Status of an accelerator mass-spectrometer project for SD RAS
Present status of an accelerator mass spectrometry (AMS) facility at BINP is described. The AMS facility with addition electric and magnetic analyzers into a terminal of a tandem accelerator is designed for precise analyses of carbon isotopes at extremely low concentration levels.
Збережено в:
Дата: | 2006 |
---|---|
Автори: | , , , , , , , , , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2006
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/78696 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Status of an accelerator mass-spectrometer project for SD RAS / N.I. Alinovsky, A.F. Bulushev, V.F. Klyuev, E.S. Konstantinov, S.G. Konstantinov, A.V. Kozhemyakin, A.M. Kryuchkov, V.V. Parkhomchuk, M.V. Petrichenkov, S.A. Rastigeev, V.B. Reva, B.N. Sukhina // Вопросы атомной науки и техники. — 2006. — № 2. — С. 34-36. — Бібліогр.: 2 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-78696 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-786962015-03-21T03:02:00Z Status of an accelerator mass-spectrometer project for SD RAS Alinovsky, N.I. Bulushev, A.F. Klyuev, V.F. Konstantinov, E.S. Konstantinov, S.G. Kozhemyakin, A.V. Kryuchkov, A.M. Parkhomchuk, V.V. Petrichenkov, M.V. Rastigeev, S.A. Reva, V.B. Sukhina, B.N. Линейные ускорители заряженных частиц Present status of an accelerator mass spectrometry (AMS) facility at BINP is described. The AMS facility with addition electric and magnetic analyzers into a terminal of a tandem accelerator is designed for precise analyses of carbon isotopes at extremely low concentration levels. Рассмотрено текущее состояние работ по созданию в ИЯФ им. Г.И.Будкера ускорительного масс-спек- трометрического комплекса (AMS). Комплекс AMS c дополнительным электрическим и магнитным анали- заторами, расположенными в области терминала тандемного ускорителя, предназначен для прецизионного анализа предельно низкой концентрации изотопов углерода. Розглянуто поточний стан робіт з створення в ІЯФ ім. Г.І. Будкера прискорювального мас- спектрометричного комплексу (AMS). Комплекс AMS c додатковим електричним і магнітним аналізаторами, розташованими в області термінала тандемного прискорювача, призначений для прецизійного аналізу гранично низької концентрації ізотопів вуглецю. 2006 Article Status of an accelerator mass-spectrometer project for SD RAS / N.I. Alinovsky, A.F. Bulushev, V.F. Klyuev, E.S. Konstantinov, S.G. Konstantinov, A.V. Kozhemyakin, A.M. Kryuchkov, V.V. Parkhomchuk, M.V. Petrichenkov, S.A. Rastigeev, V.B. Reva, B.N. Sukhina // Вопросы атомной науки и техники. — 2006. — № 2. — С. 34-36. — Бібліогр.: 2 назв. — англ. 1562-6016 PACS: 29.30.Aj http://dspace.nbuv.gov.ua/handle/123456789/78696 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Линейные ускорители заряженных частиц Линейные ускорители заряженных частиц |
spellingShingle |
Линейные ускорители заряженных частиц Линейные ускорители заряженных частиц Alinovsky, N.I. Bulushev, A.F. Klyuev, V.F. Konstantinov, E.S. Konstantinov, S.G. Kozhemyakin, A.V. Kryuchkov, A.M. Parkhomchuk, V.V. Petrichenkov, M.V. Rastigeev, S.A. Reva, V.B. Sukhina, B.N. Status of an accelerator mass-spectrometer project for SD RAS Вопросы атомной науки и техники |
description |
Present status of an accelerator mass spectrometry (AMS) facility at BINP is described. The AMS facility with
addition electric and magnetic analyzers into a terminal of a tandem accelerator is designed for precise analyses of
carbon isotopes at extremely low concentration levels. |
format |
Article |
author |
Alinovsky, N.I. Bulushev, A.F. Klyuev, V.F. Konstantinov, E.S. Konstantinov, S.G. Kozhemyakin, A.V. Kryuchkov, A.M. Parkhomchuk, V.V. Petrichenkov, M.V. Rastigeev, S.A. Reva, V.B. Sukhina, B.N. |
author_facet |
Alinovsky, N.I. Bulushev, A.F. Klyuev, V.F. Konstantinov, E.S. Konstantinov, S.G. Kozhemyakin, A.V. Kryuchkov, A.M. Parkhomchuk, V.V. Petrichenkov, M.V. Rastigeev, S.A. Reva, V.B. Sukhina, B.N. |
author_sort |
Alinovsky, N.I. |
title |
Status of an accelerator mass-spectrometer project for SD RAS |
title_short |
Status of an accelerator mass-spectrometer project for SD RAS |
title_full |
Status of an accelerator mass-spectrometer project for SD RAS |
title_fullStr |
Status of an accelerator mass-spectrometer project for SD RAS |
