Neoclassical transport for Uragan-2M in the 1/ν regime

The 1/ν neoclassical transport (effective ripple, εeff) is studied for the torsatron Uragan-2M (see in [1]. For stellarators where the finite plasma pressure causes a weak influence on the equilibrium εeff can be computed using field line tracing code [2] in real space coordinates. Also, an optimizi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2005
Hauptverfasser: Kalyuzhnyj, V.N., Kasilov, S.V., Kernbihler, W., Nemov, V.V., Seiwald, B.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2005
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/78455
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Neoclassical transport for Uragan-2M in the 1/ν regime / V.N. Kalyuzhnyj, S.V. Kasilov, W. Kernbihler, V.V. Nemov, B. Seiwald // Вопросы атомной науки и техники. — 2005. — № 1. — С. 30-32. — Бібліогр.: 8 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-78455
record_format dspace
spelling irk-123456789-784552015-03-18T03:01:56Z Neoclassical transport for Uragan-2M in the 1/ν regime Kalyuzhnyj, V.N. Kasilov, S.V. Kernbihler, W. Nemov, V.V. Seiwald, B. Magnetic confinement The 1/ν neoclassical transport (effective ripple, εeff) is studied for the torsatron Uragan-2M (see in [1]. For stellarators where the finite plasma pressure causes a weak influence on the equilibrium εeff can be computed using field line tracing code [2] in real space coordinates. Also, an optimizing procedure is carried out using the code [3] for optimizing stellarators with fixed coil design. Besides, possibilities of improving the neoclassical transport by changing the resulting vertical magnetic field are considered. Вивчено неокласичний перенос в режимі 1/ν («effective ripple», εeff) для торсатрону Ураган-2M [1]. Для стелараторів, де вплив кінцевого тиску плазми на рівновагу являється слабким , εeff може бути розраховано з застосуванням коду [2], що використовує інтегрування вздовж магнітних силових ліній в реальних просторових координатах. Застосовано також оптимізаційну процедуру, яка використовує код [3] для оптимізації стелараторів з фіксованими котушками. Крім того, розглянуто можливості зниження коефіцієнтів неокласичного переносу шляхом змінювання результуючого вертикального магнітного поля. Изучен неоклассический перенос в режиме 1/ν («effective ripple», εeff) для торсатрона Ураган-2M [1]. Для стеллараторов, где конечное давление плазмы оказывает слабое влияние на равновесие, εeff может быть рассчитан с применением кода [2], использующего интегрирование вдоль магнитных силовых линий в реальных пространственных координатах. Применена также оптимизационная процедура, использующая код [3] для оптимизации стеллараторов с фиксированными катушками. Рассмотрены также возможности снижения коэффициентов неоклассического переноса путем изменения результирующего вертикального магнитного поля. 2005 Article Neoclassical transport for Uragan-2M in the 1/ν regime / V.N. Kalyuzhnyj, S.V. Kasilov, W. Kernbihler, V.V. Nemov, B. Seiwald // Вопросы атомной науки и техники. — 2005. — № 1. — С. 30-32. — Бібліогр.: 8 назв. — англ. 1562-6016 PACS: 52.55.Hc http://dspace.nbuv.gov.ua/handle/123456789/78455 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Magnetic confinement
Magnetic confinement
spellingShingle Magnetic confinement
Magnetic confinement
Kalyuzhnyj, V.N.
Kasilov, S.V.
Kernbihler, W.
Nemov, V.V.
Seiwald, B.
Neoclassical transport for Uragan-2M in the 1/ν regime
Вопросы атомной науки и техники
description The 1/ν neoclassical transport (effective ripple, εeff) is studied for the torsatron Uragan-2M (see in [1]. For stellarators where the finite plasma pressure causes a weak influence on the equilibrium εeff can be computed using field line tracing code [2] in real space coordinates. Also, an optimizing procedure is carried out using the code [3] for optimizing stellarators with fixed coil design. Besides, possibilities of improving the neoclassical transport by changing the resulting vertical magnetic field are considered.
format Article
author Kalyuzhnyj, V.N.
Kasilov, S.V.
Kernbihler, W.
Nemov, V.V.
