A CW electron accelerator. The planned design and electrophysical characteristics
This paper presents a project on a CW high-power electron accelerator. The main part of the accelerator consists of half-wave coaxial cavity resonator. The increment of electron energy is reached by repeated passing of an electron beam via full diameter of the cavity in median plain dividing its b...
Збережено в:
Дата: | 2006 |
---|---|
Автори: | , , , , , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2006
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/78513 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | A CW electron accelerator. The planned design and electrophysical characteristics / N.V. Zavialov, S.A. Zhelezov, S.T. Nazarenko, V.V. Porkhaev, V.T. Punin, S.A. Putevskoy, M.L. Smetanin, A.V. Telnov // Вопросы атомной науки и техники. — 2006. — № 2. — С. 8-10. — Бібліогр.: 2 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-78513 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-785132015-03-19T03:02:18Z A CW electron accelerator. The planned design and electrophysical characteristics Zavialov, N.V. Zhelezov, S.A. Nazarenko, S.T. Porkhaev, V.V. Punin, V.T. Putevskoy, S.A. Smetanin, M.L. Telnov, A.V. Линейные ускорители заряженных частиц This paper presents a project on a CW high-power electron accelerator. The main part of the accelerator consists of half-wave coaxial cavity resonator. The increment of electron energy is reached by repeated passing of an electron beam via full diameter of the cavity in median plain dividing its bulk into halves. Successive redirection of the electron beam into the cavity is performed by means of two rotary magnets. These magnets are placed outside the cavity. Main parameters of the accelerator are as follows: electron beam energy 1.5…7.5 MeV, average beam power above 300 kW, operating frequency 100 MHz. Представлен проект высокомощного ускорителя электронов непрерывного действия. Основной частью ускорителя является полуволновой коаксиальный резонатор. Увеличение энергии электронов осуществляет- ся при последовательном прохождении пучком полного диаметра коаксиального резонатора в делящей его объем пополам поперечной медианной плоскости. Перенаправление движения электронного пучка в резона- тор происходит при помощи двух поворотных магнитов, которые размещены вне резонатора. Основные па- раметры ускорителя: энергия электронного пучка 1.5…7.5 МэВ, средняя мощность пучка 300 кВт, рабочая частота 100 МГц. Представлено проект високопотужного прискорювача електронів безперервної дії. Основною частиною прискорювача є півхвильовий коаксіальний резонатор. Збільшення енергії електронів здійснюється при послідовному проходженні електронним пучком повного діаметра резонатора в середній площині, що ділить його об’єм навпіл. Перенапрямок руху електронного пучка в резонатор відбувається за допомогою двох поворотних магнітів, які розміщені поза резонатором. Основні параметри прискорювача: енергія електронного пучка 1.5...7.5 МеВ, середня потужність пучка 300 кВт, робоча частота 100 МГц. 2006 Article A CW electron accelerator. The planned design and electrophysical characteristics / N.V. Zavialov, S.A. Zhelezov, S.T. Nazarenko, V.V. Porkhaev, V.T. Punin, S.A. Putevskoy, M.L. Smetanin, A.V. Telnov // Вопросы атомной науки и техники. — 2006. — № 2. — С. 8-10. — Бібліогр.: 2 назв. — англ. 1562-6016 PACS: 29.17.+w http://dspace.nbuv.gov.ua/handle/123456789/78513 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Линейные ускорители заряженных частиц Линейные ускорители заряженных частиц |
spellingShingle |
Линейные ускорители заряженных частиц Линейные ускорители заряженных частиц Zavialov, N.V. Zhelezov, S.A. Nazarenko, S.T. Porkhaev, V.V. Punin, V.T. Putevskoy, S.A. Smetanin, M.L. Telnov, A.V. A CW electron accelerator. The planned design and electrophysical characteristics Вопросы атомной науки и техники |
description |
This paper presents a project on a CW high-power electron accelerator. The main part of the accelerator consists
of half-wave coaxial cavity resonator. The increment of electron energy is reached by repeated passing of an electron
beam via full diameter of the cavity in median plain dividing its bulk into halves. Successive redirection of the
electron beam into the cavity is performed by means of two rotary magnets. These magnets are placed outside the
cavity. Main parameters of the accelerator are as follows: electron beam energy 1.5…7.5 MeV, average beam power
above 300 kW, operating frequency 100 MHz. |
format |
Article |
author |
Zavialov, N.V. Zhelezov, S.A. Nazarenko, S.T. Porkhaev, V.V. Punin, V.T. Putevskoy, S.A. Smetanin, M.L. Telnov, A.V. |
author_facet |
Zavialov, N.V. Zhelezov, S.A. Nazarenko, S.T. Porkhaev, V.V. Punin, V.T. Putevskoy, S.A. Smetanin, M.L. Telnov, A.V. |
