Contraband detection thechnological complex with ion linac
The contraband detection technological complex (CDTC) to detect explosives, fission materials, and vegetable drugs is proposed. Our approach employs the pulsed neutron source. The CDTC employs the rf linac to provide a beam of deuterons of 1 or 3.5 MeV, which impinge upon a target giving birth pulse...
Збережено в:
Дата: | 2004 |
---|---|
Автори: | , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2004
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/78471 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Contraband detection thechnological complex with ion linac / Yu.N. Gavrish, Yu.A. Svistunov, A.V. Sidorov, A.M. Fialkovsky // Вопросы атомной науки и техники. — 2004. — № 1. — С. 6-9. — Бібліогр.: 4 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-78471 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-784712015-03-19T03:02:28Z Contraband detection thechnological complex with ion linac Gavrish, Yu.N Svistunov, Yu.A. Sidorov, A.V. Fialkovsky, A.M. Состояние действующих и проекты новых ускорителей The contraband detection technological complex (CDTC) to detect explosives, fission materials, and vegetable drugs is proposed. Our approach employs the pulsed neutron source. The CDTC employs the rf linac to provide a beam of deuterons of 1 or 3.5 MeV, which impinge upon a target giving birth pulsed neutron flow. Explosives are identified by the matrix detection system with gamma registration under interaction of neutron on N, O, C nuclei. Experimental verification of main principles of matrix detection system is presented. Дано опис комплексу виявлення вибухових, що поділяються і наркотичних речовин рослинного походження. Джерелом зондувального нейтронного випромінювання є лінійний малогабаритний над частотний прискорювач іонів водню. Представлено результати іспиту системи детектування й обробки інформації гамма-випромінювання, створеного при взаємодії нейтронного випромінювання з характерними елементами N, O, C, що входять до складу шуканих матеріалів. Дано описание комплекса обнаружения взрывчатых, делящихся и наркотических веществ растительного происхождения. Источником зондирующего нейтронного излучения является линейный малогабаритный высокочастотный ускоритель ионов водорода. Представлены результаты испытания системы детектирования и обработки информации гамма-излучения, образуемого при взаимодействии нейтронного излучения с характерными элементами N, O, C, входящими в состав искомых материалов. 2004 Article Contraband detection thechnological complex with ion linac / Yu.N. Gavrish, Yu.A. Svistunov, A.V. Sidorov, A.M. Fialkovsky // Вопросы атомной науки и техники. — 2004. — № 1. — С. 6-9. — Бібліогр.: 4 назв. — англ. 1562-6016 PACS: 29.17.+w http://dspace.nbuv.gov.ua/handle/123456789/78471 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Состояние действующих и проекты новых ускорителей Состояние действующих и проекты новых ускорителей |
spellingShingle |
Состояние действующих и проекты новых ускорителей Состояние действующих и проекты новых ускорителей Gavrish, Yu.N Svistunov, Yu.A. Sidorov, A.V. Fialkovsky, A.M. Contraband detection thechnological complex with ion linac Вопросы атомной науки и техники |
description |
The contraband detection technological complex (CDTC) to detect explosives, fission materials, and vegetable drugs is proposed. Our approach employs the pulsed neutron source. The CDTC employs the rf linac to provide a beam of deuterons of 1 or 3.5 MeV, which impinge upon a target giving birth pulsed neutron flow. Explosives are
identified by the matrix detection system with gamma registration under interaction of neutron on N, O, C nuclei. Experimental verification of main principles of matrix detection system is presented. |
format |
Article |
author |
Gavrish, Yu.N Svistunov, Yu.A. Sidorov, A.V. Fialkovsky, A.M. |
author_facet |
Gavrish, Yu.N Svistunov, Yu.A. Sidorov, A.V. Fialkovsky, A.M. |
author_sort |
Gavrish, Yu.N |
title |
Contraband detection thechnological complex with ion linac |
title_short |
Contraband detection thechnological complex with ion linac |
title_full |