Seiwald, B.
author_facet Kalyuzhnyj, V.N.
Kasilov, S.V.
Kernbihler, W.
Nemov, V.V.
Seiwald, B.
author_sort Kalyuzhnyj, V.N.
title Neoclassical transport for Uragan-2M in the 1/ν regime
title_short Neoclassical transport for Uragan-2M in the 1/ν regime
title_full Neoclassical transport for Uragan-2M in the 1/ν regime
title_fullStr Neoclassical transport for Uragan-2M in the 1/ν regime
title_full_unstemmed Neoclassical transport for Uragan-2M in the 1/ν regime
title_sort neoclassical transport for uragan-2m in the 1/ν regime
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2005
topic_facet Magnetic confinement
url http://dspace.nbuv.gov.ua/handle/123456789/78455
citation_txt Neoclassical transport for Uragan-2M in the 1/ν regime / V.N. Kalyuzhnyj, S.V. Kasilov, W. Kernbihler, V.V. Nemov, B. Seiwald // Вопросы атомной науки и техники. — 2005. — № 1. — С. 30-32. — Бібліогр.: 8 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT kalyuzhnyjvn neoclassicaltransportforuragan2minthe1nregime
AT kasilovsv neoclassicaltransportforuragan2minthe1nregime
AT kernbihlerw neoclassicaltransportforuragan2minthe1nregime
AT nemovvv neoclassicaltransportforuragan2minthe1nregime
AT seiwaldb neoclassicaltransportforuragan2minthe1nregime
first_indexed 2025-07-06T02:32:55Z
last_indexed 2025-07-06T02:32:55Z
_version_ 1836863115639128064
fulltext NEOCLASSICAL TRANSPORT FOR URAGAN-2M IN THE ν1 REGIME V.N.Kalyuzhnyj1, S.V.Kasilov1, W.Kernbihler2, V.V.Nemov1, B.Seiwald2 1Institute of Plasma Physics, National Science Centre “ Kharkov Institute of Physics and Technology”, Akademicheskaya 1, 61108 Kharkov, Ukraine; 2Institut fur Theoretishe Physik, Technische Universitat Graz, Petersgasse 16, A-8010 Graz, Austria The 1/ν neoclassical transport (effective ripple, εeff) is studied for the torsatron Uragan-2M (see in [1]. For stellarators where the finite plasma pressure causes a weak influence on the equilibrium εeff can be computed using field line tracing code [2] in real space coordinates. Also, an optimizing procedure is carried out using the code [3] for optimizing stellarators with fixed coil design. Besides, possibilities of improving the neoclassical transport by changing the resulting vertical magnetic field are considered. PACS: 52.55.Hc INTRODUCTION The U-2M device (IPP, Kharkov) is an l=2 torsatron with an additional toroidal magnetic field (mp=4, RT=170cm, mp is a number of the field periods along the torus, RT is the big radius of the torus). In the design phase of this device a big number of various studies were carried out, the results are summarized in [1]. At the same time, due to the flexibility of the device magnetic system further investigations of possibilities of improving the confinement properties is possible and desirable. The additional toroidal magnetic field in U-2M is produced by a system of 16 toroidal field coils (TF coils) uniformly distributed in angle along the major circumference (4 coils in each field period). In accordance with [1] for the "standard" configuration, which is considered here, the mean current in such a coil is of ITFC=5/12 (in units of the helical coil current). In this case the parameter kϕ=Bth/(Bth+Btt) is kϕ=0.375 (Bth and Btt are the toroidal components of the magnetic field produced by helical and TF coils, respectively). The additional control parameter for improving the effective ripple is the difference of currents in adjacent TF coils [1], [4]. An important role in formation of the torsatron magnetic configuration belongs to the vertical field coil (VF coil) system. In the presented computations the VF coil system variant [5] is used which makes it possible to suppress significantly the island structure of the magnetic surfaces. For the helical coils the magnetic field and its spatial derivatives are calculated on the basis of the Biot-Savart law modeling each helical coil by 24 current filaments distributed in two