Influence of hydrogen implantation and oxidation on air on the structure and mechanical properties of nickel based coating PG-19-01
Influence of oxidation on air and hydrogen implantation on the structure and mechanical properties of nickel based coating PG-19N-01 deposited on iron and stainless steel C0.12Cr18Ni10Ti substrate and also of iron with plasma treatment of surface were studied. It is shown, that implantation by proto...
Збережено в:
Дата: | 2008 |
---|---|
Автори: | , , , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Науковий фізико-технологічний центр МОН та НАН України
2008
|
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/7880 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Influence of hydrogen implantation and oxidation on air on the structure and mechanical properties of nickel based coating PG-19-01 / K.K. Kadyrzhanov, S.B. Kislitsin, F.F. Komarov, A.D. Pogrebnjak, V.S. Rusakov, Y.Zh. Tuleushev // Физическая инженерия поверхности. — 2008. — Т. 6, № 3-4. — С. 217-220. — Бібліогр.: 4 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-7880 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-78802010-04-21T12:02:20Z Influence of hydrogen implantation and oxidation on air on the structure and mechanical properties of nickel based coating PG-19-01 Kadyrzhanov, K.K. Kislitsin, S.B. Komarov, F.F. Pogrebnjak, A.D. Rusakov, V.S. Tuleushev, Y.Zh. Influence of oxidation on air and hydrogen implantation on the structure and mechanical properties of nickel based coating PG-19N-01 deposited on iron and stainless steel C0.12Cr18Ni10Ti substrate and also of iron with plasma treatment of surface were studied. It is shown, that implantation by protons with energy from 0.6 to 1.6 MeV up to doze 3•10^18 proton/cm^2 lead to insignificant changes of structure and strength properties of PG-19N-01 coating. In the samples oxidized on air at temperatures 500 °С, 700 °С and 900 °С during three hours increase in microhardness and strength of the material at mechanical tests on static bend is observed. Вивчено вплив окислювання на повітрі й імплантації водню на структуру й механічні властивості нікелевих покриттів PG-19N-01, нанесених на залізну підкладинку та з нержавіючої сталі 30.12Cr18Ni10Ti підкдадинки, а також заліза із плазмовою обробкою поверхні. Показано, що імплантація протонами з енергією від 0,6 до 1,6 МеВ з дозою 3•10^18 протон/см^2 приводить до незначних змін структури й міцності характеристик покриття PG-19N-01. У зразках, окислених на повітрі при температурах 500 °С, 700 °С и 900 °С у плині 3-х годин спостерігалося збільшення мікротвердості й зміцнення матеріалу при механічних випробуваннях на статичний вигин. Изучено влияние окисления на воздухе и имплантации водорода на структуру и механические свойства никелевых покрытий PG-19N-01, нанесенных на железную подложку и из нержавеющей стали С0.12Cr18Ni10Ti подложки, а также железа с плазменной обработкой поверхности. Показано, что имплантация протонами с энергией от 0,6 до 1,6 МэВ с дозой 3•10^18 протон/см^2 приводит к незначительным изменениям структуры и прочностных характеристик покрытия PG-19N-01. В образцах, окисленных на воздухе при температурах 500 °С, 700 °С и 900 °С в течении 3-х часов наблюдалось увеличение микротвердости и упрочнения материала при механических испытаниях на статический изгиб. 