Status of an accelerator mass-spectrometer project for SD RAS

Present status of an accelerator mass spectrometry (AMS) facility at BINP is described. The AMS facility with addition electric and magnetic analyzers into a terminal of a tandem accelerator is designed for precise analyses of carbon isotopes at extremely low concentration levels.

Збережено в:
Бібліографічні деталі
Дата:2006
Автори: Alinovsky, N.I., Bulushev, A.F., Klyuev, V.F., Konstantinov, E.S., Konstantinov, S.G., Kozhemyakin, A.V., Kryuchkov, A.M., Parkhomchuk, V.V., Petrichenkov, M.V., Rastigeev, S.A., Reva, V.B., Sukhina, B.N.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2006
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/78696
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Status of an accelerator mass-spectrometer project for SD RAS / N.I. Alinovsky, A.F. Bulushev, V.F. Klyuev, E.S. Konstantinov, S.G. Konstantinov, A.V. Kozhemyakin, A.M. Kryuchkov, V.V. Parkhomchuk, M.V. Petrichenkov, S.A. Rastigeev, V.B. Reva, B.N. Sukhina // Вопросы атомной науки и техники. — 2006. — № 2. — С. 34-36. — Бібліогр.: 2 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-78696
record_format dspace
spelling irk-123456789-786962015-03-21T03:02:00Z Status of an accelerator mass-spectrometer project for SD RAS Alinovsky, N.I. Bulushev, A.F. Klyuev, V.F. Konstantinov, E.S. Konstantinov, S.G. Kozhemyakin, A.V. Kryuchkov, A.M. Parkhomchuk, V.V. Petrichenkov, M.V. Rastigeev, S.A. Reva, V.B. Sukhina, B.N. Линейные ускорители заряженных частиц Present status of an accelerator mass spectrometry (AMS) facility at BINP is described. The AMS facility with addition electric and magnetic analyzers into a terminal of a tandem accelerator is designed for precise analyses of carbon isotopes at extremely low concentration levels. Рассмотрено текущее состояние работ по созданию в ИЯФ им. Г.И.Будкера ускорительного масс-спек- трометрического комплекса (AMS). Комплекс AMS c дополнительным электрическим и магнитным анали- заторами, расположенными в области терминала тандемного ускорителя, предназначен для прецизионного анализа предельно низкой концентрации изотопов углерода. Розглянуто поточний стан робіт з створення в ІЯФ ім. Г.І. Будкера прискорювального мас- спектрометричного комплексу (AMS). Комплекс AMS c додатковим електричним і магнітним аналізаторами, розташованими в області термінала тандемного прискорювача, призначений для прецизійного аналізу гранично низької концентрації ізотопів вуглецю. 2006 Article Status of an accelerator mass-spectrometer project for SD RAS / N.I. Alinovsky, A.F. Bulushev, V.F. Klyuev, E.S. Konstantinov, S.G. Konstantinov, A.V. Kozhemyakin, A.M. Kryuchkov, V.V. Parkhomchuk, M.V. Petrichenkov, S.A. Rastigeev, V.B. Reva, B.N. Sukhina // Вопросы атомной науки и техники. — 2006. — № 2. — С. 34-36. — Бібліогр.: 2 назв. — англ. 1562-6016 PACS: 29.30.Aj http://dspace.nbuv.gov.ua/handle/123456789/78696 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Линейные ускорители заряженных частиц
Линейные ускорители заряженных частиц
spellingShingle Линейные ускорители заряженных частиц
Линейные ускорители заряженных частиц
Alinovsky, N.I.
Bulushev, A.F.
Klyuev, V.F.
Konstantinov, E.S.
Konstantinov, S.G.
Kozhemyakin, A.V.
Kryuchkov, A.M.
Parkhomchuk, V.V.
Petrichenkov, M.V.
Rastigeev, S.A.
Reva, V.B.
Sukhina, B.N.
Status of an accelerator mass-spectrometer project for SD RAS
Вопросы атомной науки и техники
description Present status of an accelerator mass spectrometry (AMS) facility at BINP is described. The AMS facility with addition electric and magnetic analyzers into a terminal of a tandem accelerator is designed for precise analyses of carbon isotopes at extremely low concentration levels.
format Article
author Alinovsky, N.I.
Bulushev, A.F.
Klyuev, V.F.
Konstantinov, E.S.
Konstantinov, S.G.
Kozhemyakin, A.V.
Kryuchkov, A.M.
Parkhomchuk, V.V.
Petrichenkov, M.V.
Rastigeev, S.A.
Reva, V.B.
Sukhina, B.N.
author_facet Alinovsky, N.I.
Bulushev, A.F.