layers. The magnetic fields produced by the TF and VF coils are calculated using elliptic integrals (recalculating the fields obtained in the local coordinate systems of each coil to the general cylindrical coordinates). COMPUTATIONS OF EFFECTIVE RIPPLE AND OPTIMIZATION RUN In view of the results of [4] the currents in the TF coils are presented in a form ITFC±∆I with sign plus for the inner two coils in each field period and with sign minus for the outer two coils (further, ∆I is expressed in the units of the helical coil current). In [4] a decrease in the effective ripple, εeff, was found in U-2M for certain values of ∆I>0 (and vice versa an increase in case of ∆I<0). Here the dependence of εeff on ∆I is analyzed using methods which are valid (in contrast to [4]) over the entire magnetic configuration and allow in this case to obtain the quantitative evaluation of εeff. Optimization run [3] using NEO code [2] for the εeff 3/2 computation is performed with varying the ∆I parameter. Note that computation of εeff 3/2 is more useful (as compared to εeff) since for the 1/ν transport regime the transport coefficients are proportional directly to εeff 3/2. To assess the necessary interval of the ∆I variation, before the optimization run computations of εeff 3/2 are made for the ∆I values of 0 and ±5/144. After that a more detailed assessment of the configuration confinement properties in case of 1/ν regime is performed using the optimization procedure for the ∆I interval of -0.1÷0.1. In the procedure the total stored energy in the plasma volume is used as fitness parameter with an energy source, Q(r)= Q0δ(r)/r, which is localized at the magnetic axis. It is assumed that the temperature profile is defined by the heat conductivity equation 0)(1 =+ ∂ ∂ ∂ ∂ ⊥ rQ r Tr rr κ (1) with the boundary conditions T(a)=0 and (rdT/dr)=0 (here a is the boundary of the plasma). So, the heat conductivity, κ 0 lim →r ⊥, is proportional to εeff 3/2T7/2, and computation of εeff 3/2 for sets of computed magnetic surfaces is an essential part of the optimization procedure. The normalized stored energy 92 0 0 23 )'(' ')(∫ ∫ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ = a a eff rr drrndrrW ε (2) can be obtained by integrating the temperature profile resulting from (1) ( n is a normalized plasma density). RESULTS Fig.1 shows cross-sections of magnetic surfaces used for the εeff 3/2 computations for ∆I=0 (in the ϕ=0 plane and after half of the field period). A circle with a radius of 34 cm shows the inner boundary of the vacuum chamber. Magnetic islands of ι=4/5 can be seen close to the chamber boundary. Magnetic surfaces for ∆I=5/144 and ∆I= -5/144 (not shown here) differ from those in Fig.1 mainly by the sizes of the outermost magnetic surfaces. For ∆I>0 (∆I<0) these sizes are smaller (bigger) than those in Fig.1. The position of the islands for these cases only slightly differ from that for ∆I=0. In the case of ∆I=5/144 for the region outside the ι=4/5 islands the magnetic configuration has entirely a structure of island chains consisting of very big numbers of small islands. 30 Problems of Atomic Science and Technology. 2005. № 1. Series: Plasma Physics (10). P. 30-32 The results of the computations of εeff 3/2 for ∆I=0, ±5/144, 0.035 and 0.0375 are presented in Fig.2 (for the non- island magnetic surfaces) as functions of the mean radius r of a magnetic surface. The curves presented in Fig.2 have gaps corresponding to the island surfaces. Different total intervals in r for the curves correspond to different sizes of the outermost magnetic surfaces. Surfaces outside the islands are not fully inside the vacuum vessel and, therefore, suppressed for computations of the total stored energy (nevertheless εeff 3/2 is shown for ∆I equal to 0 and -5/144 in Fig.2). 