title_full_unstemmed |
Status of an accelerator mass-spectrometer project for SD RAS |
title_sort |
status of an accelerator mass-spectrometer project for sd ras |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2006 |
topic_facet |
Линейные ускорители заряженных частиц |
url |
http://dspace.nbuv.gov.ua/handle/123456789/78696 |
citation_txt |
Status of an accelerator mass-spectrometer project for SD RAS / N.I. Alinovsky, A.F. Bulushev, V.F. Klyuev, E.S. Konstantinov, S.G. Konstantinov,
A.V. Kozhemyakin, A.M. Kryuchkov, V.V. Parkhomchuk, M.V. Petrichenkov, S.A. Rastigeev,
V.B. Reva, B.N. Sukhina // Вопросы атомной науки и техники. — 2006. — № 2. — С. 34-36. — Бібліогр.: 2 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT alinovskyni statusofanacceleratormassspectrometerprojectforsdras AT bulushevaf statusofanacceleratormassspectrometerprojectforsdras AT klyuevvf statusofanacceleratormassspectrometerprojectforsdras AT konstantinoves statusofanacceleratormassspectrometerprojectforsdras AT konstantinovsg statusofanacceleratormassspectrometerprojectforsdras AT kozhemyakinav statusofanacceleratormassspectrometerprojectforsdras AT kryuchkovam statusofanacceleratormassspectrometerprojectforsdras AT parkhomchukvv statusofanacceleratormassspectrometerprojectforsdras AT petrichenkovmv statusofanacceleratormassspectrometerprojectforsdras AT rastigeevsa statusofanacceleratormassspectrometerprojectforsdras AT revavb statusofanacceleratormassspectrometerprojectforsdras AT sukhinabn statusofanacceleratormassspectrometerprojectforsdras |
first_indexed |
2025-07-06T02:46:05Z |
last_indexed |
2025-07-06T02:46:05Z |
_version_ |
1836863943735246848 |
fulltext |
STATUS OF AN ACCELERATOR MASS-SPECTROMETER PROJECT
FOR SD RAS
N.I. Alinovsky, A.F. Bulushev, V.F. Klyuev, E.S. Konstantinov, S.G. Konstantinov,
A.V. Kozhemyakin, A.M. Kryuchkov, V.V. Parkhomchuk, M.V. Petrichenkov, S.A. Rastigeev,
V.B. Reva, B.N. Sukhina
Budker INP, Novosibirsk, Russia
E-mail: S.A.Rastigeev@inp.nsk.su
Present status of an accelerator mass spectrometry (AMS) facility at BINP is described. The AMS facility with
addition electric and magnetic analyzers into a terminal of a tandem accelerator is designed for precise analyses of
carbon isotopes at extremely low concentration levels.
PACS: 29.30.Aj
1. INTRODUCTION
The status of the BINP AMS facility and the recent
development are described. The construction work start-
ed in 2003, and the project has been presented previous-
ly [1]. Fig.1 shows the layout of the AMS facility.
Fig.1. AMS facility layout:
1 − pressure tank; 2 − accelerator tube; 3 − cascade
generator; 4 − combined filter; 5 − magnesium vapors
stripper, 6 − ion source; 7 − low-energy magnetic an-
alyzer; 8 − high-energy magnetic analyzer
The AMS is based on an electrostatic tandem accel-
erator. The most distinguishing feature of our AMS ma-
chine is the use of additional separator of ion beam, lo-
cated inside the terminal. The addition of electric and
magnetic analyzers can essentially decrease the back-
ground. Interfering isobaric molecules are destroyed by
collisions in the stripper into the terminal and selected
immediately after stripping process. It is important to
decrease the background from molecular fragments be-
fore the second acceleration stage because otherwise
they can obtain large energy spread by recharging on
residual gas into electric field. The ions in charge state
3+ will be used for isotope analysis because the
molecules in charge state 3+ are unstable. The next im-
portant distinguishing feature is magnesium vapors
stripper instead of the gas stripper. Therefore, it is not
necessary to use additional turbo-molecular pump for
good vacuum condition outside the magnesium vapors
stripper.
2. INJECTION SYSTEM
A photograph of the injection system is shown in
Fig. 2.
Fig.2. Injection system
The AMS system has two ion sources. The sputter
ion source is required for analysis of solid samples. The
gas ion source is needed for direct analysis of gas sam-
ples and for system adjustment. The injection energy of
the extracted negative ions is 15 keV. The ion beam ex-
tracted from the source passes through a double focus-
ing 90° analyzing magnet, with 40 cm radius and 2.5 cm
pole gap. The position and angles of extracted beam are
slightly corrected by four pairs of electrostatic plate.
