Investigation the structured material surfaces using the quartz tuning fork based on an atomic force microscopy with controllable q-factor in two modes operation: “intermittent contact” and “shear-force”
We present a combination of an atomic force microscopy with a quartz-crystal tuning fork in ambient conditions. A silicon cantilever tip was attached to one prong of the tuning fork to realize shear-force and intermittent contact mode Fork-AFM operation. By electronically adjusting the quality facto...
Saved in:
Date: | 2008 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Published: |
Науковий фізико-технологічний центр МОН та НАН України
2008
|
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/7881 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Investigation the structured material surfaces using the quartz tuning fork based on an atomic force microscopy with controllable q-factor in two modes operation: “intermittent contact” and “shear-force” / Vo Thanh Tung, S.A. Chizhik, V.V. Chikunov, Tran Xuan Hoai // Физическая инженерия поверхности. — 2008. — Т. 6, № 3-4. — С. 210-215. — Бібліогр.: 20 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-7881 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-78812010-04-21T12:02:11Z Investigation the structured material surfaces using the quartz tuning fork based on an atomic force microscopy with controllable q-factor in two modes operation: “intermittent contact” and “shear-force” Vo Thanh Tung Chizhik, S.A. Chikunov, V.V. Tran Xuan Hoai We present a combination of an atomic force microscopy with a quartz-crystal tuning fork in ambient conditions. A silicon cantilever tip was attached to one prong of the tuning fork to realize shear-force and intermittent contact mode Fork-AFM operation. By electronically adjusting the quality factor of the probe, called Q-control, it was possible to tune the quality factor Q and correspondingly change the overall scanning time. It was also seen that tuning fork with low quality factors could increase stability with the changed signal and so improve the imaging resolution. Measurements on the different samples were used to demonstrate this technique. У роботі описується конструкція атомносилового мікроскопа c датчиком у вигляді камертона на основі кварцового кристала. Кремнієве кантилеверне вістря було закріплено до зубця камертона таким чином, що дозволило реалізувати для камертонового АСМ латерально-силовой (shear-force) і напівконтактний (іntermіttent contact) режими. За допомогою системи електронного регулювання добротності зонда, так називаного Q-контролю, можливе настроювання параметра добротності Q і, відповідно, зміна повного часу сканування. Було помічено, що шляхом зменшення параметра добротності можна збільшити стабільність вимірюваного сигналу й у такий спосіб поліпшити розподіл для формованих зображень. Для демонстрації методики використовувалися зразки різних типів. В работе описывается конструкция атомносилового микроскопа c датчиком в виде камертона на основе кварцевого кристалла. Кремниевое кантилеверное острие было закреплено к зубцу камертона таким образом, что позволило реализовать для камертонного АСМ латерально-силовой (shear-force) и полуконтактный (intermittent contact) режимы. С помощью системы электронного регулирования добротности зонда, так называемого Q-контроля, возможна настройка параметра добротности Q и соответственно изменение полного времени сканирования. Было замечено, что путем уменьшения параметра добротности можно увеличить стабильность измеряемого сигнала и таким образом улучшить разрешение для формируемых изображений. Для демонстрации методики использовались образцы различных типов. 2008 Article Investigation the structured material surfaces using the quartz tuning fork based on an atomic force microscopy with controllable q-factor in two modes operation: “intermittent contact” and “shear-force” / Vo Thanh Tung, S.A. Chizhik, V.V. Chikunov, Tran Xuan Hoai // Физическая инженерия поверхности. — 2008. — Т. 6, № 3-4. — С. 210-215. — Бібліогр.: 20 назв. — англ. 1999-8074 http://dspace.nbuv.gov.ua/handle/123456789/7881 681.2:515.16 en Науковий фізико-технологічний центр МОН та НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We present a combination of an atomic force microscopy with a quartz-crystal tuning fork in ambient conditions. A silicon cantilever tip was attached to one prong of the tuning fork to realize shear-force and intermittent contact mode Fork-AFM operation. By electronically adjusting the quality factor of the probe, called Q-control, it was possible to tune the quality factor Q and correspondingly change the overall scanning time. It was also seen that tuning fork with low quality factors could increase stability with the changed signal and so improve the imaging resolution. Measurements on the different samples were used to demonstrate this technique. |