author_sort |
Zavialov, N.V. |
title |
A CW electron accelerator. The planned design and electrophysical characteristics |
title_short |
A CW electron accelerator. The planned design and electrophysical characteristics |
title_full |
A CW electron accelerator. The planned design and electrophysical characteristics |
title_fullStr |
A CW electron accelerator. The planned design and electrophysical characteristics |
title_full_unstemmed |
A CW electron accelerator. The planned design and electrophysical characteristics |
title_sort |
cw electron accelerator. the planned design and electrophysical characteristics |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2006 |
topic_facet |
Линейные ускорители заряженных частиц |
url |
http://dspace.nbuv.gov.ua/handle/123456789/78513 |
citation_txt |
A CW electron accelerator. The planned design and electrophysical characteristics / N.V. Zavialov, S.A. Zhelezov, S.T. Nazarenko, V.V. Porkhaev, V.T. Punin, S.A. Putevskoy, M.L. Smetanin, A.V. Telnov // Вопросы атомной науки и техники. — 2006. — № 2. — С. 8-10. — Бібліогр.: 2 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT zavialovnv acwelectronacceleratortheplanneddesignandelectrophysicalcharacteristics AT zhelezovsa acwelectronacceleratortheplanneddesignandelectrophysicalcharacteristics AT nazarenkost acwelectronacceleratortheplanneddesignandelectrophysicalcharacteristics AT porkhaevvv acwelectronacceleratortheplanneddesignandelectrophysicalcharacteristics AT puninvt acwelectronacceleratortheplanneddesignandelectrophysicalcharacteristics AT putevskoysa acwelectronacceleratortheplanneddesignandelectrophysicalcharacteristics AT smetaninml acwelectronacceleratortheplanneddesignandelectrophysicalcharacteristics AT telnovav acwelectronacceleratortheplanneddesignandelectrophysicalcharacteristics AT zavialovnv cwelectronacceleratortheplanneddesignandelectrophysicalcharacteristics AT zhelezovsa cwelectronacceleratortheplanneddesignandelectrophysicalcharacteristics AT nazarenkost cwelectronacceleratortheplanneddesignandelectrophysicalcharacteristics AT porkhaevvv cwelectronacceleratortheplanneddesignandelectrophysicalcharacteristics AT puninvt cwelectronacceleratortheplanneddesignandelectrophysicalcharacteristics AT putevskoysa cwelectronacceleratortheplanneddesignandelectrophysicalcharacteristics AT smetaninml cwelectronacceleratortheplanneddesignandelectrophysicalcharacteristics AT telnovav cwelectronacceleratortheplanneddesignandelectrophysicalcharacteristics |
first_indexed |
2025-07-06T02:35:13Z |
last_indexed |
2025-07-06T02:35:13Z |
_version_ |
1836863260457959424 |
fulltext |
A CW ELECTRON ACCELERATOR. THE PLANNED DESIGN
AND ELECTROPHYSICAL CHARACTERISTICS
N.V. Zavialov, S.A. Zhelezov, S.T. Nazarenko, V.V. Porkhaev, V.T. Punin,
S.A. Putevskoy, M.L. Smetanin, A.V. Telnov
FSUE ”RFNC-VNIIEF”
Sarov city, Nizhniy Novgorod region, 607190, Russian Federation
E-mail: telnov@expd.vniief.ru
This paper presents a project on a CW high-power electron accelerator. The main part of the accelerator consists
of half-wave coaxial cavity resonator. The increment of electron energy is reached by repeated passing of an elec-
tron beam via full diameter of the cavity in median plain dividing its bulk into halves. Successive redirection of the
electron beam into the cavity is performed by means of two rotary magnets. These magnets are placed outside the
cavity. Main parameters of the accelerator are as follows: electron beam energy 1.5…7.5 MeV, average beam power
above 300 kW, operating frequency 100 MHz.
PACS: 29.17.+w
1. INTRODUCTION
High-power radiation complex based on an electron
accelerator with wide range of accelerated electrons en-
ergy is developed in RFNC-VNIIEF. The main con-
stituent of this projectible facility is λ/2 coaxial cavity
where a standings wave of ТEM type is excited. The op-
erating principle of the accelerator is based on consecu-
tive (step-by-step) electron beam passages via full diam-
eter of the coaxial cavity in median plain dividing its
bulk into halves. The traveling direction and electron
velocity are synchronized with accelerating phase of HF
electromagnetic field inside accelerating part of the cav-
ity. The acceleration scheme, in which an electron beam
is subjected to N passes through the cavity at an acceler-
ating voltage U, is proposed. This allows increasing an
electron energy pro rata U·N. The successive redirection
of electron beam into the cavity is performed by two ro-
tary magnets. These magnets are situated outside the
cavity. The similar electron accelerators based on coaxi-
al resonators and operated on an identical acceleration
mode have been manufactured by IBA Company (Bel-
gium). The type of these accelerators is RHODOTRON
[1,2].
