that corresponds to the conclusions of Refs. [7-9] and contrasts with inferences of Ref.[1]. The angular distributions for Bonn and Paris potentials have been analyzed to study the variations of the cross section in detail. The different sets Nα=2, 5, 10, 18, 26, 34 of the partial wave components of the 3He WFs have been considered. The contributions of the S-waves correspond to the set Nα=2. D-waves are included in Nα=5. The set Nα=10 consists of S-, P- and D-components with the total angu- lar momentum in the two-body subsystem J=0 and 1. Partial waves with J≤2 are involved in the case Nα=18. The components of the 3He WF with J≤3(4) are taken into account in Nα=26(34). It turns out that no signifi- cant potential dependence appears in all the cases analyzed. 5 10 15 20 25 0 20 40 60 80 100 120 140 160 WFs for Bonn, Paris and RSC potentials D.J. Klepacki et al. [1] present calculations Berman B.L. et al. [11] Skopik D.M. et al. [12] σla b (θ la b γ p=9 0o ), µb /s r Elab γ , MeV Fig. 1. Potential model dependence of the differential cross section σ=dσ/dΩγp for γ 3He→ pd. Influence of the 3He WF components with orbital angular momenta 2...5 on angular distributions of the cross section and the beam asymmetry is demonstrated in Figs. 2 and 3. The calculations in the plane wave approximation overestimate the data at forward and backward angles. Enhancement of the cross section at lab γpθ 30° and lab γpθ 150° rides on contributions of spin current and πEC. As it follows from comparison with the results of experiments [13] and theoretical investigations [7-9], PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2001, № 1. Series: Nuclear Physics Investigations (37), p. 53-54. 53 the effects of the FSI cannot be neglected under these kinematic conditions. The P- and D-states in the 3He WF influence the cross section just in a vicinity of its maximum at E=9-16 MeV where nonorthogonality of the initial and final state WFs does not play a decisive role at least for this observable. 0 30 60 90 120 150 180 0 20 40 60 80 100 WFs for Paris potential N α =2 N α =5 N α =10 N α =18 N α =26 N α =34 B.D.Belt et al. [13] σcm (E La b γ =1 5. 4 M eV ), µ b/ sr θ cm γ p , degrees Fig. 2. Angular distribution of the differential cross section for γ 3He→ pd. 0 30 60 90 120 150 180 0,0 0,2 0,4 0,6 0,8 WFs for Paris potential N α =2 N α =5 N α =10 N α =18 N α =26 N α =34 Σ( EL ab γ = 15 .4 M eV ) θ cm γ p , degrees Fig. 3. Angular dependence of the asymmetry coeffi- cient for γ 3He→ pd with linearly polarized photons Being calculated with the convection current, the asymmetry coefficient Σ1 at 30°   lab γpθ 140°. Inclusion of spin current or/and πEC decreases Σ values and chan- ges the shape of the angular distribution reducing its width. As seen from Fig. 3, the asymmetry Σ is affected by the P-wave components of the 3N WF (cf. curves for Nα=5 and 10). This observation does not seem to be very surprising in view of the fact that polarization ob- servables in Nd elastic scattering [14] and pd radiative capture [15,16] were found to be remarkably sensitive to the NN interaction in states with L=1. Nevertheless, before one can draw definite conclusions whether the reaction γ  3He→pd is of inter- est for studying properties of the P-states in 3He WF, the role of the FSI effects in masking the sensitivity of the asymmetry coefficient to the components of the WF has to be investigated. The author is grateful to H. Kamada, W. Glöckle, J. Golak, H. Witała for the data on the 3He WFs ob- tained with Paris and Bonn potentials and would like to thank J. Jourdan for fruitful discussions. REFERENCES 1. D.J. Klepacki et al. Two-body photodisintegration of 3H and 3He near the giant resonance (I). Plane-wave approximation // Nucl. Phys. A. 1992, v. 550, №1, p. 53-88. 2. V.V. Kotlyar, A.V. Shebeko. Conservation of Nu- clear Electromagnetic Current and Calculation of 3He( γ ,p)d cross sections // Sov. J. Nucl. Phys. 1987, v. 45, №4, p. 610-615. 3. V.V. Kotlyar, A.V. Shebeko. Mechanisms of the  3Hepd reaction in the giant resonance region // Sov. J. Nucl. Phys. 1991, v. 54, №3, p. 423-425. 4. Ch. Hajduk et al. A convenient analytical form for the triton wave function // Nucl. Phys. A. 1980, v. A337, №.1, p .13-22. 5. J. Jourdan et al. dp  − radiative capture and the 3He D-state // Nucl. Phys. A. 1986, v. 453, №2, p. 220-240. 6. S. Ishikawa and T. Sasakawa. γ+→+ Hdp 3  reaction with realistic three-nucleon wave functions // Phys. Rev. C. 1992, v 45, №4, p. R1428-R1431. 7. H. Anklin et al. Tensor analyzing power Ayy of dp  − radiative capture // Nucl. Phys., A. 1998, v. 636, №2, p. 189-206. 8. J. Golak et al. Faddeev Calculations of Proton-Deu- teron Radiative Capture with Exchange Currents // Phys. Rev. C. 2000, v. 62, №5, article 054005, 16p. 9. H. Kamada et al. Faddeev calculations of Proton- Deuteron Radiative Capture with p- and r-Meson Exchange Currents of the Argonne Potentials // Nucl. Phys. A. 2001, v. 684, №.3-4, p. 618-622. 10. W. Glöckle et al. The Three-Nucleon Continuum: Achievements, Challenges and Applications // Phys. Rep. 1996, v. 274, №.3-4, p. 107-286. 11. B.L. Berman et al. Photodisintegration of 3He // Phys. Rev. C. 1964, v. 133, №.1, p. B117-B129. 12. D.M. Skopik et al. 2He(p,)3He reaction using polar- ized and unpolarized protons // Phys. Rev. C. 1979, v. 19, №.3, p. 601-609. 13. B.D. Belt et al. Radiative capture of deuterons by protons // Phys. Rev. Lett. 1970, v 24, №.20, p. 1120- 1123. 14. H. Witała et al. Nucleon - deuteron polarization ob- servables in Nd elastic scattering at 6.7 MeV c.m. energy: Predictions of meson based NN interactions // Nucl. Phys. A. 1989, v. 496, №.2, p. 446-461. 54 15. G.J. Schmid et al. T20 measurements for 1H(d, )3He and the P-wave component of the nucleon-nucleon force // Phys. Rev. C. 1996, v. 53, №.1, p. 35-40. 16. J. Golak and H. Witała. Sensitivity of the Low- Energy p-d Capture Observables to the 3Pj Nucleon- Nucleon Force Components // Few-Body Systems. 2000, v. 28, №.3-4, p. 231-240. 54 PROBLEMS OF ATOMIC ENERGY AND TECHNOLOGY. 2001, № 1. Series: Nuclear Physics Investigations, p. 54-55. REFERENCES