Klyuev, V.F.
Konstantinov, E.S.
Konstantinov, S.G.
Kozhemyakin, A.V.
Kryuchkov, A.M.
Parkhomchuk, V.V.
Petrichenkov, M.V.
Rastigeev, S.A.
Reva, V.B.
Sukhina, B.N.
author_sort Alinovsky, N.I.
title Status of an accelerator mass-spectrometer project for SD RAS
title_short Status of an accelerator mass-spectrometer project for SD RAS
title_full Status of an accelerator mass-spectrometer project for SD RAS
title_fullStr Status of an accelerator mass-spectrometer project for SD RAS
title_full_unstemmed Status of an accelerator mass-spectrometer project for SD RAS
title_sort status of an accelerator mass-spectrometer project for sd ras
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2006
topic_facet Линейные ускорители заряженных частиц
url http://dspace.nbuv.gov.ua/handle/123456789/78696
citation_txt Status of an accelerator mass-spectrometer project for SD RAS / N.I. Alinovsky, A.F. Bulushev, V.F. Klyuev, E.S. Konstantinov, S.G. Konstantinov, A.V. Kozhemyakin, A.M. Kryuchkov, V.V. Parkhomchuk, M.V. Petrichenkov, S.A. Rastigeev, V.B. Reva, B.N. Sukhina // Вопросы атомной науки и техники. — 2006. — № 2. — С. 34-36. — Бібліогр.: 2 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT alinovskyni statusofanacceleratormassspectrometerprojectforsdras
AT bulushevaf statusofanacceleratormassspectrometerprojectforsdras
AT klyuevvf statusofanacceleratormassspectrometerprojectforsdras
AT konstantinoves statusofanacceleratormassspectrometerprojectforsdras
AT konstantinovsg statusofanacceleratormassspectrometerprojectforsdras
AT kozhemyakinav statusofanacceleratormassspectrometerprojectforsdras
AT kryuchkovam statusofanacceleratormassspectrometerprojectforsdras
AT parkhomchukvv statusofanacceleratormassspectrometerprojectforsdras
AT petrichenkovmv statusofanacceleratormassspectrometerprojectforsdras
AT rastigeevsa statusofanacceleratormassspectrometerprojectforsdras
AT revavb statusofanacceleratormassspectrometerprojectforsdras
AT sukhinabn statusofanacceleratormassspectrometerprojectforsdras
first_indexed 2025-07-06T02:46:05Z
last_indexed 2025-07-06T02:46:05Z
_version_ 1836863943735246848
fulltext STATUS OF AN ACCELERATOR MASS-SPECTROMETER PROJECT FOR SD RAS N.I. Alinovsky, A.F. Bulushev, V.F. Klyuev, E.S. Konstantinov, S.G. Konstantinov, A.V. Kozhemyakin, A.M. Kryuchkov, V.V. Parkhomchuk, M.V. Petrichenkov, S.A. Rastigeev, V.B. Reva, B.N. Sukhina Budker INP, Novosibirsk, Russia E-mail: S.A.Rastigeev@inp.nsk.su Present status of an accelerator mass spectrometry (AMS) facility at BINP is described. The AMS facility with addition electric and magnetic analyzers into a terminal of a tandem accelerator is designed for precise analyses of carbon isotopes at extremely low concentration levels. PACS: 29.30.Aj 1. INTRODUCTION The status of the BINP AMS facility and the recent development are described. The construction work start- ed in 2003, and the project has been presented previous- ly [1]. Fig.1 shows the layout of the AMS facility. Fig.1. AMS facility layout: 1 − pressure tank; 2 − accelerator tube; 3 − cascade generator; 4 − combined filter; 5 − magnesium vapors stripper, 6 − ion source; 7 − low-energy magnetic an- alyzer; 8 − high-energy magnetic analyzer The AMS is based on an electrostatic tandem accel- erator. The most distinguishing feature of our AMS ma- chine is the use of additional separator of ion beam, lo- cated inside the terminal. The addition of electric and magnetic analyzers can essentially decrease the back- ground. Interfering isobaric molecules are destroyed by collisions in the stripper into the terminal and selected immediately after stripping process. It is important to decrease the background from molecular fragments be- fore the second acceleration stage because otherwise they can obtain large energy spread by recharging on residual gas into electric field. The ions in charge state 3+ will be used for isotope analysis because the molecules in charge state 3+ are unstable. The next im- portant distinguishing feature is magnesium vapors stripper instead of the gas stripper. Therefore, it is not necessary to use additional turbo-molecular pump for good vacuum condition outside the magnesium vapors stripper. 