Investigation the structured material surfaces using the quartz tuning fork based on an atomic force microscopy with controllable q-factor in two modes operation: “intermittent contact” and “shear-force”

We present a combination of an atomic force microscopy with a quartz-crystal tuning fork in ambient conditions. A silicon cantilever tip was attached to one prong of the tuning fork to realize shear-force and intermittent contact mode Fork-AFM operation. By electronically adjusting the quality facto...

Full description

Saved in:
Bibliographic Details
Date:2008
Main Authors: Vo Thanh Tung, Chizhik, S.A., Chikunov, V.V., Tran Xuan Hoai
Format: Article
Language:English
Published: Науковий фізико-технологічний центр МОН та НАН України 2008
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/7881
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Investigation the structured material surfaces using the quartz tuning fork based on an atomic force microscopy with controllable q-factor in two modes operation: “intermittent contact” and “shear-force” / Vo Thanh Tung, S.A. Chizhik, V.V. Chikunov, Tran Xuan Hoai // Физическая инженерия поверхности. — 2008. — Т. 6, № 3-4. — С. 210-215. — Бібліогр.: 20 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-7881
record_format dspace
spelling irk-123456789-78812010-04-21T12:02:11Z Investigation the structured material surfaces using the quartz tuning fork based on an atomic force microscopy with controllable q-factor in two modes operation: “intermittent contact” and “shear-force” Vo Thanh Tung Chizhik, S.A. Chikunov, V.V. Tran Xuan Hoai We present a combination of an atomic force microscopy with a quartz-crystal tuning fork in ambient conditions. A silicon cantilever tip was attached to one prong of the tuning fork to realize shear-force and intermittent contact mode Fork-AFM operation. By electronically adjusting the quality factor of the probe, called Q-control, it was possible to tune the quality factor Q and correspondingly change the overall scanning time. It was also seen that tuning fork with low quality factors could increase stability with the changed signal and so improve the imaging resolution. Measurements on the different samples were used to demonstrate this technique. У роботі описується конструкція атомносилового мікроскопа c датчиком у вигляді камертона на основі кварцового кристала. Кремнієве кантилеверне вістря було закріплено до зубця камертона таким чином, що дозволило реалізувати для камертонового АСМ латерально-силовой (shear-force) і напівконтактний (іntermіttent contact) режими. За допомогою системи електронного регулювання добротності зонда, так називаного Q-контролю, можливе настроювання параметра добротності Q і, відповідно, зміна повного часу сканування. Було помічено, що шляхом зменшення параметра добротності можна збільшити стабільність вимірюваного сигналу й у такий спосіб поліпшити розподіл для формованих зображень. Для демонстрації методики використовувалися зразки різних типів. В работе описывается конструкция атомносилового микроскопа c датчиком в виде камертона на основе кварцевого кристалла. Кремниевое кантилеверное острие было закреплено к зубцу камертона таким образом, что позволило реализовать для камертонного АСМ латерально-силовой (shear-force) и полуконтактный (intermittent contact) режимы. С помощью системы электронного регулирования добротности зонда, так называемого Q-контроля, возможна настройка параметра добротности Q и соответственно изменение полного времени сканирования. Было замечено, что путем уменьшения параметра добротности можно увеличить стабильность измеряемого сигнала и таким образом улучшить разрешение для формируемых изображений. Для демонстрации методики использовались образцы различных типов. 2008 Article Investigation the structured material surfaces using the quartz tuning fork based on an atomic force microscopy with controllable q-factor in two modes operation: “intermittent contact” and “shear-force” / Vo Thanh Tung, S.A. Chizhik, V.V. Chikunov, Tran Xuan Hoai // Физическая инженерия поверхности. — 2008. — Т. 6, № 3-4. — С. 210-215. — Бібліогр.: 20 назв. — англ. 1999-8074 http://dspace.nbuv.gov.ua/handle/123456789/7881 681.2:515.16 en Науковий фізико-технологічний центр МОН та НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We present a combination of an atomic force microscopy with a quartz-crystal tuning fork in ambient conditions. A silicon cantilever tip was attached to one prong of the tuning fork to realize shear-force and intermittent contact mode Fork-AFM operation. By electronically adjusting the quality factor of the probe, called Q-control, it was possible to tune the quality factor Q and correspondingly change the overall scanning time. It was also seen that tuning fork with low quality factors could increase stability with the changed signal and so improve the imaging resolution. Measurements on the different samples were used to demonstrate this technique.
format Article
author Vo Thanh Tung
Chizhik, S.A.
