Magnetic measurements of the 63-pole 2 Tesla superconducting wiggler for Canadian Light Source
The magnet measurement methods for a multipole superconducting wiggler using the Hall probes and stretched wire are described. The results of magnet measurements for the 63-pole superconducting wiggler are presented. The measurements have been carried out in the bath cryostat (with the Hall probes...
Збережено в:
Дата: | 2006 |
---|---|
Автори: | , , , , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2006
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/78881 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Magnetic measurements of the 63-pole 2 Tesla superconducting wiggler for Canadian Light Source / E.A. Bekhtenev, M.V. Kuzin, S.V. Khruschev, N.A. Mezentsev, E.G. Miginsky, V.A. Shkaruba, V.M. Tsukanov // Вопросы атомной науки и техники. — 2006. — № 2. — С. 175-177. — Бібліогр.: 4 назв. — анл. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-78881 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-788812015-03-23T03:02:21Z Magnetic measurements of the 63-pole 2 Tesla superconducting wiggler for Canadian Light Source Bekhtenev, E.A. Kuzin, M.V. Khruschev, S.V. Mezentsev, N.A. Miginsky, E.G. Shkaruba, V.A. Tsukanov, V.M. Применение ускорителей в радиационных технологиях The magnet measurement methods for a multipole superconducting wiggler using the Hall probes and stretched wire are described. The results of magnet measurements for the 63-pole superconducting wiggler are presented. The measurements have been carried out in the bath cryostat (with the Hall probes temperature 4.2 K) as well as in its own cryostat using a special scanning room temperature antechamber. Описаны методы магнитных измерений для многополюсного сверхпроводящего вигглера с использованием датчиков Холла и натянутой проволоки с током. Приведены результаты магнитных измерений 63-полюсного сверхпроводящего вигглера в погруженном (при температуре датчиков Холла 4.2 К) и собственном (с иcпользованием специальной сканирующей аванкамеры комнатной температуры) криостатах. Описано методи магнітних вимірів для багатополюсного надпровідного вігглера з використанням датчиків Холу й натягнутого дроту зі струмом. Наведено результати магнітних вимірів 63-полюсного надпровідного вігглера в зануреному (при температурі датчиків Холу 4.2 К) і особистому (з використанням спеціальної скануючьої аванкамери кімнатної температури) кріостатах. 2006 Article Magnetic measurements of the 63-pole 2 Tesla superconducting wiggler for Canadian Light Source / E.A. Bekhtenev, M.V. Kuzin, S.V. Khruschev, N.A. Mezentsev, E.G. Miginsky, V.A. Shkaruba, V.M. Tsukanov // Вопросы атомной науки и техники. — 2006. — № 2. — С. 175-177. — Бібліогр.: 4 назв. — анл. 1562-6016 PACS: 07.55.Ge http://dspace.nbuv.gov.ua/handle/123456789/78881 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Применение ускорителей в радиационных технологиях Применение ускорителей в радиационных технологиях |
spellingShingle |
Применение ускорителей в радиационных технологиях Применение ускорителей в радиационных технологиях Bekhtenev, E.A. Kuzin, M.V. Khruschev, S.V. Mezentsev, N.A. Miginsky, E.G. Shkaruba, V.A. Tsukanov, V.M. Magnetic measurements of the 63-pole 2 Tesla superconducting wiggler for Canadian Light Source Вопросы атомной науки и техники |
description |
The magnet measurement methods for a multipole superconducting wiggler using the Hall probes and stretched
wire are described. The results of magnet measurements for the 63-pole superconducting wiggler are presented. The
measurements have been carried out in the bath cryostat (with the Hall probes temperature 4.2 K) as well as in its
own cryostat using a special scanning room temperature antechamber. |
format |
Article |
author |
Bekhtenev, E.A. Kuzin, M.V. Khruschev, S.V. Mezentsev, N.A. Miginsky, E.G. Shkaruba, V.A. Tsukanov, V.M. |
author_facet |
Bekhtenev, E.A. Kuzin, M.V. Khruschev, S.V. Mezentsev, N.A. Miginsky, E.G. Shkaruba, V.A. Tsukanov, V.M. |