format |
Article |
author |
Vo Thanh Tung Chizhik, S.A. Chikunov, V.V. Tran Xuan Hoai |
spellingShingle |
Vo Thanh Tung Chizhik, S.A. Chikunov, V.V. Tran Xuan Hoai Investigation the structured material surfaces using the quartz tuning fork based on an atomic force microscopy with controllable q-factor in two modes operation: “intermittent contact” and “shear-force” |
author_facet |
Vo Thanh Tung Chizhik, S.A. Chikunov, V.V. Tran Xuan Hoai |
author_sort |
Vo Thanh Tung |
title |
Investigation the structured material surfaces using the quartz tuning fork based on an atomic force microscopy with controllable q-factor in two modes operation: “intermittent contact” and “shear-force” |
title_short |
Investigation the structured material surfaces using the quartz tuning fork based on an atomic force microscopy with controllable q-factor in two modes operation: “intermittent contact” and “shear-force” |
title_full |
Investigation the structured material surfaces using the quartz tuning fork based on an atomic force microscopy with controllable q-factor in two modes operation: “intermittent contact” and “shear-force” |
title_fullStr |
Investigation the structured material surfaces using the quartz tuning fork based on an atomic force microscopy with controllable q-factor in two modes operation: “intermittent contact” and “shear-force” |
title_full_unstemmed |
Investigation the structured material surfaces using the quartz tuning fork based on an atomic force microscopy with controllable q-factor in two modes operation: “intermittent contact” and “shear-force” |
title_sort |
investigation the structured material surfaces using the quartz tuning fork based on an atomic force microscopy with controllable q-factor in two modes operation: “intermittent contact” and “shear-force” |
publisher |
Науковий фізико-технологічний центр МОН та НАН України |
publishDate |
2008 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/7881 |
citation_txt |
Investigation the structured material surfaces using the quartz tuning fork based on an atomic force microscopy with controllable q-factor in two modes operation: “intermittent contact” and “shear-force” / Vo Thanh Tung, S.A. Chizhik, V.V. Chikunov, Tran Xuan Hoai // Физическая инженерия поверхности. — 2008. — Т. 6, № 3-4. — С. 210-215. — Бібліогр.: 20 назв. — англ. |
work_keys_str_mv |
AT vothanhtung investigationthestructuredmaterialsurfacesusingthequartztuningforkbasedonanatomicforcemicroscopywithcontrollableqfactorintwomodesoperationintermittentcontactandshearforce AT chizhiksa investigationthestructuredmaterialsurfacesusingthequartztuningforkbasedonanatomicforcemicroscopywithcontrollableqfactorintwomodesoperationintermittentcontactandshearforce AT chikunovvv investigationthestructuredmaterialsurfacesusingthequartztuningforkbasedonanatomicforcemicroscopywithcontrollableqfactorintwomodesoperationintermittentcontactandshearforce AT tranxuanhoai investigationthestructuredmaterialsurfacesusingthequartztuningforkbasedonanatomicforcemicroscopywithcontrollableqfactorintwomodesoperationintermittentcontactandshearforce |
first_indexed |
2025-07-02T10:40:35Z |
last_indexed |
2025-07-02T10:40:35Z |
_version_ |
1836531409263525888 |
fulltext |
INVESTIGATION THE STRUCTURED MATERIAL SURFACES USING THE QUARTZ TUNING FORK BASED ON AN ATOMIC FORCE …
ФІП ФИП PSE, 2008, т. 6, № 3-4, vol. 6, No. 3-4
210
UDC 681.2:515.16
INVESTIGATION THE STRUCTURED MATERIAL SURFACES USING THE
QUARTZ TUNING FORK BASED ON AN ATOMIC FORCE MICROSCOPY
WITH CONTROLLABLE Q-FACTOR IN TWO MODES OPERATION:
“INTERMITTENT CONTACT” AND “SHEAR-FORCE”
Vo Thanh Tung*,** , S.A. Chizhik*, V.V. Chikunov*, Tran Xuan Hoai**
A.V. Luikov Heat and Mass Transfer Institute of National Academy
of Sciences of Belarus (Minsk),
Belarus
**Institute of Applied Physics and Scientific Instrument of Vietnamese Academy
of Science and Technology,
Vietnam
We present a combination of an atomic force microscopy with a quartz-crystal tuning fork in
ambient conditions. A silicon cantilever tip was attached to one prong of the tuning fork to
realize shear-force and intermittent contact mode Fork-AFM operation. By electronically
adjusting the quality factor of the probe, called Q-control, it was possible to tune the quality
factor Q and correspondingly change the overall scanning time. It was also seen that tuning fork
with low quality factors could increase stability with the changed signal and so improve the
imaging resolution. Measurements on the different samples were used to demonstrate this
technique.