Chikunov, V.V.
Tran Xuan Hoai
spellingShingle Vo Thanh Tung
Chizhik, S.A.
Chikunov, V.V.
Tran Xuan Hoai
Investigation the structured material surfaces using the quartz tuning fork based on an atomic force microscopy with controllable q-factor in two modes operation: “intermittent contact” and “shear-force”
author_facet Vo Thanh Tung
Chizhik, S.A.
Chikunov, V.V.
Tran Xuan Hoai
author_sort Vo Thanh Tung
title Investigation the structured material surfaces using the quartz tuning fork based on an atomic force microscopy with controllable q-factor in two modes operation: “intermittent contact” and “shear-force”
title_short Investigation the structured material surfaces using the quartz tuning fork based on an atomic force microscopy with controllable q-factor in two modes operation: “intermittent contact” and “shear-force”
title_full Investigation the structured material surfaces using the quartz tuning fork based on an atomic force microscopy with controllable q-factor in two modes operation: “intermittent contact” and “shear-force”
title_fullStr Investigation the structured material surfaces using the quartz tuning fork based on an atomic force microscopy with controllable q-factor in two modes operation: “intermittent contact” and “shear-force”
title_full_unstemmed Investigation the structured material surfaces using the quartz tuning fork based on an atomic force microscopy with controllable q-factor in two modes operation: “intermittent contact” and “shear-force”
title_sort investigation the structured material surfaces using the quartz tuning fork based on an atomic force microscopy with controllable q-factor in two modes operation: “intermittent contact” and “shear-force”
publisher Науковий фізико-технологічний центр МОН та НАН України
publishDate 2008
url http://dspace.nbuv.gov.ua/handle/123456789/7881
citation_txt Investigation the structured material surfaces using the quartz tuning fork based on an atomic force microscopy with controllable q-factor in two modes operation: “intermittent contact” and “shear-force” / Vo Thanh Tung, S.A. Chizhik, V.V. Chikunov, Tran Xuan Hoai // Физическая инженерия поверхности. — 2008. — Т. 6, № 3-4. — С. 210-215. — Бібліогр.: 20 назв. — англ.
work_keys_str_mv AT vothanhtung investigationthestructuredmaterialsurfacesusingthequartztuningforkbasedonanatomicforcemicroscopywithcontrollableqfactorintwomodesoperationintermittentcontactandshearforce
AT chizhiksa investigationthestructuredmaterialsurfacesusingthequartztuningforkbasedonanatomicforcemicroscopywithcontrollableqfactorintwomodesoperationintermittentcontactandshearforce
AT chikunovvv investigationthestructuredmaterialsurfacesusingthequartztuningforkbasedonanatomicforcemicroscopywithcontrollableqfactorintwomodesoperationintermittentcontactandshearforce
AT tranxuanhoai investigationthestructuredmaterialsurfacesusingthequartztuningforkbasedonanatomicforcemicroscopywithcontrollableqfactorintwomodesoperationintermittentcontactandshearforce
first_indexed 2025-07-02T10:40:35Z
last_indexed 2025-07-02T10:40:35Z
_version_ 1836531409263525888
fulltext INVESTIGATION THE STRUCTURED MATERIAL SURFACES USING THE QUARTZ TUNING FORK BASED ON AN ATOMIC FORCE … ФІП ФИП PSE, 2008, т. 6, № 3-4, vol. 6, No. 3-4 210 UDC 681.2:515.16 INVESTIGATION THE STRUCTURED MATERIAL SURFACES USING THE QUARTZ TUNING FORK BASED ON AN ATOMIC FORCE MICROSCOPY WITH CONTROLLABLE Q-FACTOR IN TWO MODES OPERATION: “INTERMITTENT CONTACT” AND “SHEAR-FORCE” Vo Thanh Tung*,** , S.A. Chizhik*, V.V. Chikunov*, Tran Xuan Hoai** A.V. Luikov Heat and Mass Transfer Institute of National Academy of Sciences of Belarus (Minsk), Belarus **Institute of Applied Physics and Scientific Instrument of Vietnamese Academy of Science and Technology, Vietnam We present a combination of an atomic force microscopy with a quartz-crystal tuning fork in ambient conditions. A silicon cantilever tip was attached to one prong of the tuning fork to realize