A CW electron accelerator. The planned design and electrophysical characteristics

This paper presents a project on a CW high-power electron accelerator. The main part of the accelerator consists of half-wave coaxial cavity resonator. The increment of electron energy is reached by repeated passing of an electron beam via full diameter of the cavity in median plain dividing its b...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2006
Автори: Zavialov, N.V., Zhelezov, S.A., Nazarenko, S.T., Porkhaev, V.V., Punin, V.T., Putevskoy, S.A., Smetanin, M.L., Telnov, A.V.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2006
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/78513
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:A CW electron accelerator. The planned design and electrophysical characteristics / N.V. Zavialov, S.A. Zhelezov, S.T. Nazarenko, V.V. Porkhaev, V.T. Punin, S.A. Putevskoy, M.L. Smetanin, A.V. Telnov // Вопросы атомной науки и техники. — 2006. — № 2. — С. 8-10. — Бібліогр.: 2 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-78513
record_format dspace
spelling irk-123456789-785132015-03-19T03:02:18Z A CW electron accelerator. The planned design and electrophysical characteristics Zavialov, N.V. Zhelezov, S.A. Nazarenko, S.T. Porkhaev, V.V. Punin, V.T. Putevskoy, S.A. Smetanin, M.L. Telnov, A.V. Линейные ускорители заряженных частиц This paper presents a project on a CW high-power electron accelerator. The main part of the accelerator consists of half-wave coaxial cavity resonator. The increment of electron energy is reached by repeated passing of an electron beam via full diameter of the cavity in median plain dividing its bulk into halves. Successive redirection of the electron beam into the cavity is performed by means of two rotary magnets. These magnets are placed outside the cavity. Main parameters of the accelerator are as follows: electron beam energy 1.5…7.5 MeV, average beam power above 300 kW, operating frequency 100 MHz. Представлен проект высокомощного ускорителя электронов непрерывного действия. Основной частью ускорителя является полуволновой коаксиальный резонатор. Увеличение энергии электронов осуществляет- ся при последовательном прохождении пучком полного диаметра коаксиального резонатора в делящей его объем пополам поперечной медианной плоскости. Перенаправление движения электронного пучка в резона- тор происходит при помощи двух поворотных магнитов, которые размещены вне резонатора. Основные па- раметры ускорителя: энергия электронного пучка 1.5…7.5 МэВ, средняя мощность пучка 300 кВт, рабочая частота 100 МГц. Представлено проект високопотужного прискорювача електронів безперервної дії. Основною частиною прискорювача є півхвильовий коаксіальний резонатор. Збільшення енергії електронів здійснюється при послідовному проходженні електронним пучком повного діаметра резонатора в середній площині, що ділить його об’єм навпіл. Перенапрямок руху електронного пучка в резонатор відбувається за допомогою двох поворотних магнітів, які розміщені поза резонатором. Основні параметри прискорювача: енергія електронного пучка 1.5...7.5 МеВ, середня потужність пучка 300 кВт, робоча частота 100 МГц. 2006 Article A CW electron accelerator. The planned design and electrophysical characteristics / N.V. Zavialov, S.A. Zhelezov, S.T. Nazarenko, V.V. Porkhaev, V.T. Punin, S.A. Putevskoy, M.L. Smetanin, A.V. Telnov // Вопросы атомной науки и техники. — 2006. — № 2. — С. 8-10. — Бібліогр.: 2 назв. — англ. 1562-6016 PACS: 29.17.+w http://dspace.nbuv.gov.ua/handle/123456789/78513 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Линейные ускорители заряженных частиц
Линейные ускорители заряженных частиц
spellingShingle Линейные ускорители заряженных частиц
Линейные ускорители заряженных частиц
Zavialov, N.V.
Zhelezov, S.A.
Nazarenko, S.T.
Porkhaev, V.V.
Punin, V.T.
Putevskoy, S.A.
Smetanin, M.L.
Telnov, A.V.
A CW electron accelerator. The planned design and electrophysical characteristics
Вопросы атомной науки и техники
description This paper presents a project on a CW high-power electron accelerator. The main part of the accelerator consists of half-wave coaxial cavity resonator. The increment of electron energy is reached by repeated passing of an electron beam via full diameter of the cavity in median plain dividing its bulk into halves. Successive redirection of the electron beam into the cavity is performed by means of two rotary magnets. These magnets are placed outside the cavity. Main parameters of the accelerator are as follows: electron beam energy 1.5…7.5 MeV, average beam power above 300 kW, operating frequency 100 MHz.
format Article
author Zavialov, N.V.
Zhelezov, S.A.
Nazarenko, S.T.
Porkhaev, V.V.
Punin, V.T.
Putevskoy, S.A.
