Contraband detection thechnological complex with ion linac

The contraband detection technological complex (CDTC) to detect explosives, fission materials, and vegetable drugs is proposed. Our approach employs the pulsed neutron source. The CDTC employs the rf linac to provide a beam of deuterons of 1 or 3.5 MeV, which impinge upon a target giving birth pulse...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2004
Автори: Gavrish, Yu.N, Svistunov, Yu.A., Sidorov, A.V., Fialkovsky, A.M.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2004
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/78471
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Contraband detection thechnological complex with ion linac / Yu.N. Gavrish, Yu.A. Svistunov, A.V. Sidorov, A.M. Fialkovsky // Вопросы атомной науки и техники. — 2004. — № 1. — С. 6-9. — Бібліогр.: 4 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-78471
record_format dspace
spelling irk-123456789-784712015-03-19T03:02:28Z Contraband detection thechnological complex with ion linac Gavrish, Yu.N Svistunov, Yu.A. Sidorov, A.V. Fialkovsky, A.M. Состояние действующих и проекты новых ускорителей The contraband detection technological complex (CDTC) to detect explosives, fission materials, and vegetable drugs is proposed. Our approach employs the pulsed neutron source. The CDTC employs the rf linac to provide a beam of deuterons of 1 or 3.5 MeV, which impinge upon a target giving birth pulsed neutron flow. Explosives are identified by the matrix detection system with gamma registration under interaction of neutron on N, O, C nuclei. Experimental verification of main principles of matrix detection system is presented. Дано опис комплексу виявлення вибухових, що поділяються і наркотичних речовин рослинного походження. Джерелом зондувального нейтронного випромінювання є лінійний малогабаритний над частотний прискорювач іонів водню. Представлено результати іспиту системи детектування й обробки інформації гамма-випромінювання, створеного при взаємодії нейтронного випромінювання з характерними елементами N, O, C, що входять до складу шуканих матеріалів. Дано описание комплекса обнаружения взрывчатых, делящихся и наркотических веществ растительного происхождения. Источником зондирующего нейтронного излучения является линейный малогабаритный высокочастотный ускоритель ионов водорода. Представлены результаты испытания системы детектирования и обработки информации гамма-излучения, образуемого при взаимодействии нейтронного излучения с характерными элементами N, O, C, входящими в состав искомых материалов. 2004 Article Contraband detection thechnological complex with ion linac / Yu.N. Gavrish, Yu.A. Svistunov, A.V. Sidorov, A.M. Fialkovsky // Вопросы атомной науки и техники. — 2004. — № 1. — С. 6-9. — Бібліогр.: 4 назв. — англ. 1562-6016 PACS: 29.17.+w http://dspace.nbuv.gov.ua/handle/123456789/78471 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Состояние действующих и проекты новых ускорителей
Состояние действующих и проекты новых ускорителей
spellingShingle Состояние действующих и проекты новых ускорителей
Состояние действующих и проекты новых ускорителей
Gavrish, Yu.N
Svistunov, Yu.A.
Sidorov, A.V.
Fialkovsky, A.M.
Contraband detection thechnological complex with ion linac
Вопросы атомной науки и техники
description The contraband detection technological complex (CDTC) to detect explosives, fission materials, and vegetable drugs is proposed. Our approach employs the pulsed neutron source. The CDTC employs the rf linac to provide a beam of deuterons of 1 or 3.5 MeV, which impinge upon a target giving birth pulsed neutron flow. Explosives are identified by the matrix detection system with gamma registration under interaction of neutron on N, O, C nuclei. Experimental verification of main principles of matrix detection system is presented.
format Article
author Gavrish, Yu.N
Svistunov, Yu.A.
Sidorov, A.V.
Fialkovsky, A.M.
author_facet Gavrish, Yu.N
Svistunov, Yu.A.
Sidorov, A.V.
Fialkovsky, A.M.