During radiocarbon measurements the carbon isotopes
will be passed through magnet by additional voltage ap-
plied to the vacuum chamber of magnet. The stable iso-
tope currents are measured during time of the injection
of the radioisotope beam by offset Faraday cups placed
__________________________________________________________
PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2006. № 2.
Series: Nuclear Physics Investigations (46), p.34-36.34
after injection magnet. In order to set up the size and po-
sition of injection beam into the stripper channel, the
system of three-electrode electrostatic lenses and elec-
trostatic dipoles are manufactured and will be placed at
the entrance of the accelerating tube. The vacuum of the
injection channel is kept better than 5*10-6 Torr by 400
l/s ion pump. A new 250 l/s turbo-molecular pump is
now installed just behind ion sources. The beam-line
from ion source to accelerator tube is completed and
tested.
3. TANDEM ACCELERATOR
The AMS tandem accelerator is a folded type verti-
cal machine with 180° bending system in the high volt-
age terminal. A photograph of the tandem accelerator is
shown in Fig.3.
Fig.3. Tandem accelerator
The negative ions will be accelerated to the positive-
ly charged high voltage terminal and stripped to 3+ state
in charge exchange target. Then they pass through the
1800 combined bend and then again are accelerated into
the high energy accelerating tube to the ground poten-
tial. The two accelerating tubes and cascade generator
are enveloped by shielded column, which is 200 cm
high and 140 cm outside diameter of shielding rings,
and placed into a pressure tank. The dimensions of pres-
sure tank are 4.6 meters high and 3.2 meters diameter.
The accelerating tube consists of five sections, with 21
mm electrode step. The electrodes are divided by
ceramic rings with 18 cm inner diameter. The channel
aperture of accelerator tube is 3 cm. Resistor chains
achieve the potential gradients across the columns and
tube electrode gaps. The maximal designed gradient in
the tube is a little larger than 10 kV/cm. The accelerat-
ing voltage is generated by the symmetrical cascade
generator with a resonance frequency around 20 kHz.
The project terminal voltage has value 2 MV, with SF6
insulating gas, at 1.7 atm pressure. At present, while in
the commissioning phase, the accelerator is used with
air at 1 atm pressure as insulating gas instead of sulfur
hexafluoride gas. The maximal terminal voltage of
500 kV was demonstrated during the installation period,
with air being the insulating gas. The SF6 gas is now
stored in the external tanks. The gas transfer system
with the compressor and the dryer containing silica gel
is completed. The accelerating tubes, the cascade gener-
ator, the shielded column, and the terminal shell are also
installed into the tandem tank.
4. MAGNESIUM VAPORS STRIPPER
The use of magnesium vapors stripper allows obtain-
ing the vacuum level in accelerating tubes being compa-
rable with systems with solid targets because the mag-
nesium vapor is condensed into the special containers at
the room temperature, which are placed at the entrance
and exit of the stripper tube. Solid targets at these ener-
gies have a short lifetime and therefore are not applied
usually. The high gas flow into the high-energy tubes
leads to large energy spread in the beam thus limiting
the sensitivity and accuracy of a spectrometer. The mag-
nesium vapors stripper was manufactured and is shown
in Fig.3.
Fig.4. Magnesium vapors stripper
The stripper channel has a length of 30 cm and the
inner diameter of 3 mm. The stripper tube is enveloped
by the container with the solid magnesium. When the
container is heated, the magnesium vapors follow from
the container through the small holes to the stripper
tube. In order to check the efficiency of the magnesium
vapor stripper, the elegant experiment was performed.
In this experiment, a thin tungsten wire is strained along
the stripper tube axis. The container with the solid mag-
nesium is heated by current flowing through it. The test
wire temperature is varied as shown in Fig.5.
Fig.5. The test wire temperature as a function of the
container temperature with the solid magnesium
At first, the wire temperature increases with increas-
ing the stripper tube temperature by exchange of ther-
__________________________________________________________
PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2006. № 2.
Series: Nuclear Physics Investigations (46), p.34-36.34
400 420 440 460 480 500 520 540 560 580
610
620
630
640
650
660
670
te
st
w
ire
te
m
pe
ra
tu
re
,
0 C
temperature of the container with the solid magnesium, 0 C
mal radiation energy between the wire and stripper tube.
Then the temperature of wire reduces because the wire
is cooled by thermal conductivity of the magnesium va-
por, which pressure is increased dramatically with in-
creasing of the magnesium heating temperature. The
magnesium vapors pressure is ~10-10 Torr at room tem-
perature and rises up to ~5·10-2 Torr at ~500оC. The
temperature range of 450 to 500°C provides the suffi-
cient thickness of target for radiocarbon dating measure-
ments. The previously developed analogue of such tar-
get has worked for more than 500 hours on the electron
cooling investigation facility [2].