Smetanin, M.L.
Telnov, A.V.
author_facet Zavialov, N.V.
Zhelezov, S.A.
Nazarenko, S.T.
Porkhaev, V.V.
Punin, V.T.
Putevskoy, S.A.
Smetanin, M.L.
Telnov, A.V.
author_sort Zavialov, N.V.
title A CW electron accelerator. The planned design and electrophysical characteristics
title_short A CW electron accelerator. The planned design and electrophysical characteristics
title_full A CW electron accelerator. The planned design and electrophysical characteristics
title_fullStr A CW electron accelerator. The planned design and electrophysical characteristics
title_full_unstemmed A CW electron accelerator. The planned design and electrophysical characteristics
title_sort cw electron accelerator. the planned design and electrophysical characteristics
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2006
topic_facet Линейные ускорители заряженных частиц
url http://dspace.nbuv.gov.ua/handle/123456789/78513
citation_txt A CW electron accelerator. The planned design and electrophysical characteristics / N.V. Zavialov, S.A. Zhelezov, S.T. Nazarenko, V.V. Porkhaev, V.T. Punin, S.A. Putevskoy, M.L. Smetanin, A.V. Telnov // Вопросы атомной науки и техники. — 2006. — № 2. — С. 8-10. — Бібліогр.: 2 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT zavialovnv acwelectronacceleratortheplanneddesignandelectrophysicalcharacteristics
AT zhelezovsa acwelectronacceleratortheplanneddesignandelectrophysicalcharacteristics
AT nazarenkost acwelectronacceleratortheplanneddesignandelectrophysicalcharacteristics
AT porkhaevvv acwelectronacceleratortheplanneddesignandelectrophysicalcharacteristics
AT puninvt acwelectronacceleratortheplanneddesignandelectrophysicalcharacteristics
AT putevskoysa acwelectronacceleratortheplanneddesignandelectrophysicalcharacteristics
AT smetaninml acwelectronacceleratortheplanneddesignandelectrophysicalcharacteristics
AT telnovav acwelectronacceleratortheplanneddesignandelectrophysicalcharacteristics
AT zavialovnv cwelectronacceleratortheplanneddesignandelectrophysicalcharacteristics
AT zhelezovsa cwelectronacceleratortheplanneddesignandelectrophysicalcharacteristics
AT nazarenkost cwelectronacceleratortheplanneddesignandelectrophysicalcharacteristics
AT porkhaevvv cwelectronacceleratortheplanneddesignandelectrophysicalcharacteristics
AT puninvt cwelectronacceleratortheplanneddesignandelectrophysicalcharacteristics
AT putevskoysa cwelectronacceleratortheplanneddesignandelectrophysicalcharacteristics
AT smetaninml cwelectronacceleratortheplanneddesignandelectrophysicalcharacteristics
AT telnovav cwelectronacceleratortheplanneddesignandelectrophysicalcharacteristics
first_indexed 2025-07-06T02:35:13Z
last_indexed 2025-07-06T02:35:13Z
_version_ 1836863260457959424
fulltext A CW ELECTRON ACCELERATOR. THE PLANNED DESIGN AND ELECTROPHYSICAL CHARACTERISTICS N.V. Zavialov, S.A. Zhelezov, S.T. Nazarenko, V.V. Porkhaev, V.T. Punin, S.A. Putevskoy, M.L. Smetanin, A.V. Telnov FSUE ”RFNC-VNIIEF” Sarov city, Nizhniy Novgorod region, 607190, Russian Federation E-mail: telnov@expd.vniief.ru This paper presents a project on a CW high-power electron accelerator. The main part of the accelerator consists of half-wave coaxial cavity resonator. The increment of electron energy is reached by repeated passing of an elec- tron beam via full diameter of the cavity in median plain dividing its bulk into halves. Successive redirection of the electron beam into the cavity is performed by means of two rotary magnets. These magnets are placed outside the cavity. Main parameters of the accelerator are as follows: electron beam energy 1.5…7.5 MeV, average beam power above 300 kW, operating frequency 100 MHz. PACS: 29.17.+w 1. INTRODUCTION High-power radiation complex based on an electron accelerator with wide range of accelerated electrons en- ergy is developed in RFNC-VNIIEF. The main con- stituent of this projectible facility is λ/2 coaxial cavity where a standings wave of ТEM type is excited. The op- erating principle of the accelerator is based on consecu- tive (step-by-step) electron beam passages via full diam- eter of the coaxial cavity in median plain dividing its bulk into halves. The traveling direction and electron velocity are synchronized with accelerating phase of HF electromagnetic field inside accelerating part of the cav- ity. The acceleration scheme, in which an electron beam is subjected to N passes through the cavity at an acceler- ating voltage U, is proposed. This allows increasing an electron energy pro rata U·N. The successive redirection of electron beam into the cavity is performed by two ro- tary magnets. These magnets are situated outside the cavity. The similar electron accelerators based on coaxi- al resonators and operated on an identical acceleration mode have been manufactured by IBA Company (Bel- gium). The type of these accelerators is RHODOTRON [1,2]. The output parameters of the project accelerator are as follows: energy − 1.5…7.5 MeV; average beam power – above 300 kW; operating frequency – 100 MHz; max. number of electron beam passes via full diame- ter of coaxial cavity – 5. 