author_sort Gavrish, Yu.N
title Contraband detection thechnological complex with ion linac
title_short Contraband detection thechnological complex with ion linac
title_full Contraband detection thechnological complex with ion linac
title_fullStr Contraband detection thechnological complex with ion linac
title_full_unstemmed Contraband detection thechnological complex with ion linac
title_sort contraband detection thechnological complex with ion linac
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2004
topic_facet Состояние действующих и проекты новых ускорителей
url http://dspace.nbuv.gov.ua/handle/123456789/78471
citation_txt Contraband detection thechnological complex with ion linac / Yu.N. Gavrish, Yu.A. Svistunov, A.V. Sidorov, A.M. Fialkovsky // Вопросы атомной науки и техники. — 2004. — № 1. — С. 6-9. — Бібліогр.: 4 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT gavrishyun contrabanddetectionthechnologicalcomplexwithionlinac
AT svistunovyua contrabanddetectionthechnologicalcomplexwithionlinac
AT sidorovav contrabanddetectionthechnologicalcomplexwithionlinac
AT fialkovskyam contrabanddetectionthechnologicalcomplexwithionlinac
first_indexed 2025-07-06T02:33:33Z
last_indexed 2025-07-06T02:33:33Z
_version_ 1836863155388547072
fulltext CONTRABAND DETECTION THECHNOLOGICAL COMPLEX WITH ION LINAC Yu.N. Gavrish, Yu.A. Svistunov, A.V. Sidorov, A.M. Fialkovsky The Scientific Research Institute of Electrophysical Apparatus, Scientific Production Complex of Linear Accelerators and Cyclotrons, Saint-Petersburg, Russia; E-mail: npkluts@niiefa.spb.su The contraband detection technological complex (CDTC) to detect explosives, fission materials, and vegetable drugs is proposed. Our approach employs the pulsed neutron source. The CDTC employs the rf linac to provide a beam of deuterons of 1 or 3.5 MeV, which impinge upon a target giving birth pulsed neutron flow. Explosives are identified by the matrix detection system with gamma registration under interaction of neutron on N, O, C nuclei. Experimental verification of main principles of matrix detection system is presented. PACS: 29.17.+w INTRODUCTION NPK LUTS (Scientific Production Complex of Linear Accelerators and Cyclotrons) is Division of D.V. Efremov Scientific Research Institute of Electrophysical Apparatus. Contraband Detection Technological Complex is designed to detect explosives, fission materials, and in future vegetable drugs. Conceptual scheme of CDTC is given in Fig.1. CDTC comprises the rf linac capable to provide a beam of deuterons with the output energy up to 3.5 MeV; neutron producing target; matrix detection system; system of data processing, biological shield blocks. The acceleration system consists of 1 MeV 433MHz RFQ and 433 MHz IH-resonator with drift-tubes and alternating phase focusing (APF) as the second stage of acceleration from 1 MeV up to 3.5 MeV. The njection system of the linac provides a double-modulated beam with the output normalized emittance 5·10-7rad·m. Duration of macropulse is 100 µsec, duration of micropulses is 1 µ sec. Intervals between micropulses and length of micropulse are determined by the trade-off of detector possibility to process the maximal information against the necessity to detect delayed neutrons between pulses. The matrix detection system detects registers secondary gamma radiation; which appear under interactions of neutrons and nuclei of the investigated object. For monitoring the explosives a complex neutron method is used [1]. Secondary gammas is resulting inelastic scattering of fast neutrons on N, O, C nuclei during beam pulses. N, O, C nuclei are main components of explosives. Intervals between pulses are used for detection of gammas from short-lived isotopes of the neutron-activation analysis and from radiation capture of thermal neutrons with 14N nuclei. The fission is identified by detection and processing of energy and time spectra. If the object being investigated includes the fission, then the total yield of neutrons is enhanced and high-energy neutrons appear during neutron pulse measurements. Delayed neutrons are detected by measurements between pulses. CDTC includes a local biological shield. Distribution of shield blocks along the complex is optimized. A proposed principle of the contraband detection system has the Russian patent [1]. Fig.1. Conceptual schematic of the contraband detection technological complex: 1 - injector; 2,3 - 433MHz RFQ and 433 MHz IH-resonators; 4 - RF power supply system; 5 - γ-radiation detector; 6-inspected object; 7 - transport system; 8 - radiation shielding ACCELERATING SYSTEM Major components of the rf linac are: injector with a deuteron duoplasmatron type source and a system of beam forming and preacceleration; RFQ as the first stage of acceleration; RF system; feeding system of the injector and special extraction source system-modulator. Special modulator provides beam dividing on macro and micropulses. RFQ provides acceleration of deuterons up to 1 MeV with the output pulsed current 20 mA and beam emittance which must be matched with IH-resonator acceptance. Construction of RFQ has eight main parts: four rigid flanges and four vanes. Length of vanes is 2.3 m. Basicmaterial of constructive elements is chromium copper. Mathematical simulation shows [2] possibility to transport a 20 mA deuteron beam with the phase length 0.6 rad after RFQ via the IH-resonator. Its effective length is 0.9 m that corresponds to 54 accelerating gaps. Main characteristics of the linac are given in table. Main characteristics of the accelerating system Characteristic Type or value Deuteron source type Duoplasmatron Extracting voltage 15…20 kV Extracting pulse current 25 mA Preaccelerating system type Electrostatic _______________________________________________ 6 PROBLEMS OF ATOMIC SIENCE AND TECHNOLOGY. 