2008 Article Influence of hydrogen implantation and oxidation on air on the structure and mechanical properties of nickel based coating PG-19-01 / K.K. Kadyrzhanov, S.B. Kislitsin, F.F. Komarov, A.D. Pogrebnjak, V.S. Rusakov, Y.Zh. Tuleushev // Физическая инженерия поверхности. — 2008. — Т. 6, № 3-4. — С. 217-220. — Бібліогр.: 4 назв. — англ. 1999-8074 http://dspace.nbuv.gov.ua/handle/123456789/7880 en Науковий фізико-технологічний центр МОН та НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Influence of oxidation on air and hydrogen implantation on the structure and mechanical properties of nickel based coating PG-19N-01 deposited on iron and stainless steel C0.12Cr18Ni10Ti substrate and also of iron with plasma treatment of surface were studied. It is shown, that implantation by protons with energy from 0.6 to 1.6 MeV up to doze 3•10^18 proton/cm^2 lead to insignificant changes of structure and strength properties of PG-19N-01 coating. In the samples oxidized on air at temperatures 500 °С, 700 °С and 900 °С during three hours increase in microhardness and strength of the material at mechanical tests on static bend is observed. |
format |
Article |
author |
Kadyrzhanov, K.K. Kislitsin, S.B. Komarov, F.F. Pogrebnjak, A.D. Rusakov, V.S. Tuleushev, Y.Zh. |
spellingShingle |
Kadyrzhanov, K.K. Kislitsin, S.B. Komarov, F.F. Pogrebnjak, A.D. Rusakov, V.S. Tuleushev, Y.Zh. Influence of hydrogen implantation and oxidation on air on the structure and mechanical properties of nickel based coating PG-19-01 |
author_facet |
Kadyrzhanov, K.K. Kislitsin, S.B. Komarov, F.F. Pogrebnjak, A.D. Rusakov, V.S. Tuleushev, Y.Zh. |
author_sort |
Kadyrzhanov, K.K. |
title |
Influence of hydrogen implantation and oxidation on air on the structure and mechanical properties of nickel based coating PG-19-01 |
title_short |
Influence of hydrogen implantation and oxidation on air on the structure and mechanical properties of nickel based coating PG-19-01 |
title_full |
Influence of hydrogen implantation and oxidation on air on the structure and mechanical properties of nickel based coating PG-19-01 |
title_fullStr |
Influence of hydrogen implantation and oxidation on air on the structure and mechanical properties of nickel based coating PG-19-01 |
title_full_unstemmed |
Influence of hydrogen implantation and oxidation on air on the structure and mechanical properties of nickel based coating PG-19-01 |
title_sort |
influence of hydrogen implantation and oxidation on air on the structure and mechanical properties of nickel based coating pg-19-01 |
publisher |
Науковий фізико-технологічний центр МОН та НАН України |
publishDate |
2008 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/7880 |
citation_txt |
Influence of hydrogen implantation and oxidation on air on the structure and mechanical properties of nickel based coating PG-19-01 / K.K. Kadyrzhanov, S.B. Kislitsin, F.F. Komarov, A.D. Pogrebnjak, V.S. Rusakov, Y.Zh. Tuleushev // Физическая инженерия поверхности. — 2008. — Т. 6, № 3-4. — С. 217-220. — Бібліогр.: 4 назв. — англ. |
work_keys_str_mv |
AT kadyrzhanovkk influenceofhydrogenimplantationandoxidationonaironthestructureandmechanicalpropertiesofnickelbasedcoatingpg1901 AT kislitsinsb influenceofhydrogenimplantationandoxidationonaironthestructureandmechanicalpropertiesofnickelbasedcoatingpg1901 AT komarovff influenceofhydrogenimplantationandoxidationonaironthestructureandmechanicalpropertiesofnickelbasedcoatingpg1901 AT pogrebnjakad influenceofhydrogenimplantationandoxidationonaironthestructureandmechanicalpropertiesofnickelbasedcoatingpg1901 AT rusakovvs influenceofhydrogenimplantationandoxidationonaironthestructureandmechanicalpropertiesofnickelbasedcoatingpg1901 AT tuleushevyzh influenceofhydrogenimplantationandoxidationonaironthestructureandmechanicalpropertiesofnickelbasedcoatingpg1901 |
first_indexed |
2025-07-02T10:40:33Z |
last_indexed |
2025-07-02T10:40:33Z |
_version_ |
1836531406486896640 |
fulltext |