Contraband detection thechnological complex with ion linac |
title_fullStr |
Contraband detection thechnological complex with ion linac |
title_full_unstemmed |
Contraband detection thechnological complex with ion linac |
title_sort |
contraband detection thechnological complex with ion linac |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2004 |
topic_facet |
Состояние действующих и проекты новых ускорителей |
url |
http://dspace.nbuv.gov.ua/handle/123456789/78471 |
citation_txt |
Contraband detection thechnological complex with ion linac / Yu.N. Gavrish, Yu.A. Svistunov, A.V. Sidorov, A.M. Fialkovsky // Вопросы атомной науки и техники. — 2004. — № 1. — С. 6-9. — Бібліогр.: 4 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT gavrishyun contrabanddetectionthechnologicalcomplexwithionlinac AT svistunovyua contrabanddetectionthechnologicalcomplexwithionlinac AT sidorovav contrabanddetectionthechnologicalcomplexwithionlinac AT fialkovskyam contrabanddetectionthechnologicalcomplexwithionlinac |
first_indexed |
2025-07-06T02:33:33Z |
last_indexed |
2025-07-06T02:33:33Z |
_version_ |
1836863155388547072 |
fulltext |
CONTRABAND DETECTION THECHNOLOGICAL COMPLEX
WITH ION LINAC
Yu.N. Gavrish, Yu.A. Svistunov, A.V. Sidorov, A.M. Fialkovsky
The Scientific Research Institute of Electrophysical Apparatus, Scientific Production Complex
of Linear Accelerators and Cyclotrons, Saint-Petersburg, Russia;
E-mail: npkluts@niiefa.spb.su
The contraband detection technological complex (CDTC) to detect explosives, fission materials, and vegetable
drugs is proposed. Our approach employs the pulsed neutron source. The CDTC employs the rf linac to provide a
beam of deuterons of 1 or 3.5 MeV, which impinge upon a target giving birth pulsed neutron flow. Explosives are
identified by the matrix detection system with gamma registration under interaction of neutron on N, O, C nuclei.
Experimental verification of main principles of matrix detection system is presented.
PACS: 29.17.+w
INTRODUCTION
NPK LUTS (Scientific Production Complex of
Linear Accelerators and Cyclotrons) is Division of D.V.
Efremov Scientific Research Institute of Electrophysical
Apparatus. Contraband Detection Technological
Complex is designed to detect explosives, fission
materials, and in future vegetable drugs. Conceptual
scheme of CDTC is given in Fig.1. CDTC comprises
the rf linac capable to provide a beam of deuterons with
the output energy up to 3.5 MeV; neutron producing
target; matrix detection system; system of data
processing, biological shield blocks. The acceleration
system consists of 1 MeV 433MHz RFQ and 433 MHz
IH-resonator with drift-tubes and alternating phase
focusing (APF) as the second stage of acceleration from
1 MeV up to 3.5 MeV. The njection system of the linac
provides a double-modulated beam with the output
normalized emittance 5·10-7rad·m. Duration of
macropulse is 100 µsec, duration of micropulses is 1 µ
sec. Intervals between micropulses and length of
micropulse are determined by the trade-off of detector
possibility to process the maximal information against
the necessity to detect delayed neutrons between pulses.
The matrix detection system detects registers secondary
gamma radiation; which appear under interactions of
neutrons and nuclei of the investigated object. For
monitoring the explosives a complex neutron method is
used [1]. Secondary gammas is resulting inelastic
scattering of fast neutrons on N, O, C nuclei during
beam pulses. N, O, C nuclei are main components of
explosives. Intervals between pulses are used for
detection of gammas from short-lived isotopes of the
neutron-activation analysis and from radiation capture
of thermal neutrons with 14N nuclei. The fission is
identified by detection and processing of energy and
time spectra. If the object being investigated includes
the fission, then the total yield of neutrons is enhanced
and high-energy neutrons appear during neutron pulse
measurements. Delayed neutrons are detected by
measurements between pulses. CDTC includes a local
biological shield. Distribution of shield blocks along the
complex is optimized. A proposed principle of the
contraband detection system has the Russian patent [1].