shear-force and intermittent contact mode Fork-AFM operation. By electronically adjusting the quality factor of the probe, called Q-control, it was possible to tune the quality factor Q and correspondingly change the overall scanning time. It was also seen that tuning fork with low quality factors could increase stability with the changed signal and so improve the imaging resolution. Measurements on the different samples were used to demonstrate this technique. INTRODUCTION Due to its high stability, precision and low power consumption, the quartz crystal tuning fork has become a valuable basic component for frequency measurements. For instance, since the late 1960s, mechanical pendulum or spring based watches have largely been re- placed by crystal watches, which are suffi- ciently stable for most daily uses. The key component of these watches is mass produced at very low cost [1]. Recently, tuning fork based shear force detection, as implemented in a large number of near-field scanning optical microscopes (SNOM), has proven to be an easy and reliable method by which to control the distance between the probe and sample by Karrai and Grober [2]. In following, Giessibl et al. [3] has employed them for atomic resolu- tion AFM imaging. Tuning forks have been used as sensors at low temperatures and in high magnetic fields by Rychen et al. [4]. It is said that at this moment the applications of tuning fork are rather widespread. Recently, electronic circuits have been de- veloped that allow the quality factor Q of the cantilever to be varied in a controlled manner [5, 6]. More details on the relation between the Q of the probe and the microscope sensitivity can be found in the literature [5, 6, 7]. We have presented atomic force microscopy re- sults, which use a quartz tuning fork with Q- control in ambient conditions, and investigated the system with Q-control and without Q-con- trol of the tuning fork to improve the shear- force detection sensitivity with the diamond tips [8, 9]. We have also show that Q values of tuning forks can be decreased significantly us- ing the technique of Q-control. Furthermore, with lower values of the quality factor, we can decrease the recording time for scanning im- ages and hence, images of smaller size could be acquired faster, which may allow for real time imaging and high resolution. In this paper, we describe an implementa- tion of a combination between the above sys- tem Q-control and atomic force microscopy (AFM) NT-206 (Microtestmachines Co., Bela- rus) [10] based tuning fork two operation re- gimes: i) tapping mode and ii) shear-force mode. Also we discuss the advantages and dis- advantages of these modes of operation and extend possibility of analyzing the properties of surface of nano materials with high preci- sion and resolution. VO THANH TUNG, S.A. CHIZHIK, V.V. CHIKUNOV, TRAN XUAN HOAI ФІП ФИП PSE, 2008, т. 6, № 3-4, vol. 6, No. 3-4 211 QUARTZ TUNING FORK A tuning fork is a simple metal two-pronged fork with the tine formed from a U-shaped bar of elastic material (usually steel). A tuning fork resonates at a specific constant pitch when set vibrating by striking it against a sur- face or with an object, and after waiting a moment to allow some high overtones to die out. The pitch that a particular tuning fork generates depends on the length of the two prongs, with two nodes near the bend of the U [11 – 13]. The tuning fork appears as a metallic cyl- inder 8 mm in height, by 3 mm in diameter, holding a two-terminal electronic component (fig. 1a). The packaging of the tuning fork can easily be opened by using tweezers to clamp the cylinder until the bottom of the cylinder breaks. A more reproducible way to open the packaging is to use a model-making saw to cut the metallic cylinder, keeping the bottom insu- lator as a holder to prevent the contact pins from breaking (fig. 1b). Quartz tuning forks are primarily designed for frequency