2. ACCELERATING COAXIAL CAVITY 2.1. ELECTRODYNAMIC CHARACTERISTICS OF THE CAVITY Fig.1 shows the geometry of cavity interior surface. This geometry is a result of successive approximations obtained by numerical simulations. These computations are performed with the SUPERFISH program. The main criterion for the cavity geometry selection is a resonance eigenfrequency. The scheme for the electron beam ac- celeration at operating frequency 100 MHz has been calculated. The value of resonance eigenfrequency for chosen cavity geometry is 99.9 MHz. Fig.1. Longitudinal cross-section of the coaxial cavity Fig.2 presents calculated distribution diagram for electric field lines within the cavity. Fig.2. Distribution diagram of the electric field lines within the cavity __________________________________________________________ PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2006. № 2. Series: Nuclear Physics Investigations (46), p.8-10.8 mailto:telnov@expd.vniief.ru These are the computational electrodynamic charac- teristics of the cavity: Operating frequency, MHz . . . . . . 99.9 Power dissipation, kW. . . . . . . . . 160 Quality factor . . . . . . . . . . . . . . . . 39270 Maximum E, MV/m. . . . . . . . . . . 3,5 2.2. CAVITY DESIGN The cavity body (Fig.3) is modular and consists of three parts. Two parts are cup-shaped. Being in an as- sembly they constitute the exterior part of the cavity body, while the third part, a central insertion, is located inside. Fig.3. The cavity (isometry, disassembled view): 1– upper half-body; 2 – central ring; 3 – lower half-body All three parts of the body are made of steel sheets (material – low-carbon steel, St.10 grade) by welding and shaped in an appropriate manner by metal forming or machining. The thickness of cavity body and its sepa- rate constituents meet necessary strength and thermal requirements. The internal surface of cavity body is electroplated with copper. The copper layer thickness is 50 microns. In the upper part of cavity body there are several nodes for HF power input and one node provid- ing connection with a gagging sensor. In the lower part of cavity body there are nodes for the connection with the vacuum system and system for electron beam ex- traction from the cavity. For body cooling a water jacket is used providing direct contact of a refrigerant with the body exterior surface. The refrigerant is distilled water that circulates in the closed loop of cooling system. 3. THE SYSTEM OF BEAM TRANSPORTA- TION The system of electron beam transportation consists of initial and two rotary constant electromagnets located on the exterior cavity wall. These magnets change a mo- tion path of charged particles so that they perform 5 consecutive passings of full cavity diameter (Fig.4). Fig.4. The cross-section of the cavity magnet system In this case electrons are injected into the cavity by an electron gun (with initial energy 50 keV), pass along full exterior diameter of the cavity, and fall into the sup- plementary starting magnet. The field induction of given magnet is В0 = 0.073 T. So, when straightforward elec- trons are falling into perpendicular magnetic field В0, they start orbiting up to output edge of initial magnet. Here they are influenced by the field of one of the first rotary magnet parts (В1 1 =0.029 T) that changes their motion path so that the beam enters the cavity again. After the next passing through the cavity, the electrons get into the first part of the 2nd rotary magnet (В2 1 =0.15 T) that reverses their trajectory and turns electrons back into the cavity. Then electrons pass sequentially the first and second part of the first rotary magnet (В1 2=0.079 T), return to the cavity, then pass through the first and sec- ond part of the second rotary magnet (В2 2=0.2 T), come back to the cavity again, pass through it, then pass through the first rotary magnet, and fall into the system of electron beam extraction. Both rotary magnets are identical. Fig.5 presents the design variant for the sec- ond rotary magnet. Inside the magnet there is a vacuum chamber joined with the lower half-body of the cavity by two sockets. The magnet consists of a basic coil (two windings top and bottom ones) and an