INFLUENCE OF HYDROGEN IMPLANTATION AND OXIDATION ON AIR ON THE STRUCTURE AND MECHANICAL PROPERTIES OF NICKEL…
ФІП ФИП PSE, 2008, т. 6, № 3-4, vol. 6, No. 3-4
217
INFLUENCE OF HYDROGEN IMPLANTATION AND OXIDATION
ON AIR ON THE STRUCTURE AND MECHANICAL PROPERTIES
OF NICKEL BASED COATING PG-19-01
Kairat K. Kadyrzhanov*, Sergei B. Kislitsin*, Fadey F. Komarov**,
Aleksander D. Pogrebnjak***, Vjacheclav S. Rusakov****, Yuriy Zh. Tuleushev*
*Institute of Nuclear Physics of National Nuclear Center of Republic of Kazakhstan (Almat),
Kazakhstan
**Byelorussia State University (Minsk)
Byelorussia
***Sumy Institute for Surface Modification
Ukraine
****Moscow State University
Russia
Influence of oxidation on air and hydrogen implantation on the structure and mechanical properties
of nickel based coating PG-19N-01 deposited on iron and stainless steel C0.12Cr18Ni10Ti sub-
strate and also of iron with plasma treatment of surface were studied. It is shown, that implantation
by protons with energy from 0.6 to 1.6 MeV up to doze 3⋅1018 proton/cm2 lead to insignificant
changes of structure and strength properties of PG-19N-01 coating. In the samples oxidized on air
at temperatures 500 °С, 700 °С and 900 °С during three hours increase in microhardness and
strength of the material at mechanical tests on static bend is observed.
INTRODUCTION
Actual way of improvement of physical and
mechanical properties of metal materials is the
treatment of its surface by laser, electron and
ion beam or by deposition on its surface of
protective coating. In such way, it is possible
to increase such properties of materials as
hardness, wear resistance, corrosion resistance,
etc. By present time various ways of protective
coating deposition on the material surface –
electrochemical, magnetron, detonation are
developed [1, 2]. The detonation method is
widely used, rather simple and inexpensive. As
lack of this method it is possible to note neces-
sity of preliminary preparation of deposited
material i.e. preparation of powders of the
necessary composition. Furthermore, quality
and homogeneity of coatings depends on the
sizes of the powder fractions and on conditions
of deposition [3].
The powder nickel base coating PG-19N-01
(Cr – 8 ÷ 4%, B – 2.3%, Si – 1.2 ÷ 3.2%, Fe –
5%, C – 0.5%) is the material with high hard-
ness, heat resistance and is perspective for ap-
plication in those products where such proper-
ties are required [4].
In the given work, results of studying of
structure and mechanical properties of iron
with PG-19N-01 coating and also influences of
oxidation on air and hydrogen implantation on
structure and mechanical properties PG-19N-
01 coating are presented.
MATERIALS AND EXPERIMENTAL
TECHNIQUE
Substrates for deposition of PG-19N-01 coat-
ings were made from massive bar of α – iron
(purity – 99,8) and stainless steel
C0.12Cr18Ni10Тi. Samples represented thin
plates with sizes 30×30×(0.8 ÷ 1) mm. Plasma
treatment of the surface and deposition of pro-
tective coating by plasma-detonation method
from powder of alloy PG-19N-01 on the base
of nickel (Cr – 8 ÷ 4%, B – 2.3%, Si – 1,2 ÷
3.2%, Fe – 5%, C – 0.5%, Ni – 83 – 87%) are
described in detail in [1] and carried out in the
Sumy Institute for Surface Modification.
Study of structure and mechanical proper-
ties of the material of substrate and coating
were carried out by methods of optical metal-
lographic, X-ray difractometry, measurements
of microhardness and mechanical tests on
static bend.
Oxidation of samples of iron, steel, iron and
steel with PG-19N-01 coating and iron with
plasma treatment surface were carried out in
muffle furnace at temperatures 500 °С, 700 °С
and 900 °С within three hours.