INTRODUCTION
Due to its high stability, precision and low
power consumption, the quartz crystal tuning
fork has become a valuable basic component
for frequency measurements. For instance,
since the late 1960s, mechanical pendulum or
spring based watches have largely been re-
placed by crystal watches, which are suffi-
ciently stable for most daily uses. The key
component of these watches is mass produced
at very low cost [1]. Recently, tuning fork
based shear force detection, as implemented in
a large number of near-field scanning optical
microscopes (SNOM), has proven to be an
easy and reliable method by which to control
the distance between the probe and sample by
Karrai and Grober [2]. In following, Giessibl
et al. [3] has employed them for atomic resolu-
tion AFM imaging. Tuning forks have been
used as sensors at low temperatures and in
high magnetic fields by Rychen et al. [4]. It is
said that at this moment the applications of
tuning fork are rather widespread.
Recently, electronic circuits have been de-
veloped that allow the quality factor Q of the
cantilever to be varied in a controlled manner
[5, 6]. More details on the relation between the
Q of the probe and the microscope sensitivity
can be found in the literature [5, 6, 7]. We
have presented atomic force microscopy re-
sults, which use a quartz tuning fork with Q-
control in ambient conditions, and investigated
the system with Q-control and without Q-con-
trol of the tuning fork to improve the shear-
force detection sensitivity with the diamond
tips [8, 9]. We have also show that Q values of
tuning forks can be decreased significantly us-
ing the technique of Q-control. Furthermore,
with lower values of the quality factor, we can
decrease the recording time for scanning im-
ages and hence, images of smaller size could
be acquired faster, which may allow for real
time imaging and high resolution.
In this paper, we describe an implementa-
tion of a combination between the above sys-
tem Q-control and atomic force microscopy
(AFM) NT-206 (Microtestmachines Co., Bela-
rus) [10] based tuning fork two operation re-
gimes: i) tapping mode and ii) shear-force
mode. Also we discuss the advantages and dis-
advantages of these modes of operation and
extend possibility of analyzing the properties
of surface of nano materials with high preci-
sion and resolution.
VO THANH TUNG, S.A. CHIZHIK, V.V. CHIKUNOV, TRAN XUAN HOAI
ФІП ФИП PSE, 2008, т. 6, № 3-4, vol. 6, No. 3-4 211
QUARTZ TUNING FORK
A tuning fork is a simple metal two-pronged
fork with the tine formed from a U-shaped bar
of elastic material (usually steel). A tuning
fork resonates at a specific constant pitch
when set vibrating by striking it against a sur-
face or with an object, and after waiting a
moment to allow some high overtones to die
out. The pitch that a particular tuning fork
generates depends on the length of the two
prongs, with two nodes near the bend of the U
[11 – 13].
The tuning fork appears as a metallic cyl-
inder 8 mm in height, by 3 mm in diameter,
holding a two-terminal electronic component
(fig. 1a). The packaging of the tuning fork can
easily be opened by using tweezers to clamp
the cylinder until the bottom of the cylinder
breaks. A more reproducible way to open the
packaging is to use a model-making saw to cut
the metallic cylinder, keeping the bottom insu-
lator as a holder to prevent the contact pins
from breaking (fig. 1b).
Quartz tuning forks are primarily designed
for frequency control and time base applica-
tion. Furthermore, application of quartz tuning
fork resonators seems to be an attractive alter-
native to the described conventional mass
measurement techniques, since the tuning fork
resonators combine the high Q-factor in air of
a quartz resonator and the flexural oscillation
mode of a cantilever [14]. A number of tuning
fork designs were developed that exploits the
mechanical resonance such as flexure, exten-
sional, torsion and shear modes. The sensitiv-
ity of these mode frequencies to external per-
turbations such as mass loading, force, pres-
sure, and temperature quartz oscillators are
suitable for sensor technology [15 – 18].