2. INJECTION SYSTEM A photograph of the injection system is shown in Fig. 2. Fig.2. Injection system The AMS system has two ion sources. The sputter ion source is required for analysis of solid samples. The gas ion source is needed for direct analysis of gas sam- ples and for system adjustment. The injection energy of the extracted negative ions is 15 keV. The ion beam ex- tracted from the source passes through a double focus- ing 90° analyzing magnet, with 40 cm radius and 2.5 cm pole gap. The position and angles of extracted beam are slightly corrected by four pairs of electrostatic plate. During radiocarbon measurements the carbon isotopes will be passed through magnet by additional voltage ap- plied to the vacuum chamber of magnet. The stable iso- tope currents are measured during time of the injection of the radioisotope beam by offset Faraday cups placed __________________________________________________________ PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2006. № 2. Series: Nuclear Physics Investigations (46), p.34-36.34 after injection magnet. In order to set up the size and po- sition of injection beam into the stripper channel, the system of three-electrode electrostatic lenses and elec- trostatic dipoles are manufactured and will be placed at the entrance of the accelerating tube. The vacuum of the injection channel is kept better than 5*10-6 Torr by 400 l/s ion pump. A new 250 l/s turbo-molecular pump is now installed just behind ion sources. The beam-line from ion source to accelerator tube is completed and tested. 3. TANDEM ACCELERATOR The AMS tandem accelerator is a folded type verti- cal machine with 180° bending system in the high volt- age terminal. A photograph of the tandem accelerator is shown in Fig.3. Fig.3. Tandem accelerator The negative ions will be accelerated to the positive- ly charged high voltage terminal and stripped to 3+ state in charge exchange target. Then they pass through the 1800 combined bend and then again are accelerated into the high energy accelerating tube to the ground poten- tial. The two accelerating tubes and cascade generator are enveloped by shielded column, which is 200 cm high and 140 cm outside diameter of shielding rings, and placed into a pressure tank. The dimensions of pres- sure tank are 4.6 meters high and 3.2 meters diameter. The accelerating tube consists of five sections, with 21 mm electrode step. The electrodes are divided by ceramic rings with 18 cm inner diameter. The channel aperture of accelerator tube is 3 cm. Resistor chains achieve the potential gradients across the columns and tube electrode gaps. The maximal designed gradient in the tube is a little larger than 10 kV/cm. The accelerat- ing voltage is generated by the symmetrical cascade generator with a resonance frequency around 20 kHz. The project terminal voltage has value 2 MV, with SF6 insulating gas, at 1.7 atm pressure. At present, while in the commissioning phase, the accelerator is used with air at 1 atm pressure as insulating gas instead of sulfur hexafluoride gas. The maximal terminal voltage of 500 kV was demonstrated during the installation period, with air being the insulating gas. The SF6 gas is now stored in the external tanks. The gas transfer system with the compressor and the dryer containing silica gel is completed. The accelerating tubes, the cascade gener- ator, the shielded column, and the terminal shell are also installed into the tandem tank. 4. MAGNESIUM VAPORS STRIPPER The use of magnesium vapors stripper allows obtain- ing the vacuum level in accelerating tubes being compa- rable with systems with solid targets because the mag- nesium vapor is condensed into the special containers at the room temperature, which are placed at the entrance and exit of the stripper tube. Solid targets at these ener- gies have a short lifetime and therefore are not applied usually. The high gas flow into the high-energy tubes leads to large energy spread in the beam thus limiting the sensitivity and accuracy of a spectrometer. The mag- nesium vapors stripper was manufactured and is shown in Fig.3. Fig.4. Magnesium vapors stripper The stripper channel has a length of 30 cm and the inner diameter of 3 mm. The stripper tube is enveloped by the container with the solid magnesium. When the container is heated, the magnesium vapors follow from the container through the small holes to the stripper tube. In order to check the efficiency of the magnesium vapor stripper, the elegant experiment was performed. In this experiment, a thin tungsten wire is strained along the stripper tube axis. The container with the solid mag- nesium is heated by current flowing through it. The test wire temperature is varied as shown in Fig.5. Fig.5. The test wire temperature as a function of the container temperature with the solid magnesium At first, the wire temperature increases with increas- ing the stripper tube temperature by exchange of ther- __________________________________________________________ PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2006. № 2. Series: Nuclear Physics Investigations (46), p.34-36.34 400 