2004. № 1. Series: Nuclear Physics Investigations (42), p. 6-9. mailto:npkluts@niiefa.spb.su Deuteron energy at RFQ input 60 keV RFQ output energy 1 MeV APF cavity output energy 3.5 MeV Working frequency of resonators 433 MHz Intervane voltage in RFQ 98 kV Maximal electric field strength on z-axe of IH-resonator 120 kV/cm Macropulse current duration 100 µsec Pulse repetition Up to 150 Hz Pulsed power of output amplifier 400 kW Length of rf power pulse 130 µsec Output beam emittance (norm., theor.) 1.5·10-6 rad·m Output energy spread (theor.) ± 1.4% The construction of NPK LUTS IH-resonators was described in principle in paper [3]. There were given results of testing of samples too. Only rf beam focusing is used in the accelerating cavities therefore additional permanent magnetic focusing is absent. Enhancing of the deuteron energy on the target from 1 to 3.5 MeV must increase the neutron yield at least in several times as much. For example, for beryllium target the neutron yield will be enhanced by an order of magnitude. The RF system consists of two amplifications lines with the multiple-beam tetrode “Congress” as a power amplifier by SED SPb. Stock Company. Principle of feeding of H-resonators (RFQ and IH-cavity) was described in paper [4]. DETECTION AND PROCESSING SYSTEMS Yield and time distributions of neutrons and gamma radiation are measured by the synchronous detector method. This method gives the result as for as the neutron source is pulsed one and measurements are produced under conditions of microstatistics. The detection system for detection of explosives is the scintillation counter matrix which is placed behind of the object being investigated and “looks over” it in full. The layout of the detection system is shown in Fig.2. Each of matrix sells consists of CsI crystals with the electron photomultiplier. Cell dimensions are 63× 100 mm, number of cells can change from 32 (8×4) up to 256. Enhance of the number of detectors is necessary when objects of large sizes are investigated. Fig.2. Layout of the detection system: 1-target device; 2-fission monitoring; 3-investigated object; 4-explosive monitoring; 5-location of the fission or explosive inside the object being investigated Signals of detectors are transmitted into the A/D converter via the tract of signal amplification and normalization. Information is stored in the on-line memory modulus and then is processed by the special code. This code provides selection and summation of digital spectrometric signals during neutron pulses just as between them. Maximal information is given by the characteristic lines 2.31 MeV – for nitrogen, 4.44 MeV – for carbon, 6.31 MeV for oxygen. These gammas gave the maximal yield under target irradiation with fast neutrons of a continuous spectrum. As a result of processing of the energy gamma spectra spatial and quantifiable distributions of N, O, C elements inside the object are determined. Values of relative detector signals under characteristic gamma radiation detection from N, O, C are given in fig.3, as coordinates used are the relations of separate element concentrations to sum concentrations of N, O, C. One can see the good separation explosives. This property is used for data processing. The system of fission detection consists of two effective detectors made from “fast plastic”. Detector signals are transmitted on summation via the tract for amplification and normalization and then on the time analyzer. Start of the analyzer is performed by the synchronizing pulse from the accelerator. After the analyzer information is accessed into the computer memory and processed by the special code. 7 Fig.3. Characteristic γ-radiations from N, O, C for explosives and other substances EXPERIMENTAL VERIFICATION OF MATRIX DETECTION SYSTEM As it was impossible to run a full-scale experiment, we performed a series of model tests, which gave supporting evidences of the validity of main principles of the method in question. To this purpose, corresponding measurements of a beam of neutrons produced under bombardment of the Be-target with deuterons have been done. A cyclotron operating in the quasi-continuous mode was used as a source of 10 MeV deuterons. To reduce the background radiation, the target was located in the shield channel of 10 cm-thick lead and 16cm-thick borated polyethylene. An object