In our experiments, as usual, a tuning forks
of a commercially available type fabricated for
“quartz” clocks is used (type 74-530-04 of
ELFA Company, standard resonance frequ-
ency 32757 Hz, and theory quality factor
Q = 15000). The QTF was modeled in a stan-
dard way as a series R-L-C circuit. The R-L-C
model provides a convenient electrical analog
of the mechanical properties of the tuning fork.
(Its mass m, stiffness or spring constant k, and
damping due to internal and external dissipa-
tive forces are represented by L, C, and R re-
spectively.) This model is usually further im-
proved by the inclusion of a parallel shunt ca-
pacitance Co corresponding to the package
capacitance [8]. The admittance was measured
as a function of frequency using a signal syn-
thesizer and lock-in amplifier. The theoretical
spring constant is obtained from the formula
3
4
E tk w
l
⎛ ⎞= ⎜ ⎟
⎝ ⎠
, (1)
Where E = 7,87⋅1010 N/m2 is the Young mo-
dulus of quartz. The length (L), thickness (T)
and width (W) of the tuning fork used are 6.01,
0.35 and 0.61 mm, respectively. Using these
parameters, we obtain k ≈ 7 kN/m, which
agrees reasonably well with our experimental
result.
a)
b)
Fig. 1. a) – SEM image of tuning fork displaying the
layout of the electrodes; b) – A tuning fork just removed
from its packing, and the metallic enclosure that would
otherwise keep it under vacuum.
INVESTIGATION THE STRUCTURED MATERIAL SURFACES USING THE QUARTZ TUNING FORK BASED ON AN ATOMIC FORCE …
ФІП ФИП PSE, 2008, т. 6, № 3-4, vol. 6, No. 3-4
212
TUNING FORK COMBINED WITH
AFM NT-206 (FORK-AFM)
The scanning probe microscope, based on
the above described quartz tuning fork has
been developed in our laboratory. The me-
chanical part of the tuning fork that connecting
to ato-mic force microscopy NT-206 (Micro-
testma-chines Co., Belarus) [10] is shown in
fig. 2a. This mechanical part consists of two
major units: a holder (1) and a base plate (2).
The holder is designed as the unit holding
most of the mechanical components of the
shear force microscope. Two fine-pitch screws
(4) are fixed to the holder in the standard ar-
rangement for probe-sample coarse and fine
approaching. The tuning fork sensor (5) as the
heart of the system is attached to the holder
with cyanoacrylate glue, and connected to the
AFM through the cable (8). The holder with
tuning fork is placed on the base plate (2) and
secured using the outside metal box (6). The
metal box could be moved in the sample state
(7) AFM NT-206.
There are two basic methods of dynamic
operation: intermittent contact mode and shear
– force (or lateral mode) operation. In fig. 2b,
we demonstrate basic principle of Fork-AFM
in ambient conditions using a quartz tuning
fork in these both modes. As shown in fig. 2b
– lower part, the tip is mounted perpendicular
to the tuning-fork prong so that the tip oscil-
lates normally to the sample surface. This is
the intermittent contact mode. In the lateral
force sensor mode (fig. 2b – upper), the tip is
mounted parallel to the tuning fork prong and
oscillates nearly parallel to the surface of sam-
ple.
A constant sine wave voltage is applied to
the one of the connectors of tuning fork to
drive the fork sensor. The other connector of
tuning fork is connected to a reference signal
generator of the lock-in amplifier. When the
probe is approaching nears the sample surface,
the oscillation of the sensor is damped due to
probe-sample force interactions, resulting in a
decrease in the output signal of the lock-in
amplifier. The decreased signal is compared
with a set-point of the feedback circuit and the
resulting difference is fed back to the scanner
via the high voltage amplifier in order to con-
trol the probe-sample distance during scan-
ning. A detailed analysis of the operation of
the system was presented in [8], and so we will
not repeat it here.