Fig.1. Conceptual schematic of the contraband detection technological complex: 1 - injector; 2,3 - 433MHz RFQ
and 433 MHz IH-resonators; 4 - RF power supply system; 5 - γ-radiation detector; 6-inspected object;
7 - transport system; 8 - radiation shielding
ACCELERATING SYSTEM
Major components of the rf linac are: injector with a
deuteron duoplasmatron type source and a system of
beam forming and preacceleration; RFQ as the first
stage of acceleration; RF system; feeding system of the
injector and special extraction source system-modulator.
Special modulator provides beam dividing on macro
and micropulses. RFQ provides acceleration of
deuterons up to 1 MeV with the output pulsed current
20 mA and beam emittance which must be matched
with IH-resonator acceptance. Construction of RFQ has
eight main parts: four rigid flanges and four vanes.
Length of vanes is 2.3 m. Basicmaterial of constructive
elements is chromium copper. Mathematical simulation
shows [2] possibility to transport a 20 mA deuteron
beam with the phase length 0.6 rad after RFQ via the
IH-resonator. Its effective length is 0.9 m that
corresponds to 54 accelerating gaps. Main
characteristics of the linac are given in table.
Main characteristics of the accelerating system
Characteristic Type or
value
Deuteron source type Duoplasmatron
Extracting voltage 15…20 kV
Extracting pulse current 25 mA
Preaccelerating system type Electrostatic
_______________________________________________
6 PROBLEMS OF ATOMIC SIENCE AND TECHNOLOGY. 2004. № 1.
Series: Nuclear Physics Investigations (42), p. 6-9.
mailto:npkluts@niiefa.spb.su
Deuteron energy at RFQ input 60 keV
RFQ output energy 1 MeV
APF cavity output energy 3.5 MeV
Working frequency of resonators 433 MHz
Intervane voltage in RFQ 98 kV
Maximal electric field strength
on z-axe of IH-resonator 120 kV/cm
Macropulse current duration 100 µsec
Pulse repetition Up to 150 Hz
Pulsed power of output amplifier 400 kW
Length of rf power pulse 130 µsec
Output beam emittance (norm.,
theor.) 1.5·10-6 rad·m
Output energy spread (theor.) ± 1.4%
The construction of NPK LUTS IH-resonators was
described in principle in paper [3]. There were given
results of testing of samples too. Only rf beam focusing
is used in the accelerating cavities therefore additional
permanent magnetic focusing is absent. Enhancing of
the deuteron energy on the target from 1 to 3.5 MeV
must increase the neutron yield at least in several times
as much. For example, for beryllium target the neutron
yield will be enhanced by an order of magnitude. The
RF system consists of two amplifications lines with the
multiple-beam tetrode “Congress” as a power amplifier
by SED SPb. Stock Company. Principle of feeding of
H-resonators (RFQ and IH-cavity) was described in
paper [4].
DETECTION AND PROCESSING SYSTEMS
Yield and time distributions of neutrons and gamma
radiation are measured by the synchronous detector
method. This method gives the result as for as the
neutron source is pulsed one and measurements are
produced under conditions of microstatistics. The
detection system for detection of explosives is the
scintillation counter matrix which is placed behind of
the object being investigated and “looks over” it in full.
The layout of the detection system is shown in Fig.2.
Each of matrix sells consists of CsI crystals with the
electron photomultiplier. Cell dimensions are 63×
100 mm, number of cells can change from 32 (8×4) up
to 256. Enhance of the number of detectors is necessary
when objects of large sizes are investigated.