420 440 460 480 500 520 540 560 580 610 620 630 640 650 660 670 te st w ire te m pe ra tu re , 0 C temperature of the container with the solid magnesium, 0 C mal radiation energy between the wire and stripper tube. Then the temperature of wire reduces because the wire is cooled by thermal conductivity of the magnesium va- por, which pressure is increased dramatically with in- creasing of the magnesium heating temperature. The magnesium vapors pressure is ~10-10 Torr at room tem- perature and rises up to ~5·10-2 Torr at ~500оC. The temperature range of 450 to 500°C provides the suffi- cient thickness of target for radiocarbon dating measure- ments. The previously developed analogue of such tar- get has worked for more than 500 hours on the electron cooling investigation facility [2]. 5. HIGH ENERGY BEAM SELECTION The filter with electric and magnetic fields will be mounted immediately behind the magnesium stripper, both have 40 cm radius and 180° bending angle. The electrostatic plates are placed into the magnet. The dis- tance between the electrostatic plates is 1 cm, these plates are of spherical form, thus providing a double fo- cusing of a beam. The magnet has uniform field in the gap with 600 Gs maximal field that is quite enough for mass selection. The 90 % of centripetal force are ob- tained by electrostatic field, with ~30 kV/cm maximal field at 2 MV accelerating voltage. The most fractions of the unwanted particles should be removed by this se- lector. This terminal selector is now under construction. For better background filtration, the next 90° analyzing magnet will be placed at the exit of the tandem accelera- tor. The carbon radioisotope particles will be measured by a silicon surface barrier detector placed at the end of beam line [1]. 6. CONTROL SYSTEM The fully computer controlled system is designed and partly manufactured. The software used for the con- trol system is based on the LabVIEW. The system is equipped with ADAM and CAMAC modules. The ex- periment parameters and running conditions are dis- played on-line. These data are stored in a database and can be used as initial values for the beam tuning. All de- vices at high voltage potentials are controlled through an optical ADAM link system in communication with the computer. The gaseous turbine will be placed into the tandem terminal for powering the equipment into terminal. The turbine will be rotated by compressed air flowed from the compressor, which will be placed at ground potential. The prototype of such turbine was made and tested. A photograph of the gaseous turbine is shown in Fig.6. Fig.6. Gaseous turbine The power – 500 W is obtained. The efficiency fac- tor of turbine is about 10%. In is sufficient for powering of the all equipment into tandem terminal. New turbine with 20% efficiency factor was designed. SUMMARY The low-energy line is installed and in operation. By the end of 2005, a beam will be accelerated to the high voltage terminal. The work on a high-energy line will be started in the 2006 year. ACKNOWLEDGMENTS This work is supported by FASIE* foundation and by INTAS#. REFERENCES 1. N. Alinovsky et al. The project of accelerator mass –spectrometr at BINP. Proc. of EPAC 2004, Lucerne. 2004. 2. V. Parkhomchuk, A. Seriy. Strip target based on magnesium vapors // Instruments and Experimental Techniques. 1989, v.5, p.59-61. * www.fasie.ru # (IA 03-59-120) СОСТОЯНИЕ РАБОТ ПО ПРОЕКТУ УСКОРИТЕЛЬНОГО МАСС-СПЕКТРОМЕТРА ДЛЯ СО РАН Н.И. Алиновский, А.Ф. Булушев, В.Ф. Клюев, Е.С. Константинов, С.Г. Константинов, А.В. Кожемя- кин, А.М. Крючков, В.В. Пархомчук, М.В. Петриченков, С.А. Растигеев, В.Б. Рева, Б.Н. Сухина Рассмотрено текущее состояние работ по созданию в ИЯФ им. Г.И.Будкера ускорительного масс-спек- трометрического комплекса (AMS). Комплекс AMS c дополнительным электрическим и магнитным анали- заторами, расположенными в области терминала тандемного ускорителя, предназначен для прецизионного анализа предельно низкой концентрации изотопов углерода. СТАН РОБІТ ІЗ ПРОЕКТУ ПРИСКОРЮВАЛЬНОГО МАС-СПЕКТРОМЕТРА ДЛЯ СВ РАН М.І. Алиновський, А.Ф. Булушев, В.Ф. Клюєв, Є.С. Константинов, С.Г. Константинов, А.В. Кожемякін, А.М. Крючков, В.В. Пархомчук, М.В. Петриченков, С.А. Растигєєв, В.Б. Рева, Б.Н. Сухина Розглянуто поточний стан робіт з створення в ІЯФ ім. Г.І. Будкера прискорювального мас- спектрометричного комплексу (AMS). Комплекс AMS c додатковим електричним і магнітним аналізаторами, розташованими в області термінала тандемного прискорювача, призначений для прецизійного аналізу гранично низької концентрації ізотопів вуглецю. 26 СОСТОЯНИЕ РАБОТ ПО ПРОЕКТУ УСКОРИТЕЛЬНОГО МАСС-СПЕКТРОМЕТРА ДЛЯ СО РАН