The output parameters of the project accelerator are
as follows:
energy − 1.5…7.5 MeV;
average beam power – above 300 kW;
operating frequency – 100 MHz;
max. number of electron beam passes via full diame-
ter of coaxial cavity – 5.
2. ACCELERATING COAXIAL CAVITY
2.1. ELECTRODYNAMIC CHARACTERISTICS
OF THE CAVITY
Fig.1 shows the geometry of cavity interior surface.
This geometry is a result of successive approximations
obtained by numerical simulations. These computations
are performed with the SUPERFISH program. The main
criterion for the cavity geometry selection is a resonance
eigenfrequency. The scheme for the electron beam ac-
celeration at operating frequency 100 MHz has been
calculated. The value of resonance eigenfrequency for
chosen cavity geometry is 99.9 MHz.
Fig.1. Longitudinal cross-section of the coaxial cavity
Fig.2 presents calculated distribution diagram for
electric field lines within the cavity.
Fig.2. Distribution diagram of the electric field lines
within the cavity
__________________________________________________________
PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2006. № 2.
Series: Nuclear Physics Investigations (46), p.8-10.8
mailto:telnov@expd.vniief.ru
These are the computational electrodynamic charac-
teristics of the cavity:
Operating frequency, MHz . . . . .
. 99.9
Power dissipation, kW. . . . . . . . . 160
Quality factor . . . . . . . . . . . . . . . . 39270
Maximum E, MV/m. . . . . . . . . . . 3,5
2.2. CAVITY DESIGN
The cavity body (Fig.3) is modular and consists of
three parts. Two parts are cup-shaped. Being in an as-
sembly they constitute the exterior part of the cavity
body, while the third part, a central insertion, is located
inside.
Fig.3. The cavity (isometry, disassembled view):
1– upper half-body; 2 – central ring;
3 – lower half-body
All three parts of the body are made of steel sheets
(material – low-carbon steel, St.10 grade) by welding
and shaped in an appropriate manner by metal forming
or machining. The thickness of cavity body and its sepa-
rate constituents meet necessary strength and thermal
requirements. The internal surface of cavity body is
electroplated with copper. The copper layer thickness is
50 microns. In the upper part of cavity body there are
several nodes for HF power input and one node provid-
ing connection with a gagging sensor. In the lower part
of cavity body there are nodes for the connection with
the vacuum system and system for electron beam ex-
traction from the cavity. For body cooling a water jacket
is used providing direct contact of a refrigerant with the
body exterior surface. The refrigerant is distilled water
that circulates in the closed loop of cooling system.
3. THE SYSTEM OF BEAM TRANSPORTA-
TION
The system of electron beam transportation consists
of initial and two rotary constant electromagnets located
on the exterior cavity wall. These magnets change a mo-
tion path of charged particles so that they perform 5
consecutive passings of full cavity diameter (Fig.4).
Fig.4. The cross-section of the cavity magnet system
In this case electrons are injected into the cavity by
an electron gun (with initial energy 50 keV), pass along
full exterior diameter of the cavity, and fall into the sup-
plementary starting magnet. The field induction of given
magnet is В0 = 0.073 T. So, when straightforward elec-
trons are falling into perpendicular magnetic field В0,
they start orbiting up to output edge of initial magnet.
Here they are influenced by the field of one of the first
rotary magnet parts (В1
1 =0.029 T) that changes their
motion path so that the beam enters the cavity again.
After the next passing through the cavity, the electrons
get into the first part of the 2nd rotary magnet (В2
1 =0.15
T) that reverses their trajectory and turns electrons back
into the cavity. Then electrons pass sequentially the first
and second part of the first rotary magnet (В1
2=0.079 T),
return to the cavity, then pass through the first and sec-
ond part of the second rotary magnet (В2
2=0.2 T), come
back to the cavity again, pass through it, then pass
through the first rotary magnet, and fall into the system
of electron beam extraction. Both rotary magnets are
identical. Fig.5 presents the design variant for the sec-
ond rotary magnet.
Inside the magnet there is a vacuum chamber joined
with the lower half-body of the cavity by two sockets.
The magnet consists of a basic coil (two windings top
and bottom ones) and an alignment coil (two windings
top and bottom ones). The magnet core consists of four
sides: left-hand, right-hand, top and bottom ones. Top
and bottom sides have variable geometry in their thick-
ness. These swells provide the possibility of stepwise
regulation of magnetic induction level. With each pas-
sage through the cavity, the electron energy increment is
1.5 MeV. After five full passages through the cavity, the
electron energy becomes 7.5 MeV. The disconnection of
__________________________________________________________
PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2006. № 2.