TUNING THE QUALITY FACTOR
(Q-TUNING)
The quality factor Q is widely used when dis-
cussing oscillators, because this property is
useful for predicting the stability of the result-
a) b)
Fig. 2. a) – Photography of header of AFM NT-206 using a quartz tuning fork (Fork-AFM) (1 – holder, 2 – base
plate, 3 – piezoscanner, 4 – screws, 5 – tuning fork sensor, 6 – metal box, 7 – sample state, 8 – cable); b) – Principle
of two operation modes: shear-force and intermittent contact mode.
VO THANH TUNG, S.A. CHIZHIK, V.V. CHIKUNOV, TRAN XUAN HOAI
ФІП ФИП PSE, 2008, т. 6, № 3-4, vol. 6, No. 3-4 213
ing frequency around the resonance [5, 7, 8, 9,
20]. Furthermore, we can infer that the quality
factor can be increased by injecting energy
into the tuning fork during each cycle. Simi-
larly, the quality factor can be decreased by
removing energy during each cycle. These two
cases can be accomplished by adding a sine
wave at the resonance frequency with the ap-
propriate phase. However, in practice, a quartz
tuning fork works at a low enough frequency
to allow classical operational amplifier based
circuits to be used for illustrating each step of
quality factor tuning.
Fig. 3 illustrates a possible implementation
of the circuit including an amplifier, a phase
shifter, a bandpass filter, and an adder. The
feedback gain defines the amount of energy
fed back to the resonator during each period;
the phase shift determines whether this energy
is injected in phase with the resonance (quality
factor increase) or in phase opposition (quality
factor decrease). In our experiment, the reso-
nance frequency shift is associated with a
feedback loop phase that is not exactly equal
to –90°.
The phase shift was set manually, using a
variable resistor and an oscilloscope in XY
mode, until a circle was drawn by an excita-
tion signal and by the phase-shifted signal, al-
lowing for a small error in the setting. Fig. 4
displays a measurement of the decreasing of
the quality factor based on a discrete compo-
nent implementation of the circuit in fig. 3.
FORK-AFM IMAGING
To make sure that our system is able to obtain
high resolution images of various kinds of
sample in two operation modes, we have car-
ried out the related experimental setup in two
materials: fiber plastic and hologram. Here we
only use the silicon cantilever tips with the ra-
dius about 10 nm. The process and the results
of gluing tip are described in the [19]. Fur-
thermore as the result in the [8, 9] the images
with the high resolution are achieved when
using the Q-control with the low pre-setting
quality factor. There fore here we only present
the results when using the low pre-setting
quality factor for investigating the topography
images of these materials.
Fig. 5a – e show topographical images ob-
tained in the shear and tapping mode, respec-
tively for fiber plastic and hologram. We have
succeeded in getting images with discernible
bit line in both cases. From this line profile
(fig. 5c), the maximum height of the feature
indicated by an arrow in the image is about
30 nm. Furthermore by comparing force im-
ages obtained in both shear mode (fig. 5a, d)
and tapping mode (fig. 5b, e) with one type of
tip, we found that a much better signal could
be achieved in tapping mode operation. To ex-
plaining for this result, we bring out some as-
sumption for explanation in the following way:
in the shear-force mode, because the tip oscil-
lates parallel to the surface of sample, the area
contact between tip and sample is about 30 –
40 nm. Therefore, in this process, the instabil-
ity such as signal drift or tip contamination
maybe appear and influence the results scan-
ning. And in the intermittent contact mode, the
area contact between tip and sample is much
Fig. 3. Principle diagram of Q-control feedback circuit
and the block diagram of I-V preamplifier and the
Q-control system.
Fig. 4. Result of using Q-control, the amplitude re-
sponse as a function of the driving frequency with dif-
ferent feedback g under condition of the phase shift –
90 degree.
INVESTIGATION THE STRUCTURED MATERIAL SURFACES USING THE QUARTZ TUNING FORK BASED ON AN ATOMIC FORCE …
ФІП ФИП PSE, 2008, т. 6, № 3-4, vol. 6, No. 3-4
214
smaller than shear force mode (about 10 – 15
nm). As a result, the region contact between
tip and sample may achieve the atom interac-
tion, thus it prevents sample damage, and we
could obtain the images with high contrast
resolution. These results show that this system
Fork-AFM with good, sharp tip can receive
high-resolution images of samples in ambient
conditions.