Fig.2. Layout of the detection system: 1-target device;
2-fission monitoring; 3-investigated object; 4-explosive
monitoring; 5-location of the fission or explosive inside
the object being investigated
Signals of detectors are transmitted into the A/D
converter via the tract of signal amplification and
normalization. Information is stored in the on-line
memory modulus and then is processed by the special
code. This code provides selection and summation of
digital spectrometric signals during neutron pulses just
as between them. Maximal information is given by the
characteristic lines 2.31 MeV – for nitrogen, 4.44 MeV
– for carbon, 6.31 MeV for oxygen. These gammas gave
the maximal yield under target irradiation with fast
neutrons of a continuous spectrum. As a result of
processing of the energy gamma spectra spatial and
quantifiable distributions of N, O, C elements inside the
object are determined.
Values of relative detector signals under
characteristic gamma radiation detection from N, O, C
are given in fig.3, as coordinates used are the relations
of separate element concentrations to sum
concentrations of N, O, C. One can see the good
separation explosives. This property is used for data
processing. The system of fission detection consists of
two effective detectors made from “fast plastic”.
Detector signals are transmitted on summation via the
tract for amplification and normalization and then on the
time analyzer. Start of the analyzer is performed by the
synchronizing pulse from the accelerator. After the
analyzer information is accessed into the computer
memory and processed by the special code.
7
Fig.3. Characteristic γ-radiations from N, O, C for explosives and other substances
EXPERIMENTAL VERIFICATION
OF MATRIX DETECTION SYSTEM
As it was impossible to run a full-scale experiment,
we performed a series of model tests, which gave
supporting evidences of the validity of main principles
of the method in question. To this purpose,
corresponding measurements of a beam of neutrons
produced under bombardment of the Be-target with
deuterons have been done. A cyclotron operating in the
quasi-continuous mode was used as a source of 10 MeV
deuterons. To reduce the background radiation, the
target was located in the shield channel of 10 cm-thick
lead and 16cm-thick borated polyethylene. An object to
be inspected was located on the beam axis at a distance
of 1.5 m from the Be-target. At a distance of 1m
beneath the object there was a shielded detector. A
scintillation CsI-detector was used as a detector of γ-
radiation produced in the object inspected. Samples of
graphite and organic glass were used as references
generating γ-radiation of different elements (C, O, H).
Fig.4 presents the energy spectra of γ-radiation obtained
by subtraction of the background spectrum from the
spectra generated under irradiation of samples. Analysis
of the results presented in Fig.4 has shown that even in
the case of non-optimized neutron source it is possible
to identify spectral lines of elements of samples
inspected. Under actual conditions γ-radiation
background will be reduced due to the pulse mode of
the neutron source operation and applied synchronous
detector method. The method provides addition of
similar energy spectra measured for several similar time
intervals in each channel. Using this procedure, one can
attain conditions when the favorable signal is “n”-times
increased at addition from channel-to-channel, and the
background rises as a root of “n”. This allows reliable
determination of rather small quantities measured even
at a high background.
Fig.4. Energy spectra of γ-radiation obtained by
subtraction of the background spectrum from the
spectra generated under irradiation of graphite (1) and
organic glass (2) with neutrons
From measurements of γ-radiation of a short-lived
isotope 16N decay, it is seen that oxygen in ES can be
identified by registering γ-radiation Eγ=6.13 MeV (16N(
β-,γ)-reaction).
The analysis of experimental data allows us to draw
the following conclusion:
• under ES irradiation with fast neutrons there is
formed a spectrum of γ-radiation exhibiting
specific features (characteristic γ-lines) from
which the conclusion on ES presence in the
object inspected can be done;
• under FS irradiation the intensity of neutron
flow rises due to fission of instantaneous
neutrons, and contribution of delayed neutrons
appears.
These conclusions confirm the validity of theoretical
predictions about the possibility of ES and FS detection
using the suggested nuclear method.