Radiation treatment of samples was carried
out by protons with energy from 0.6 to
KAIRAT K. KADYRZHANOV, SERGEI B. KISLITSIN, FADEY F. KOMAROV, ALEKSANDER D. POGREBNJAK…
ФІП ФИП PSE, 2008, т. 6, № 3-4, vol. 6, No. 3-4 218
a) b)
c) d)
Fig. 1. Microstructure of surface layers of initial iron –
a); plasma treated iron – b); plasma treated iron after
oxidation at 700 °C – c) and proton irradiation – d).
Fig. 2. Microhardness of surface layers of initial iron
(iron), plasma treated iron – 1), plasma treated iron after
oxidation at 700 °C – 2) and proton irradiation – (3).
1.6 MeV up to dose 3×1018 proton/cm2 on the
electrostatic accelerator UKP-2-1 of Institute
of Nuclear Physics.
RESULTS AND DISCUSSION
Experimental results of influence of oxidation
on air at high temperatures and proton irradia-
tion on structure and mechanical properties of
iron with plasma treated surface and iron with
the PG-19N-01coating deposited by plasma-
detonation method represented below.
1. Iron with plasma treated surface. Struc-
ture of initial material (iron), plasma treated
iron, plasma treated iron after oxidation at 700
°C and proton irradiation is shown on fig. 1.
Characteristic feature of initial iron structure is
big mean grain size – 200 µk (fig. 1a). After
plasma treatment the mean grain size become
much smaller and consist 50 µk (fig. 1b). After
oxidation mean grain size practically does not
change, but grain boundaries revealed as fig-
ures of etching (fig. 1c). Apparently precipita-
tion of some phases on grain boundaries oc-
curred during annealing and their traces after
electrolytic etching are observed. After proton
irradiation mean grain size become large in
comparing with plasma treated surface and
consists 100 µk (fig. 1d).
Microhardness of initial material (iron),
plasma treated iron, plasma treated iron after
oxidation at 700 0C and proton irradiation is
shown on fig. 2. As follows from dependences
of Нµ on distance for treated surface the mi-
crohardness for treated material increases ap-
proximately twice (curve 1) compare to initial
material (line “iron”). Oxidation at 700 °C
leads to little increasing of microhardness
(curve 2) and after proton implantation de-
creasing of Нµ in the region of hydrogen in-
fluence (3) is observed.
Strength of iron with plasma treated surface
was determined from mechanical tests on
static band, as mechanical properties of sur-
face much more sensitive to band deformation
compare to uneasily deformation. From bend
test follow – plasma treatment of iron surface
lead to strong increasing of iron strengthening
– irreversible deformation begins at load 4 kg
(maximal strength – 8 kg) while as for un-
treated material irreversible deformation be-
gins at load ~2 kg (maximal strength –
4.5 kg). Oxidation at 700 °C leads to further
increasing of irreversible strength. – 5 kg (ma-
ximal strength – 11 kg). Proton irradiation
leads to decreasing irreversible strength value
up to 2 kg and maximal strength up to 3.9 kg.
It is necessary to note following: One more
impotent fact: cracks on iron surface does not
appear ever for band maximal band angle,
while for plasma treated surface cracks forms
at band angle ~ 30°, after oxidation at tem-
perature 700 °C – at the same band angle 30°.
Cracks on plasma treated surface forms at
bend angle ~ 45° for material after proton irra-
diation.
2. Iron with the PG-19N-01 coating depo-
sited by plasma-detonation method. Structure
of the PG-19N-01coating deposited by
plasma-detonation method, coating structure
after oxidation on air at temperature 700 °C
INFLUENCE OF HYDROGEN IMPLANTATION AND OXIDATION ON AIR ON THE STRUCTURE AND MECHANICAL PROPERTIES OF NICKEL…
ФІП ФИП PSE, 2008, т. 6, № 3-4, vol. 6, No. 3-4
219
and proton irradiation is shown on fig. 3. Mi-
crostructure of PG-10N-01 coating before oxi-
dation and proton irradiation represent the
mixture of white and dark regions – probably
fraction of PG -10N-01 powder (fig. 3a). After
oxidation on air between deposited material
and substrate appear strong boundary (fig. 3b),
more over in structure of coating forms pores
size of which can reach 100 µk, see fig. 3c.