120 140 160 180 200 220 -40 -20 0 20 40 z R 120 140 160 180 200 220 -40 -20 0 20 40 z R Fig. 1. “Standard” configuration of U-2M for ∆I=0 0 2 4 6 8 10 12 14 16 18 0.001 0.010 0.100 1.000 ε3/2 eff r 1 1 2 3 3 4 5 Fig.2. Parameters εeff 3/2 as functions of r for various ∆I; 1: ∆I=0; 2: ∆I=5/144; 3: ∆I=-5/144; 4 and 5 (thin lines): ∆I=0.035 and 0.0375, respectively (gaps in curves correspond to the island surfaces) It follows from the results that for the small r for ∆I=5/144, 0.035 and 0.0375 the εeff 3/2 value is smaller by one order of magnitude than that for ∆I=0. However, this difference decreases when approaching the islands and in the island vicinity becomes small. For ∆I=-5/144 the εeff 3/2 values are bigger than for ∆I=0. From the computations also follows that in the islands εeff 3/2 reaches the values 0.2÷0.3 for all considered cases. The obtained results are in a qualitative agreement with results of [4] for rather small r/a (with a being the mean radius of the outermost magnetic surface). Note that the εeff 3/2 values of 0.01÷0.1 which are characteristic for Fig.2 from r approximately 7 cm to r corresponding to the appearance of the island are essentially bigger than those which are desirable from the viewpoint of the stellarator optimization [6]. The optimization results are presented in Fig.3 in the form of a normalized stored energy (2) as a function of ∆I. The results correspond to a model of the particle density where constant and parabolic profiles are assumed. A maximum in the stored energy is seen for ∆I≈0.035 that is rather close to the ∆I value 5/144 considered above. -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 50 60 70 80 90 100 110 120 130 ∆ I 1 2 Fig.3. Normalized stored energy (in a. u.) (see Eq.(2)) vs. change of ∆I; 1: n=const., 2: parabolic profile of n The afore-presented results relate to the initial "standard" configuration which is well centered with respect to the vacuum chamber and is characterized by a resulting vertical magnetic field B⊥ of B⊥/B0≈2.5% value (B0 is the mean toroidal magnetic field). Further, the calculations are performed for the changed value of B⊥, namely, for B⊥=0 and B⊥/B0≈-2.5% in case of ∆I=0 (the positive (negative) B⊥ value corresponds to the somewhat un-compensated (over-compensated) vertical field of the helical coils). For these changes an additional homogeneous vertical magnetic field of the necessary value is used. Due to the changes in B⊥/B0 the magnetic axis turns out to be inward shifted with respect to its position for B⊥/B0≈2.5%. Fig.4 shows the magnetic surfaces corresponding to B⊥/B0≈-2.5%. Computational results for εeff 3/2 corresponding to the new values of B⊥/B0 are presented in Fig.5 (curves 3 and 4) as functions of r/a with a being the mean radius of the outermost magnetic surface for B⊥/B0≈2.5%, ∆I=0. For comparison curves 1 and 2 in the figure show some results from Fig.2. Curve 5 shows the results corresponding to B⊥/B0≈-2.5% when the B⊥/B0 value is obtained by the corresponding increase in the currents of the VF coils but not by the additional homogeneous magnetic field. It follows from Fig.5 that the inward-shifted magnetic configurations have markedly smaller values of εeff 3/2 than the configurations corresponding to B⊥/B0=2.5%. This 31 CONCLUSIONS can be explained by the fact that inward shifted stellarator configurations turn out to be rather close to the so called "σ-optimized" configurations (see, e.g., [7]). The initial "standard" U-2M configuration is well centered with respect to the vacuum chamber. It is found that for this configuration the 1/ν transport is essentially bigger than that which is desirable from the viewpoint of the stellarator optimization [6]. Some improvement in this transport can be achieved by a certain difference of currents in adjacent TF coils. Markedly smaller 1/ν transport can be obtained by changing the resulting vertical magnetic field in a way which leads to an inward-shifted configuration. This way can be of interest although