STATUS
By now two rf feeding lines and one of two 25 kW
modulator have been manufactured and tested on the
equivalent load. RFQ had been manufactured,
8
assembled, tuned and tested on the laboratory stand.
Blocks of the detection system has been manufactured
too and tested with the cyclotron beam in the laboratory
of the “Positron” plant. Manufacturing of the new
injector with the duoplasmatron type source and special
modulator of pulses is completed. The IH-resonator is in
the same status.
Testing of the first experimental sample of CDTC
will according to the plan will be in the end of 2004.
REFERENCES
1. M.F. Vorogushin, Yu.N. Gavrish, A.V. Sidorov,
A.M. Fialkovsky. Method of detection of explosives
and fission. Russian patent № 2150105. Priority
since May 26, 1999 (in Russian).
2. S.A. Minaev, Yu.A. Svistunov, S.A. Silaev.
Modeling and testing of APF Cavity RF Field//
Proc. of Workshop BDO-95, St.Peterbur. 1996,
p. 130.
3. Z.A. Andreeva, Yu.V. Zuev, Yu.A. Svistunov,
S.A. Silaev APF-structure for contraband detection
Complex // Proc. of X Workshop on application
accelerators in industry and medicine. Russia,
St.Petersburg 1-4 Octobre 2001, p.324 (in
Russian).
4. M.F. Vorogushin, Yu.A. Svistunov. Key systems of
an 433 MHz ion linac for applied purposes // Proc.
of Conferece Linac 96, Jeneva, August 26-30. 1996,
v.2, p.866.
КОМПЛЕКС ОБНАРУЖЕНИЯ ВЗРЫВЧАТЫХ, ДЕЛЯЩИХСЯ И НАРКОТИЧЕСКИХ ВЕЩЕСТВ
РАСТИТЕЛЬНОГО ПРОИСХОЖДЕНИЯ НА ОСНОВЕ ЛИНЕЙНОГО ВЧ-УСКОРИТЕЛЯ
ИОНОВ ВОДОРОДА
Ю.Н. Гавриш, Ю.А. Свистунов, А.В. Сидоров, А.М. Фиалковский
Дано описание комплекса обнаружения взрывчатых, делящихся и наркотических веществ растительного
происхождения. Источником зондирующего нейтронного излучения является линейный малогабаритный
высокочастотный ускоритель ионов водорода. Представлены результаты испытания системы
детектирования и обработки информации гамма-излучения, образуемого при взаимодействии нейтронного
излучения с характерными элементами N, O, C, входящими в состав искомых материалов.
КОМПЛЕКС ВИЯВЛЕННЯ ВИБУХОВИХ, ЩО ПОДІЛЯЮТЬСЯ І НАРКОТИЧНИХ РЕЧОВИН
РОСЛИННОГО ПОХОДЖЕННЯ НА ОСНОВІ ЛІНІЙНОГО ВЧ-ПРИСКОРЮВАЧА ІОНІВ ВОДНЮ
Ю.Н. Гавриш, Ю.А. Свистунов, А.В. Сидоров, А.М. Фіалковський
Дано опис комплексу виявлення вибухових, що поділяються і наркотичних речовин рослинного
походження. Джерелом зондувального нейтронного випромінювання є лінійний малогабаритний
надчастотний прискорювач іонів водню. Представлено результати іспиту системи детектування й обробки
інформації гамма-випромінювання, створеного при взаємодії нейтронного випромінювання з характерними
елементами N, O, C, що входять до складу шуканих матеріалів.
9
Introduction
Accelerating System
Detection and Processing Systems
Experimental Verification
of Matrix Detection System
Status
Ю.Н. Гавриш, Ю.А. Свистунов, А.В. Сидоров, А.М. Фиалковский
Ю.Н. Гавриш, Ю.А. Свистунов, А.В. Сидоров, А.М. Фіалковський
|