Proton irradiation does not produce significant
influence on microstructure of coating and
substrate.
Microhardness value in white regions is
very high and consist ~715 kg/mm2. Average
microhardness value of coating equal to ~580
kg/mm2 and more than five times exceeds Нµ
a of the substrate material. After oxidation on
air at 700 °C during 3 hours microhardness of
coating decrease to value ~310 kg/mm2. Zone
of microhardness decreasing consists ~80 –
100 microns from the outer surface of coating,
Нµ of other part of a coating remain the same
as before oxidation (580 kg/mm2). Proton im-
plantation leads to softening of coating on
~28%, softened zone extend on 10 – 12 µk
and corresponds to projective range of pro-
tons. Microhardness value behind projective
range corresponds to unirradiated material and
consists ~580 kg/mm2.
As follow from experiments on static band
flexural strength of PG-10N-01 coating on
iron is insignificant. For bend angle ~10° at
the surface of coating appear frontal crack and
at bend angle ~60° delaminating of coating is
observed. Irreversible deformation begins at
load 2 kg and coincides with crack formation
and maximal load consist 3 kg and corre-
sponds to delamination of coating. For oxi-
dized material cracks forms at the same bend
angle 10° and at bend angle 45° delamination
of coating occur. At that weakening of mate-
rial take place: cracks forms at bending stress
1.5 kg and delamination – at bending stress –
2 kg. Proton irradiation does not significantly
influence on mechanical properties of Ni-base
PG-19N-01 coating: cracks forms at bend an-
gle ~10° (see fig. 4), delamination of coating
occur at bend angle ~ 60°, stress level for ir-
reversible deformation and maximal stress is
the same order as for unirradiated material.
CONCLUSION
1. Plasma treatment of iron leads to significant
improvement of mechanical properties of ma-
terials surface and reaches 200 microns from
the treated surface. In that region mean grain
size decrease, microhardness and strength in-
crease. Maximal increasing of microhardness
and strength (~2 times) reaches up to 100 mi-
crons from treated surface. Together with in-
creasing of bending strength formation of
cracks take place at rather small band angle
(~ 60°) as follow from bend test. Oxidation on
air at high temperatures (500 °C and higher)
of iron with plasma treated surface leads to
degradation of mechanical properties. Micro-
hardness practically left the same. Net of
cracks forms at band angle ~30° as follow
from bend test. Proton irradiation leads to re-
covery of mechanical properties: microhard-
a)
b)
c)
d)
Fig. 3. Microstructure of PG-19N-01coating deposited
by plasma-detonation method. a) – after deposing of
coating; microstructure of PG-19N-01coating iron after
oxidation at 700 °C – b); pore in coating iron after oxi-
dation at 700 °C – c); microstructure coating after pro-
ton irradiation – d).
KAIRAT K. KADYRZHANOV, SERGEI B. KISLITSIN, FADEY F. KOMAROV, ALEKSANDER D. POGREBNJAK…
ФІП ФИП PSE, 2008, т. 6, № 3-4, vol. 6, No. 3-4 220
ness decrease, ben-ding strength decrease to
the level of initial material.
2. Deposition of Ni-base PG19N-01 coating
by plasma-detonation method allow significan-
tly improve physical and mechanical proper-
ties of material, for example iron. PG-19N-01
coating has rather low corrosion resistance, but
PG-19N-01 coating significantly increase
hardness, strength, wear resistance. Bending
strength of that coating the same order as for
initial material and at band angle ~60° delami-
nating of coating take place. Oxidation on air
at high temperatures (500 °C and higher) of
iron with Ni-base PG-19N-01 coating leads to
degradation of mechanical properties of coat-
ing. Microhardness decreases almost twice,
bending strength decrease. At band angle ~10°
on the surface forms cracks and at band angle
~45° delaminating of coating take place. Pro-
ton irradiation does not significantly influence
on structure and mechanical properties of
Ni-base PG-19N-01 coating.