the inward-shifted stellarator configuration can posses a magnetic hill (instead of a magnetic well). From recent experimental results [8] for LHD follows that MHD stability as well as good transport properties can be obtained simultaneously in inward-shifted configurations with a magnetic hill. 120 140 160 180 200 220 -40 -20 0 20 40 z R ACKNOWLEDGEMENTS This work has been partly carried out within the Association EURATOM-OEAW. The content of the publication is the sole responsibility of its authors and it does not necessarily represent the views of the Commission or its service. Fig. 4. “Inward-shifted” configuration of U-2M REFERENCES 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1E-4 0.001 0.01 0.1 1 r/a ε3/2 eff 1 2 3 4 5 1 3 [1] O.S.Pavlichenko for the U-2M group. First results from the URAGAN-2M torsatron// Plasma Phys. and Control. Fusion, 1993, v.35, B223. [2] V.V.Nemov, S.V.Kasilov, W.Kernbichler, M.F.Hein. Evaluation of 1/ν neoclassical transport in stellarators// Phys. Plasmas, 1999, v.6, p.4622. [3] B.Seiwald, V.V.Nemov, S.V.Kasilov, W.Kernbihler. Optimization of stellarators with respect to neoclassical transport in real space// Proc. of 29th EPS Conf. on Plasma Phys. and Contr. Fusion, Montreux, 17-21 June 2002, ECA, 2002, v.26B, P-4.099. [4] C.D.Beidler, et al. Physics studies for the Uragan-2M torsatron// in Plasma Phys. and Contr. Nucl. Fusion Res. 1990 (Proc. of 13 IAEA Conf. on Nucl. Fusion, Washington), Vienna: IAEA, 1991, v.2, p.663. [5] V.E.Bykov, et al. Optimization studies of compact torsatrons// in Plasma Phys. and Contr. Nucl. Fusion Res. 1988 (Proc. of 12th IAEA Conf. on Nucl. Fusion, Nice, 1988), Vienna: IAEA, 1989, v.2, p.403. Fig. 5. Parameters εeff 3/2 as functions of r/a; 1: ∆I=0, B⊥/B0=2.5%; 2: ∆I=5/144, B⊥/B0=2.5%; [6] G.Grieger, et al. Physics optimization of stellarators// Phys. Fluids B, 1992, v.4, p.2081. 3: B⊥=0, ∆I=0; 4 and 5: B⊥/B0= -2.5%, ∆I=0 [7] H.E.Mynic. Improved theory of collisionless particle motion in stellarators// Phys. Fluids, 1983, v.26, p.1008. Because of the vacuum chamber and islands the confinement regions are smaller than it is seen from Figs.2 and 5. They can be characterized by the corresponding maximum values of r/a which equal r/a≈0.82 for B⊥/B0=0, r/a≈0.47 for B⊥/B0=-2.5%; r/a≈0.68 for B⊥/B0=2.5%, ∆I=5/144. [8] O.Motojima, et al. Recent advances in the LHD experiment// Nucl. Fusion, 2003, v.43, p.1674. НЕОКЛАССИЧЕСКИЙ ПЕРЕНОС В РЕЖИМЕ 1/ν ДЛЯ УРАГАНА-2M В.Н. Калюжный, С.В. Касилов, В. Кернбихлер, В.В. Немов, Б. Сейвальд Изучен неоклассический перенос в режиме 1/ν («effective ripple», εeff) для торсатрона Ураган-2M [1]. Для стеллараторов, где конечное давление плазмы оказывает слабое влияние на равновесие, εeff может быть рассчитан с применением кода [2], использующего интегрирование вдоль магнитных силовых линий в реальных пространственных координатах. Применена также оптимизационная процедура, использующая код [3] для оптимизации стеллараторов с фиксированными катушками. Рассмотрены также возможности снижения коэффициентов неоклассического переноса путем изменения результирующего вертикального магнитного поля. НЕОКЛАСИЧНИЙ ПЕРЕНОС В РЕЖИМІ 1/ν ДЛЯ УРАГАНА-2M В.М. Калюжний, С.В. Касілов, В. Кернбіхлер, В.В. Нємов, Б. Сейвальд Вивчено неокласичний перенос в режимі 1/ν («effective ripple», εeff) для торсатрону Ураган-2M [1]. Для стелараторів, де вплив кінцевого тиску плазми на рівновагу являється слабким , εeff може бути розраховано з застосуванням коду [2], що використовує інтегрування вздовж магнітних силових ліній в реальних просторових координатах. Застосовано також 32 33 оптимізаційну процедуру, яка використовує код [3] для оптимізації стелараторів з фіксованими котушками. Крім того, розглянуто можливості зниження коефіцієнтів неокласичного переносу шляхом змінювання результуючого вертикального магнітного поля. INTRODUCTION RESULTS CONCLUSIONS ACKNOWLEDGEMENTS REFERENCES