to be inspected was located on the beam axis at a distance of 1.5 m from the Be-target. At a distance of 1m beneath the object there was a shielded detector. A scintillation CsI-detector was used as a detector of γ- radiation produced in the object inspected. Samples of graphite and organic glass were used as references generating γ-radiation of different elements (C, O, H). Fig.4 presents the energy spectra of γ-radiation obtained by subtraction of the background spectrum from the spectra generated under irradiation of samples. Analysis of the results presented in Fig.4 has shown that even in the case of non-optimized neutron source it is possible to identify spectral lines of elements of samples inspected. Under actual conditions γ-radiation background will be reduced due to the pulse mode of the neutron source operation and applied synchronous detector method. The method provides addition of similar energy spectra measured for several similar time intervals in each channel. Using this procedure, one can attain conditions when the favorable signal is “n”-times increased at addition from channel-to-channel, and the background rises as a root of “n”. This allows reliable determination of rather small quantities measured even at a high background. Fig.4. Energy spectra of γ-radiation obtained by subtraction of the background spectrum from the spectra generated under irradiation of graphite (1) and organic glass (2) with neutrons From measurements of γ-radiation of a short-lived isotope 16N decay, it is seen that oxygen in ES can be identified by registering γ-radiation Eγ=6.13 MeV (16N( β-,γ)-reaction). The analysis of experimental data allows us to draw the following conclusion: • under ES irradiation with fast neutrons there is formed a spectrum of γ-radiation exhibiting specific features (characteristic γ-lines) from which the conclusion on ES presence in the object inspected can be done; • under FS irradiation the intensity of neutron flow rises due to fission of instantaneous neutrons, and contribution of delayed neutrons appears. These conclusions confirm the validity of theoretical predictions about the possibility of ES and FS detection using the suggested nuclear method. STATUS By now two rf feeding lines and one of two 25 kW modulator have been manufactured and tested on the equivalent load. RFQ had been manufactured, 8 assembled, tuned and tested on the laboratory stand. Blocks of the detection system has been manufactured too and tested with the cyclotron beam in the laboratory of the “Positron” plant. Manufacturing of the new injector with the duoplasmatron type source and special modulator of pulses is completed. The IH-resonator is in the same status. Testing of the first experimental sample of CDTC will according to the plan will be in the end of 2004. REFERENCES 1. M.F. Vorogushin, Yu.N. Gavrish, A.V. Sidorov, A.M. Fialkovsky. Method of detection of explosives and fission. Russian patent № 2150105. Priority since May 26, 1999 (in Russian). 2. S.A. Minaev, Yu.A. Svistunov, S.A. Silaev. Modeling and testing of APF Cavity RF Field// Proc. of Workshop BDO-95, St.Peterbur. 1996, p. 130. 3. Z.A. Andreeva, Yu.V. Zuev, Yu.A. Svistunov, S.A. Silaev APF-structure for contraband detection Complex // Proc. of X Workshop on application accelerators in industry and medicine. Russia, St.Petersburg 1-4 Octobre 2001, p.324 (in Russian). 4. M.F. Vorogushin, Yu.A. Svistunov. Key systems of an 433 MHz ion linac for applied purposes // Proc. of Conferece Linac 96, Jeneva, August 26-30. 1996, v.2, p.866. КОМПЛЕКС ОБНАРУЖЕНИЯ ВЗРЫВЧАТЫХ, ДЕЛЯЩИХСЯ И НАРКОТИЧЕСКИХ ВЕЩЕСТВ РАСТИТЕЛЬНОГО ПРОИСХОЖДЕНИЯ НА ОСНОВЕ ЛИНЕЙНОГО ВЧ-УСКОРИТЕЛЯ ИОНОВ ВОДОРОДА Ю.Н. Гавриш, Ю.А. Свистунов, А.В. Сидоров, А.М. Фиалковский Дано описание комплекса обнаружения взрывчатых, делящихся и наркотических веществ растительного происхождения. Источником зондирующего нейтронного излучения является линейный малогабаритный высокочастотный ускоритель ионов водорода. Представлены результаты испытания системы детектирования и обработки информации гамма-излучения, образуемого при взаимодействии нейтронного излучения с характерными элементами N, O, C, входящими в состав искомых материалов. КОМПЛЕКС ВИЯВЛЕННЯ ВИБУХОВИХ, ЩО ПОДІЛЯЮТЬСЯ І НАРКОТИЧНИХ РЕЧОВИН РОСЛИННОГО ПОХОДЖЕННЯ НА ОСНОВІ ЛІНІЙНОГО ВЧ-ПРИСКОРЮВАЧА ІОНІВ ВОДНЮ Ю.Н. Гавриш, Ю.А. Свистунов, А.В. Сидоров, А.М. Фіалковський Дано опис комплексу виявлення вибухових, що поділяються і наркотичних речовин рослинного походження. Джерелом зондувального нейтронного випромінювання є лінійний малогабаритний надчастотний прискорювач іонів водню. Представлено результати іспиту системи детектування й обробки інформації гамма-випромінювання, створеного при взаємодії нейтронного випромінювання з характерними елементами N, O, C, що входять до складу шуканих матеріалів. 9 Introduction Accelerating System Detection and Processing Systems Experimental Verification of Matrix Detection System Status Ю.Н. Гавриш, Ю.А. Свистунов, А.В. Сидоров, А.М. Фиалковский Ю.Н. Гавриш, Ю.А. Свистунов, А.В. Сидоров, А.М. Фіалковський