ACKNOWLEDGMENTS
The work has been performed at partial sup-
port of ISTC, Project К-1198 "Characteriza-
tion and Testing of Coated Nickel- and Iron-
Based Superalloys for Application in High-
Temperature Power Installations"
REFERENCES
1. Kadyrzhanov K.K., Komarov F.F., Pogreb-
njak A.D., Rusakov V.S., Turkebaev T.E. Ion-
beam and ion plasma modification of materi-
als. – M.: Moskoow State University, 2005. –
640 p. (In Russian)
2. Thorpe M.L., Richter H.J. Thermal Spray//
International adv. in Coatings technologies
(Orlando). – 1992. – P. 137.
3. Turin Yu.N., Pogrebnjak A.D.//Surf. and Coat-
ing Tech. – 1999. – Vol. 111. – P. 269-278.
4. Klimenov V.A., Panin V.E., Bezborodov V.P.
//J. Fiz. Chem. Obr. Met. – 1997. – Vol. 221,
No. 5. – P. 68-75 (in Russian).
Fig. 4. Crack formation at band angle ~10° in
PG-19N-01 coating after oxidation at 700 °C.
ВПЛИВ ІМПЛАНТАЦІЇ ВОДНЮ ТА
ОКИСЛЮВАННЯ НА ПОВІТРІ НА
СТРУКТУРУ І МЕХАНІЧНІ
ВЛАСТИВОСТІ ПОКРИТТІВ
НА ОСНОВІ НІКЕЛЮ PG-19-01
К.К. Кадиржанов, С.В. Кислицін,
Ф.Ф.Комаров, А.Д. Погребняк,
В.С. Русаков, В.Ж. Тулєшев
Вивчено вплив окислювання на повітрі й ім-
плантації водню на структуру й механічні вла-
стивості нікелевих покриттів PG-19N-01, нане-
сених на залізну підкладинку та з нержавіючої
сталі 30.12Cr18Ni10Ti підкдадинки, а також
заліза із плазмовою обробкою поверхні. Пока-
зано, що імплантація протонами з енергією від
0,6 до 1,6 МеВ з дозою 3⋅1018 протон/см2 при-
водить до незначних змін структури й міцності
характеристик покриття PG-19N-01. У зразках,
окислених на повітрі при температурах 500 °С,
700 °С и 900 °С у плині 3-х годин спостеріга-
лося збільшення мікротвердості й зміцнення
матеріалу при механічних випробуваннях на
статичний вигин.
ВЛИЯНИЕ ИМПЛАНТАЦИИ ВОДОРОДА
И ОКИСЛЕНИЯ НА ВОЗДУХЕ НА
СТРУКТУРУ И МЕХАНИЧЕСКИЕ
СВОЙСТВА ПОКРЫТИЙ
НА ОСНОВЕ НИКЕЛЯ PG-19-01
К.К. Кадыржанов, С.В. Кислицын,
Ф.Ф.Комаров, А.Д. Погребняк,
В.С. Русаков, В.Ж. Тулешев
Изучено влияние окисления на воздухе и им-
плантации водорода на структуру и механиче-
ские свойства никелевых покрытий PG-19N-01,
нанесенных на железную подложку и из не-
ржавеющей стали С0.12Cr18Ni10Ti подложки,
а также железа с плазменной обработкой по-
верхности. Показано, что имплантация прото-
нами с энергией от 0,6 до 1,6 МэВ с дозой
3⋅1018 протон/см2 приводит к незначительным
изменениям структуры и прочностных харак-
теристик покрытия PG-19N-01. В образцах,
окисленных на воздухе при температурах
500 °С, 700 °С и 900 °С в течении 3-х часов на-
блюдалось увеличение микротвердости и уп-
рочнения материала при механических испы-
таниях на статический изгиб.
|