5. HIGH ENERGY BEAM SELECTION
The filter with electric and magnetic fields will be
mounted immediately behind the magnesium stripper,
both have 40 cm radius and 180° bending angle. The
electrostatic plates are placed into the magnet. The dis-
tance between the electrostatic plates is 1 cm, these
plates are of spherical form, thus providing a double fo-
cusing of a beam. The magnet has uniform field in the
gap with 600 Gs maximal field that is quite enough for
mass selection. The 90 % of centripetal force are ob-
tained by electrostatic field, with ~30 kV/cm maximal
field at 2 MV accelerating voltage. The most fractions
of the unwanted particles should be removed by this se-
lector. This terminal selector is now under construction.
For better background filtration, the next 90° analyzing
magnet will be placed at the exit of the tandem accelera-
tor. The carbon radioisotope particles will be measured
by a silicon surface barrier detector placed at the end of
beam line [1].
6. CONTROL SYSTEM
The fully computer controlled system is designed
and partly manufactured. The software used for the con-
trol system is based on the LabVIEW. The system is
equipped with ADAM and CAMAC modules. The ex-
periment parameters and running conditions are dis-
played on-line. These data are stored in a database and
can be used as initial values for the beam tuning. All de-
vices at high voltage potentials are controlled through
an optical ADAM link system in communication with
the computer. The gaseous turbine will be placed into
the tandem terminal for powering the equipment into
terminal. The turbine will be rotated by compressed air
flowed from the compressor, which will be placed at
ground potential. The prototype of such turbine was
made and tested. A photograph of the gaseous turbine is
shown in Fig.6.
Fig.6. Gaseous turbine
The power – 500 W is obtained. The efficiency fac-
tor of turbine is about 10%. In is sufficient for powering
of the all equipment into tandem terminal. New turbine
with 20% efficiency factor was designed.
SUMMARY
The low-energy line is installed and in operation. By
the end of 2005, a beam will be accelerated to the high
voltage terminal. The work on a high-energy line will be
started in the 2006 year.
ACKNOWLEDGMENTS
This work is supported by FASIE* foundation and
by INTAS#.
REFERENCES
1. N. Alinovsky et al. The project of accelerator mass
–spectrometr at BINP. Proc. of EPAC 2004,
Lucerne. 2004.
2. V. Parkhomchuk, A. Seriy. Strip target based on
magnesium vapors // Instruments and Experimental
Techniques. 1989, v.5, p.59-61.
* www.fasie.ru
# (IA 03-59-120)
СОСТОЯНИЕ РАБОТ ПО ПРОЕКТУ УСКОРИТЕЛЬНОГО МАСС-СПЕКТРОМЕТРА ДЛЯ СО РАН
Н.И. Алиновский, А.Ф. Булушев, В.Ф. Клюев, Е.С. Константинов, С.Г. Константинов, А.В. Кожемя-
кин, А.М. Крючков, В.В. Пархомчук, М.В. Петриченков, С.А. Растигеев, В.Б. Рева, Б.Н. Сухина
Рассмотрено текущее состояние работ по созданию в ИЯФ им. Г.И.Будкера ускорительного масс-спек-
трометрического комплекса (AMS). Комплекс AMS c дополнительным электрическим и магнитным анали-
заторами, расположенными в области терминала тандемного ускорителя, предназначен для прецизионного
анализа предельно низкой концентрации изотопов углерода.
СТАН РОБІТ ІЗ ПРОЕКТУ ПРИСКОРЮВАЛЬНОГО МАС-СПЕКТРОМЕТРА ДЛЯ СВ РАН
М.І. Алиновський, А.Ф. Булушев, В.Ф. Клюєв, Є.С. Константинов, С.Г. Константинов, А.В. Кожемякін,
А.М. Крючков, В.В. Пархомчук, М.В. Петриченков, С.А. Растигєєв, В.Б. Рева, Б.Н. Сухина
Розглянуто поточний стан робіт з створення в ІЯФ ім. Г.І. Будкера прискорювального мас-
спектрометричного комплексу (AMS). Комплекс AMS c додатковим електричним і магнітним
аналізаторами, розташованими в області термінала тандемного прискорювача, призначений для
прецизійного аналізу гранично низької концентрації ізотопів вуглецю.
26
СОСТОЯНИЕ РАБОТ ПО ПРОЕКТУ УСКОРИТЕЛЬНОГО МАСС-СПЕКТРОМЕТРА ДЛЯ СО РАН
|