alignment coil (two windings top and bottom ones). The magnet core consists of four sides: left-hand, right-hand, top and bottom ones. Top and bottom sides have variable geometry in their thick- ness. These swells provide the possibility of stepwise regulation of magnetic induction level. With each pas- sage through the cavity, the electron energy increment is 1.5 MeV. After five full passages through the cavity, the electron energy becomes 7.5 MeV. The disconnection of __________________________________________________________ PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2006. № 2. Series: Nuclear Physics Investigations (46), p.8-10.8 1st magnet 2nd magnet Staring magnet Injector Fig.5. 2nd rotary magnet various parts of the first rotary magnet makes it possible to extract from the accelerator electron beams with dif- ferent output energy (from 1.5 up to 7.5 MeV) in one di- rection. 4. RF POWER SOURCE RF power supply design is made by “TIRA” corpo- ration (Saint-Petersburg city, Russia). According to re- quirements’ specification, the necessary basic parame- ters of RF-generator are: frequency range…………………95…105 MHz; frequency fluctuation……………5·10-6; RF output coaxial feeder (wave impedance 50 Ohm); min. value of traveling-wave ratio.............. 0.7; output power under optimum load.............. 500 kW; operating mode of the RF power supply: general mode – CW, training – pulsed with repeti- tion rate 50…100 Hz and pulse width 0.1…2.0 ms; harmonics level of output signal not above 30 dB; amplitude instability at load equivalent ±0.1%; feeding at 380 V three-phase electrical network. A few high-power tetrodes GU-101A are intended to be used at the final stage of RF power supply. The input of RF power into the cavity is performed by a quarter- wave loop. 5. CONCLUSION This paper presents the project on the CW high- power electron accelerator. The main part of accelerator is the half-wave coaxial cavity resonator. The cavity de- sign and accelerating scheme are described. The main output parameters of the project accelerator are as fol- lows: adjustable output energy of accelerated electrons – 1.5…7.5 MeV, average beam power – above 300 kW, operating resonance frequency – 100 MHz. 8 1 – vacuum chamber; 2 – winding 1; 3 – core 1; 4 – compensating winding 1; 5 – winding 2; 6 – core 2; 7 – compensating winding 2; 8 – side 1; 9 – side 2 REFERENCES 1. J. Pottier. A new type of RF electron accelerator: the Rhodotron // Nucl. Instr. Methods. 1989, v.B40/41, p.943-945. 2. Y. Jongen, M. Abs, T. Delvigne, A. Herer, J.M. Capdevila, F. Genin, A. Nguyen. Ion Beam Applications, Chemin du Cyclotron, 3, B-1348 Louvain-la-Neuve, Belgium; CEA, CEN Saclay, DTA/DEIN/LETI, 91191 Gif-sur-Yvette Cedex, France. Rhodotron accelerators for industrial elec- tron-beam processing. A Progress report. ЭЛЕКТРОННЫЙ УСКОРИТЕЛЬ НЕПРЕРЫВНОГО ДЕЙСТВИЯ. ПРОЕКТНЫЕ, КОНСТРУКТИВНЫЕ И ЭЛЕКТРОФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ Н.В. Завьялов, С.А. Железов, С.Т. Назаренко, В.В. Порхаев, В.Т. Пунин, С.А. Путевской, М.Л. Сметанин, А.В. Тельнов Представлен проект высокомощного ускорителя электронов непрерывного действия. Основной частью ускорителя является полуволновой коаксиальный резонатор. Увеличение энергии электронов осуществляет- ся при последовательном прохождении пучком полного диаметра коаксиального резонатора в делящей его объем пополам поперечной медианной плоскости. Перенаправление движения электронного пучка в резона- тор происходит при помощи двух поворотных магнитов, которые размещены вне резонатора. Основные па- раметры ускорителя: энергия электронного пучка 1.5…7.5 МэВ, средняя мощность пучка 300 кВт, рабочая частота 100 МГц. ЕЛЕКТРОННИЙ ПРИСКОРЮВАЧ БЕЗПЕРЕРВНОЇ ДІЇ. ПРОЕКТНІ, КОНСТРУКТИВНІ І ЕЛЕКТРОФІЗИЧНІ ХАРАКТЕРИСТИКИ М.В. Завьялов, С.А. Железов, С.Т. Назаренко, В.В. Порхаєв, В.Т. Пунін, С.А. Путевськой, М.Л. Сметанін, А.В. Тельнов Представлено проект високопотужного прискорювача електронів безперервної дії. Основною частиною прискорювача є півхвильовий коаксіальний резонатор. Збільшення енергії електронів здійснюється при послідовному проходженні електронним пучком повного діаметра резонатора в середній площині, що ділить його об’єм навпіл. Перенапрямок руху електронного пучка в резонатор відбувається за допомогою двох поворотних магнітів, які розміщені поза резонатором. Основні параметри прискорювача: енергія електронного пучка 1.5...7.5 МеВ, середня потужність пучка 300 кВт, робоча частота 100 МГц. __________________________________________________________ PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2006. № 2. Series: Nuclear Physics Investigations (46), p.8-10.8