DISCUSSIONS & CONCLUSIONS
We have described the method of using the
quartz tuning fork as the sensitive sensor for
AFM. Furthermore, we then discussed the use
of the Q-control circuit as a tunable system,
which could be increased or decreased the Q-
factor by injecting energy in phase or out of
phase respectively with the input voltage. The
oscillator is thus a limit condition of an
infinite quality factor when the losses are
compensated by the in phase injection of
energy.
We have demonstrated atomic force mi-
croscopy using quartz tuning with and without
Q-control fork in air conditions in two opera-
tion modes: shear force and intermittent con-
tact modes. The scanning time could be re-
duced so that for the images of smaller size
one could acquire the high resolution images
almost in realtime, which may allow for re-
cording high resolution video. Reproducible
topographic images have been obtained on
hard and soft samples. From the received re-
sults, one can also think of the combination of
the tuning fork with the AFM that allows to
inexpensively implementing a variety of scan-
ning probe micros copies for investigation the
properties of nano-materials.
ACKNOWLEDGEMENTS
The authors would like to thank professor
J. Maps from University of Minnesota Duluth,
USA, for helpful discussions.
The work was carried out in the frame of
the Belarusian Project 1.9 of SSTP “Scientific
Equipment”.
REFERENCES
1. Reference tuning fork 74-530-04 of ELFA
Company, (C-MAC MicroTechnology, [http: //
www.cmac.com]).
2. Karrai K., Grober R. D., Piezoelectric tip-sam-
ple distance control for near field optical mi-
croscopes//Appl. Phys. Lett. – 1995. – Vol. 66.
– P. 1842-1844.
3. Giessibl F.J., High-speed force sensor for force
microscopy and profilometry utilizing a quartz
tuning fork//Appl. Phys. Lett.–1998. – Vol. 73.
– P. 3956-3958.
4. Rychen J., Ihn T., Studerus P., Herrmann A.,
Ensslin K. A low-temperature dynamic mode
scanning force microscope operating in high
magnetic fields//Rev. Sci. Instrum. – 1999. –
Vol. 70. – P. 2765-2768.
5. Lei F.H., Nicolas J.-L., Troyon M. Shear force
detection by using bimorph cantilever with the
enhanced Q-factor//J. Appl. Phys. – 2003. –
Vol. 93. – P. 2236-2243.
6. Anczykowski B. In Handbook of Nanotech-
nology/Ed. Bharant Bhushan. (Springer-Verlag
erlin Heidelberg). – 2004. – P. 449.
7. Lei F.H, Angiboust J.F., Qiao W. Shear force
near-field optical microscope based on Q-con-
trolled bimorph sensor for biological imaging
in liquid//Journal of Microscopy. – 2004. –
Vol. 216. – P. 229–233.
8. Vo Thanh Tung, Influence of Q-control on
Shear-force Detection with Quartz Tuning
Fork in Atomic Force Microscopy//Молодежь
в науке. Прил. к журн. “Весцi Нацыяналь-
най акадэмii навук Беларусi” – 2007. –
Минск: Белорус. Наука. – 2008. – Vol. 3. –
P. 85-89.
9. Vo Thanh Tung, Chizhik S.A, Quartz tuning
fork atomic force microscopy using quality-
factor control//Physics, Chemistry and Appli-
cation of Nanostructures: Rev. and Short Notes
to Nanomeeting-2007 Minsk, World Scientific
Pub Co Inc. – 2007. – P. 535-538.
10. http://microtm.com/nt206/nt206r.htm
11. Forrer M.P. A flexure-mode quartz for an elec-
tronic wrist-watch//Proceedings 23rd ASFC. –
1969. – P. 157-162.
12. Yoda H., Ikeda H., Yamabe Y. Low power
crystal oscillator for electronic wrist watch//
Proceedings 26th ASFC. – 1972. – P. 140-147.
13. Ong P.P. Little known facts about the common
tuning fork//Phys. Educ. – 2002. – Vol. 37. –
P. 540-542.
14. Matsiev L.F., Application of flexural mechani-
cal resonators to simultaneous measurements
of liquid density and viscosity//Ultrasonic
symposium. – 1999. – Vol. 1. – P. 457-460.