control and time base applica- tion. Furthermore, application of quartz tuning fork resonators seems to be an attractive alter- native to the described conventional mass measurement techniques, since the tuning fork resonators combine the high Q-factor in air of a quartz resonator and the flexural oscillation mode of a cantilever [14]. A number of tuning fork designs were developed that exploits the mechanical resonance such as flexure, exten- sional, torsion and shear modes. The sensitiv- ity of these mode frequencies to external per- turbations such as mass loading, force, pres- sure, and temperature quartz oscillators are suitable for sensor technology [15 – 18]. In our experiments, as usual, a tuning forks of a commercially available type fabricated for “quartz” clocks is used (type 74-530-04 of ELFA Company, standard resonance frequ- ency 32757 Hz, and theory quality factor Q = 15000). The QTF was modeled in a stan- dard way as a series R-L-C circuit. The R-L-C model provides a convenient electrical analog of the mechanical properties of the tuning fork. (Its mass m, stiffness or spring constant k, and damping due to internal and external dissipa- tive forces are represented by L, C, and R re- spectively.) This model is usually further im- proved by the inclusion of a parallel shunt ca- pacitance Co corresponding to the package capacitance [8]. The admittance was measured as a function of frequency using a signal syn- thesizer and lock-in amplifier. The theoretical spring constant is obtained from the formula 3 4 E tk w l ⎛ ⎞= ⎜ ⎟ ⎝ ⎠ , (1) Where E = 7,87⋅1010 N/m2 is the Young mo- dulus of quartz. The length (L), thickness (T) and width (W) of the tuning fork used are 6.01, 0.35 and 0.61 mm, respectively. Using these parameters, we obtain k ≈ 7 kN/m, which agrees reasonably well with our experimental result. a) b) Fig. 1. a) – SEM image of tuning fork displaying the layout of the electrodes; b) – A tuning fork just removed from its packing, and the metallic enclosure that would otherwise keep it under vacuum. INVESTIGATION THE STRUCTURED MATERIAL SURFACES USING THE QUARTZ TUNING FORK BASED ON AN ATOMIC FORCE … ФІП ФИП PSE, 2008, т. 6, № 3-4, vol. 6, No. 3-4 212 TUNING FORK COMBINED WITH AFM NT-206 (FORK-AFM) The scanning probe microscope, based on the above described quartz tuning fork has been developed in our laboratory. The me- chanical part of the tuning fork that connecting to ato-mic force microscopy NT-206 (Micro- testma-chines Co., Belarus) [10] is shown in fig. 2a. This mechanical part consists of two major units: a holder (1) and a base plate (2). The holder is designed as the unit holding most of the mechanical components of the shear force microscope. Two fine-pitch screws (4) are fixed to the holder in the standard ar- rangement for probe-sample coarse and fine approaching. The tuning fork sensor (5) as the heart of the system is attached to the holder with cyanoacrylate glue, and connected to the AFM through the cable (8). The holder with tuning fork is placed on the base plate (2) and secured using the outside metal box (6). The metal box could be moved in the sample state (7) AFM NT-206. There are two basic methods of dynamic operation: intermittent contact mode and shear – force (or lateral mode) operation. In fig. 2b, we demonstrate basic principle of Fork-AFM in ambient conditions using a quartz tuning fork in these both modes. As shown in fig. 2b – lower part, the tip is mounted perpendicular to the tuning-fork prong so that the tip oscil- lates normally to the sample surface. This is the intermittent contact mode. In the lateral force sensor mode (fig. 2b – upper), the tip is mounted parallel to the tuning fork prong and oscillates nearly parallel to the surface of sam- ple. A constant sine wave voltage is applied to the one of the connectors of tuning fork to drive the fork sensor. The other connector of tuning fork is connected to a reference