Series: Nuclear Physics Investigations (46), p.8-10.8
1st magnet
2nd magnet
Staring
magnet
Injector
Fig.5. 2nd rotary magnet
various parts of the first rotary magnet makes it possible
to extract from the accelerator electron beams with dif-
ferent output energy (from 1.5 up to 7.5 MeV) in one di-
rection.
4. RF POWER SOURCE
RF power supply design is made by “TIRA” corpo-
ration (Saint-Petersburg city, Russia). According to re-
quirements’ specification, the necessary basic parame-
ters of RF-generator are:
frequency range…………………95…105 MHz;
frequency fluctuation……………5·10-6;
RF output coaxial feeder (wave
impedance 50 Ohm);
min. value of traveling-wave ratio.............. 0.7;
output power under optimum load.............. 500 kW;
operating mode of the RF power supply:
general mode – CW, training – pulsed with repeti-
tion rate 50…100 Hz and pulse width 0.1…2.0 ms;
harmonics level of output signal not above 30 dB;
amplitude instability at load equivalent ±0.1%;
feeding at 380 V three-phase electrical network.
A few high-power tetrodes GU-101A are intended to
be used at the final stage of RF power supply. The input
of RF power into the cavity is performed by a quarter-
wave loop.
5. CONCLUSION
This paper presents the project on the CW high-
power electron accelerator. The main part of accelerator
is the half-wave coaxial cavity resonator. The cavity de-
sign and accelerating scheme are described. The main
output parameters of the project accelerator are as fol-
lows: adjustable output energy of accelerated electrons
– 1.5…7.5 MeV, average beam power – above 300 kW,
operating resonance frequency – 100 MHz.
8
1 – vacuum chamber; 2 – winding 1; 3 – core 1;
4 – compensating winding 1; 5 – winding 2; 6 – core 2;
7 – compensating winding 2; 8 – side 1; 9 – side 2
REFERENCES
1. J. Pottier. A new type of RF electron accelerator:
the Rhodotron // Nucl. Instr. Methods. 1989,
v.B40/41, p.943-945.
2. Y. Jongen, M. Abs, T. Delvigne, A. Herer,
J.M. Capdevila, F. Genin, A. Nguyen. Ion Beam
Applications, Chemin du Cyclotron, 3, B-1348
Louvain-la-Neuve, Belgium; CEA, CEN Saclay,
DTA/DEIN/LETI, 91191 Gif-sur-Yvette Cedex,
France. Rhodotron accelerators for industrial elec-
tron-beam processing. A Progress report.
ЭЛЕКТРОННЫЙ УСКОРИТЕЛЬ НЕПРЕРЫВНОГО ДЕЙСТВИЯ.
ПРОЕКТНЫЕ, КОНСТРУКТИВНЫЕ И ЭЛЕКТРОФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ
Н.В. Завьялов, С.А. Железов, С.Т. Назаренко, В.В. Порхаев, В.Т. Пунин, С.А. Путевской, М.Л. Сметанин,
А.В. Тельнов
Представлен проект высокомощного ускорителя электронов непрерывного действия. Основной частью
ускорителя является полуволновой коаксиальный резонатор. Увеличение энергии электронов осуществляет-
ся при последовательном прохождении пучком полного диаметра коаксиального резонатора в делящей его
объем пополам поперечной медианной плоскости. Перенаправление движения электронного пучка в резона-
тор происходит при помощи двух поворотных магнитов, которые размещены вне резонатора. Основные па-
раметры ускорителя: энергия электронного пучка 1.5…7.5 МэВ, средняя мощность пучка 300 кВт, рабочая
частота 100 МГц.
ЕЛЕКТРОННИЙ ПРИСКОРЮВАЧ БЕЗПЕРЕРВНОЇ ДІЇ.
ПРОЕКТНІ, КОНСТРУКТИВНІ І ЕЛЕКТРОФІЗИЧНІ ХАРАКТЕРИСТИКИ
М.В. Завьялов, С.А. Железов, С.Т. Назаренко, В.В. Порхаєв, В.Т. Пунін, С.А. Путевськой, М.Л. Сметанін,
А.В. Тельнов
Представлено проект високопотужного прискорювача електронів безперервної дії. Основною частиною
прискорювача є півхвильовий коаксіальний резонатор. Збільшення енергії електронів здійснюється при
послідовному проходженні електронним пучком повного діаметра резонатора в середній площині, що
ділить його об’єм навпіл. Перенапрямок руху електронного пучка в резонатор відбувається за допомогою
двох поворотних магнітів, які розміщені поза резонатором. Основні параметри прискорювача: енергія
електронного пучка 1.5...7.5 МеВ, середня потужність пучка 300 кВт, робоча частота 100 МГц.
__________________________________________________________
PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2006. № 2.
Series: Nuclear Physics Investigations (46), p.8-10.8
|