15. Chuang S.S. Quartz Tuning Fork Crystal Us-
ing Overtone Flexure Modes//35th Annual fre-
VO THANH TUNG, S.A. CHIZHIK, V.V. CHIKUNOV, TRAN XUAN HOAI
ФІП ФИП PSE, 2008, т. 6, № 3-4, vol. 6, No. 3-4 215
quency cont. symp. – 1981. – P. 130-143.
16. Itoh H., Aoshima Y., Egawa T. Model of a
quartz crystal tuning fork using torsion spring
at the joint of the arm and the base//Proceed-
ings IEEE. – 2001. – P. 592-596.
17. Blaauwgeers, R., Blazkova, M., et al. Quartz
tuning fork: thermometer, pressure – and vis-
cometer for Helium liquids//Low temperature
physics. 2007. – Vol. 146. – P.537-562.
18. Zhang J., O’Shea S. Tuning forks as microme-
chanical mass sensitive sensors for bio- or liq-
uid detection//Sensor and Actuators B: Chemi-
cal. – 2003. – Vol. 94. – P. 65-72.
19. Vo Thanh Tung, Chizhik S.A, Chikunov V.V,
Nguyen T.V., Tran X.H, Influence of addi-
tional mass on quartz tuning fork in dynamic
operation mode//Proceeding of 7th Int. Bel-
SPM-7, Belarus. 2006. – P. 236-240.
20. Friedt J.-M., Carry É. Introduction to the
quartz tuning fork//Am. J. Phys. – 2007. –
Vol. 75. – P. 415422.
АТОМНО-СИЛОВА МІКРОСКОПІЯ
ПОВЕРХОНЬ ЗА ДОПОМОГОЮ
КВАРЦОВОГО КАМЕРТОННОГО
ДАТЧИКА В
“ЛАТЕРАЛЬНО-СИЛОВОМУ” І
“НАПІВКОНТАКТНОМУ” РЕЖИМАХ
Во Тхань Тунг, С.А. Чижик,
В.В. Чикунов, Чан Цуан Хоай
У роботі описується конструкція атомно-
силового мікроскопа c датчиком у вигляді ка-
мертона на основі кварцового кристала. Крем-
нієве кантилеверне вістря було закріплено до
зубця камертона таким чином, що дозволило
реалізувати для камертонового АСМ латера-
льно-силовой (shear-force) і напівконтактний
(іntermіttent contact) режими. За допомогою
системи електронного регулювання добротно-
сті зонда, так називаного Q-контролю, можли-
ве настроювання параметра добротності Q і,
відповідно, зміна повного часу сканування.
Було помічено, що шляхом зменшення пара-
метра добротності можна збільшити стабіль-
ність вимірюваного сигналу й у такий спосіб
поліпшити розподіл для формованих зобра-
жень. Для демонстрації методики використо-
вувалися зразки різних типів.
АТОМНО-СИЛОВАЯ МИКРОСКОПИЯ
ПОВЕРХНОСТЕЙ С ПОМОЩЬЮ
КВАРЦЕВОГО КАМЕРТОННОГО
ДАТЧИКА В “ЛАТЕРАЛЬНО-СИЛОВОМ”
И “ПОЛУКОНТАКТНОМ” РЕЖИМАХ
Во Тхань Тунг, С.А. Чижик,
В.В. Чикунов, Чан Цуан Хоай
В работе описывается конструкция атомно-
силового микроскопа c датчиком в виде камер-
тона на основе кварцевого кристалла. Крем-
ниевое кантилеверное острие было закреплено
к зубцу камертона таким образом, что позволи-
ло реализовать для камертонного АСМ лате-
рально-силовой (shear-force) и полуконтактный
(intermittent contact) режимы. С помощью сис-
темы электронного регулирования добротности
зонда, так называемого Q-контроля, возможна
настройка параметра добротности Q и соответ-
ственно изменение полного времени сканиро-
вания. Было замечено, что путем уменьшения
параметра добротности можно увеличить ста-
бильность измеряемого сигнала и таким обра-
зом улучшить разрешение для формируемых
изображений. Для демонстрации методики
использовались образцы различных типов.
|