signal generator of the lock-in amplifier. When the probe is approaching nears the sample surface, the oscillation of the sensor is damped due to probe-sample force interactions, resulting in a decrease in the output signal of the lock-in amplifier. The decreased signal is compared with a set-point of the feedback circuit and the resulting difference is fed back to the scanner via the high voltage amplifier in order to con- trol the probe-sample distance during scan- ning. A detailed analysis of the operation of the system was presented in [8], and so we will not repeat it here. TUNING THE QUALITY FACTOR (Q-TUNING) The quality factor Q is widely used when dis- cussing oscillators, because this property is useful for predicting the stability of the result- a) b) Fig. 2. a) – Photography of header of AFM NT-206 using a quartz tuning fork (Fork-AFM) (1 – holder, 2 – base plate, 3 – piezoscanner, 4 – screws, 5 – tuning fork sensor, 6 – metal box, 7 – sample state, 8 – cable); b) – Principle of two operation modes: shear-force and intermittent contact mode. VO THANH TUNG, S.A. CHIZHIK, V.V. CHIKUNOV, TRAN XUAN HOAI ФІП ФИП PSE, 2008, т. 6, № 3-4, vol. 6, No. 3-4 213 ing frequency around the resonance [5, 7, 8, 9, 20]. Furthermore, we can infer that the quality factor can be increased by injecting energy into the tuning fork during each cycle. Simi- larly, the quality factor can be decreased by removing energy during each cycle. These two cases can be accomplished by adding a sine wave at the resonance frequency with the ap- propriate phase. However, in practice, a quartz tuning fork works at a low enough frequency to allow classical operational amplifier based circuits to be used for illustrating each step of quality factor tuning. Fig. 3 illustrates a possible implementation of the circuit including an amplifier, a phase shifter, a bandpass filter, and an adder. The feedback gain defines the amount of energy fed back to the resonator during each period; the phase shift determines whether this energy is injected in phase with the resonance (quality factor increase) or in phase opposition (quality factor decrease). In our experiment, the reso- nance frequency shift is associated with a feedback loop phase that is not exactly equal to –90°. The phase shift was set manually, using a variable resistor and an oscilloscope in XY mode, until a circle was drawn by an excita- tion signal and by the phase-shifted signal, al- lowing for a small error in the setting. Fig. 4 displays a measurement of the decreasing of the quality factor based on a discrete compo- nent implementation of the circuit in fig. 3. FORK-AFM IMAGING To make sure that our system is able to obtain high resolution images of various kinds of sample in two operation modes, we have car- ried out the related experimental setup in two materials: fiber plastic and hologram. Here we only use the silicon cantilever tips with the ra- dius about 10 nm. The process and the results of gluing tip are described in the [19]. Fur- thermore as the result in the [8, 9] the images with the high resolution are achieved when using the Q-control with the low pre-setting quality factor. There fore here we only present the results when using the low pre-setting quality factor for investigating the topography images of these materials. Fig. 5a – e show topographical images ob- tained in the shear and tapping mode, respec- tively for fiber plastic and hologram. We have succeeded in getting images with discernible bit line in both cases. From this line profile (fig. 5c), the maximum height of the feature indicated by an arrow in the image is about 30 nm. Furthermore by comparing force im- ages obtained in both shear mode (fig. 5a, d) and tapping mode (fig. 5b, e) with one type of tip, we found that a much better signal could be achieved in tapping mode operation. To ex- plaining for this result, we bring out some as- sumption for explanation in the following way: in the shear-force mode, because the tip oscil- lates parallel to the surface of sample, the area contact between tip and sample is about 30 – 40 nm. Therefore, in this process, the instabil- ity such as signal drift or tip contamination maybe appear and influence the results scan- ning. And in the intermittent contact mode, the area contact between tip and sample is much Fig. 3. Principle diagram of Q-control feedback circuit and the block diagram of I-V preamplifier and the Q-control system. Fig. 4. Result of using Q-control, the amplitude re- sponse as a function of the driving frequency with dif- ferent feedback g under condition of the phase shift – 90 degree. INVESTIGATION THE STRUCTURED MATERIAL SURFACES USING THE QUARTZ TUNING FORK BASED ON AN ATOMIC FORCE … ФІП ФИП PSE, 2008, т. 6, № 3-4, vol. 6, No. 3-4 214 smaller than shear force mode (about 10 – 15 nm). As a result, the region contact between tip and sample may achieve the atom interac- tion, thus it prevents sample damage, and we could obtain the images with high contrast resolution. These results show that this system Fork-AFM with good, sharp tip can receive high-resolution images of samples in ambient conditions. DISCUSSIONS & CONCLUSIONS We have described the method of using the quartz tuning fork as the sensitive sensor for AFM. Furthermore, we then discussed the use of the Q-control circuit as a tunable system, which could be increased or decreased the Q- factor by injecting energy in phase or out of phase respectively with the input voltage. The oscillator is thus a limit condition of an infinite quality factor when the losses are compensated by the in phase injection of energy. We have demonstrated atomic force mi- croscopy using quartz tuning with and without Q-control fork in air conditions in two opera- tion modes: shear force and intermittent con- tact modes. The scanning time could be re- duced so that for the images of smaller size one could acquire the high resolution images almost in realtime, which may allow for re- cording high resolution video. Reproducible topographic images have been obtained on hard and soft samples. From the received re- sults, one can also think of the combination of the tuning fork with the AFM that allows to inexpensively implementing a variety of scan- ning probe micros copies for investigation the properties of nano-materials. ACKNOWLEDGEMENTS The authors would like to thank professor J. Maps from University of Minnesota Duluth, USA, for helpful discussions. The work was carried out in the frame of the Belarusian Project 1.9 of SSTP “Scientific Equipment”. REFERENCES 1. Reference tuning fork 74-530-04 of ELFA Company, (C-MAC MicroTechnology, [http: // www.cmac.com]). 2. Karrai K., Grober R. D., Piezoelectric tip-sam- ple distance control for near field optical mi- croscopes//Appl. Phys. Lett. – 1995. – Vol. 66. – P. 1842-1844. 3. Giessibl F.J., High-speed force sensor for force microscopy and profilometry utilizing a quartz tuning fork//Appl. Phys. Lett.–1998. – Vol. 73. – P. 3956-3958. 4. Rychen J., Ihn T., Studerus P., Herrmann A., Ensslin K. A low-temperature dynamic mode scanning force microscope operating in high magnetic fields//Rev. Sci. Instrum. – 1999. – Vol. 70. – P. 2765-2768. 5. Lei F.H., Nicolas J.-L., Troyon M. Shear force detection by using bimorph cantilever with the enhanced Q-factor//J. Appl. Phys. – 2003. – Vol. 93. – P. 2236-2243. 6. Anczykowski B. In Handbook of Nanotech- nology/Ed. Bharant Bhushan. (Springer-Verlag erlin Heidelberg). – 2004. – P. 449. 7. Lei F.H, Angiboust J.F., Qiao W. Shear force near-field optical microscope based on Q-con- trolled bimorph sensor for biological imaging in liquid//Journal of Microscopy. – 2004. – Vol. 216. – P. 229–233. 8. Vo Thanh Tung, Influence of Q-control on Shear-force Detection with Quartz Tuning Fork in Atomic Force Microscopy//Молодежь в науке. Прил. к журн. “Весцi Нацыяналь- най акадэмii навук Беларусi” – 2007. – Минск: Белорус. Наука. – 2008. – Vol. 3. – P. 85-89. 9. Vo Thanh Tung, Chizhik S.A, Quartz tuning fork atomic force microscopy using quality- factor control//Physics, Chemistry and Appli- cation of Nanostructures: Rev. and Short Notes to Nanomeeting-2007 Minsk, World Scientific Pub Co Inc. – 2007. – P. 535-538. 10. http://microtm.com/nt206/nt206r.htm 11. Forrer M.P. A flexure-mode quartz for an elec- tronic wrist-watch//Proceedings 23rd ASFC. – 1969. – P. 157-162. 12. Yoda H., Ikeda H., Yamabe Y. Low power crystal oscillator for electronic wrist watch// Proceedings 26th ASFC. – 1972. – P. 140-147. 13. Ong P.P. Little known facts about the common tuning fork//Phys. Educ. – 2002. – Vol. 37. – P. 540-542. 14. Matsiev L.F., Application of flexural mechani- cal resonators to simultaneous measurements of liquid density and viscosity//Ultrasonic symposium. – 1999. – Vol. 1. – P. 457-460. 15. Chuang S.S. Quartz Tuning Fork Crystal Us- ing Overtone Flexure Modes//35th Annual fre- VO THANH TUNG, S.A. CHIZHIK, V.V. CHIKUNOV, TRAN XUAN HOAI ФІП ФИП PSE, 2008, т. 6, № 3-4, vol. 6, No. 3-4 215 quency cont. symp. – 1981. – P. 130-143. 16. Itoh H., Aoshima Y., Egawa T. Model of a quartz crystal tuning fork using torsion spring at the joint of the arm and the base//Proceed- ings IEEE. – 2001. – P. 592-596. 17. Blaauwgeers, R., Blazkova, M., et al. Quartz tuning fork: thermometer, pressure – and vis- cometer for Helium liquids//Low temperature physics. 2007. – Vol. 146. – P.537-562. 18. Zhang J., O’Shea S. Tuning forks as microme- chanical mass sensitive sensors for bio- or liq- uid detection//Sensor and Actuators B: Chemi- cal. – 2003. – Vol. 94. – P. 65-72. 19. Vo Thanh Tung, Chizhik S.A, Chikunov V.V, Nguyen T.V., Tran X.H, Influence of addi- tional mass on quartz tuning fork in dynamic operation mode//Proceeding of 7th Int. Bel- SPM-7, Belarus. 2006. – P. 236-240. 20. Friedt J.-M., Carry É. Introduction to the quartz tuning fork//Am. J. Phys. – 2007. – Vol. 75. – P. 415422. АТОМНО-СИЛОВА МІКРОСКОПІЯ ПОВЕРХОНЬ ЗА ДОПОМОГОЮ КВАРЦОВОГО КАМЕРТОННОГО ДАТЧИКА В “ЛАТЕРАЛЬНО-СИЛОВОМУ” І “НАПІВКОНТАКТНОМУ” РЕЖИМАХ Во Тхань Тунг, С.А. Чижик, В.В. Чикунов, Чан Цуан Хоай У роботі описується конструкція атомно- силового мікроскопа c датчиком у вигляді ка- мертона на основі кварцового кристала. Крем- нієве кантилеверне вістря було закріплено до зубця камертона таким чином, що дозволило реалізувати для камертонового АСМ латера- льно-силовой (shear-force) і напівконтактний (іntermіttent contact) режими. За допомогою системи електронного регулювання добротно- сті зонда, так називаного Q-контролю, можли- ве настроювання параметра добротності Q і, відповідно, зміна повного часу сканування. Було помічено, що шляхом зменшення пара- метра добротності можна збільшити стабіль- ність вимірюваного сигналу й у такий спосіб поліпшити розподіл для формованих зобра- жень. Для демонстрації методики використо- вувалися зразки різних типів. АТОМНО-СИЛОВАЯ МИКРОСКОПИЯ ПОВЕРХНОСТЕЙ С ПОМОЩЬЮ КВАРЦЕВОГО КАМЕРТОННОГО ДАТЧИКА В “ЛАТЕРАЛЬНО-СИЛОВОМ” И “ПОЛУКОНТАКТНОМ” РЕЖИМАХ Во Тхань Тунг, С.А. Чижик, В.В. Чикунов, Чан Цуан Хоай В работе описывается конструкция атомно- силового микроскопа c датчиком в виде камер- тона на основе кварцевого кристалла. Крем- ниевое кантилеверное острие было закреплено к зубцу камертона таким образом, что позволи- ло реализовать для камертонного АСМ лате- рально-силовой (shear-force) и полуконтактный (intermittent contact) режимы. С помощью сис- темы электронного регулирования добротности зонда, так называемого Q-контроля, возможна настройка параметра добротности Q и соответ- ственно изменение полного времени сканиро- вания. Было замечено, что путем уменьшения параметра добротности можно увеличить ста- бильность измеряемого сигнала и таким обра- зом улучшить разрешение для формируемых изображений. Для демонстрации методики использовались образцы различных типов.