author_sort |
Bekhtenev, E.A. |
title |
Magnetic measurements of the 63-pole 2 Tesla superconducting wiggler for Canadian Light Source |
title_short |
Magnetic measurements of the 63-pole 2 Tesla superconducting wiggler for Canadian Light Source |
title_full |
Magnetic measurements of the 63-pole 2 Tesla superconducting wiggler for Canadian Light Source |
title_fullStr |
Magnetic measurements of the 63-pole 2 Tesla superconducting wiggler for Canadian Light Source |
title_full_unstemmed |
Magnetic measurements of the 63-pole 2 Tesla superconducting wiggler for Canadian Light Source |
title_sort |
magnetic measurements of the 63-pole 2 tesla superconducting wiggler for canadian light source |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2006 |
topic_facet |
Применение ускорителей в радиационных технологиях |
url |
http://dspace.nbuv.gov.ua/handle/123456789/78881 |
citation_txt |
Magnetic measurements of the 63-pole 2 Tesla superconducting wiggler for Canadian Light Source / E.A. Bekhtenev, M.V. Kuzin, S.V. Khruschev, N.A. Mezentsev, E.G. Miginsky, V.A. Shkaruba,
V.M. Tsukanov // Вопросы атомной науки и техники. — 2006. — № 2. — С. 175-177. — Бібліогр.: 4 назв. — анл. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT bekhtenevea magneticmeasurementsofthe63pole2teslasuperconductingwigglerforcanadianlightsource AT kuzinmv magneticmeasurementsofthe63pole2teslasuperconductingwigglerforcanadianlightsource AT khruschevsv magneticmeasurementsofthe63pole2teslasuperconductingwigglerforcanadianlightsource AT mezentsevna magneticmeasurementsofthe63pole2teslasuperconductingwigglerforcanadianlightsource AT miginskyeg magneticmeasurementsofthe63pole2teslasuperconductingwigglerforcanadianlightsource AT shkarubava magneticmeasurementsofthe63pole2teslasuperconductingwigglerforcanadianlightsource AT tsukanovvm magneticmeasurementsofthe63pole2teslasuperconductingwigglerforcanadianlightsource |
first_indexed |
2025-07-06T02:58:42Z |
last_indexed |
2025-07-06T02:58:42Z |
_version_ |
1836864737477918720 |
fulltext |
MAGNETIC MEASUREMENTS OF THE 63-POLE 2 TESLA SUPERCON-
DUCTING WIGGLER FOR CANADIAN LIGHT SOURCE
E.A. Bekhtenev, M.V. Kuzin, S.V. Khruschev, N.A. Mezentsev, E.G. Miginsky, V.A. Shkaru-
ba, V.M. Tsukanov
Budker INP, Novosibirsk, Russia
E-mail: V.M.Tsukanov@inp.nsk.su Fax: +7-383-330-2163 Phone: +7-383-339-4427
The magnet measurement methods for a multipole superconducting wiggler using the Hall probes and stretched
wire are described. The results of magnet measurements for the 63-pole superconducting wiggler are presented. The
measurements have been carried out in the bath cryostat (with the Hall probes temperature 4.2 K) as well as in its
own cryostat using a special scanning room temperature antechamber.
PACS: 07.55.Ge
1. INTRODUCTION
The superconducting wiggler under discussion was
designed and fabricated in accordance with the contract
between Budker INP and Canadian Light Source,
Saskatchewan, Canada. The superconducting wiggler is
an array of alternating sign dipole magnets immersed
into liquid helium. The vacuum chamber is a part of a
liquid helium vessel and is inserted into a pole gap. A
copper liner with a temperature 20 K is inserted inside
the vacuum chamber to prevent heating of the liquid he-
lium vessel excited by an electron beam. Space avail-
able for the electron beam is defined by the copper liner
and equal to 50×9.5 mm.
The wiggler magnet system should satisfy the con-
tract requirements for field quality to predict an influ-
ence of the wiggler field on a beam dynamics. The simi-
lar work was done by Budker INP for other supercon-
ducting insertion devices for various SR centers [1,2]. In
order to check the field quality during the wiggler fabri-
cation and after wiggler assembling inside its own cryo-
stat, magnetic field measuring systems were used. The
main problems during the magnetic measurements are a
low temperature (4.2 K and 20 K) and a very small
space for the magnetic field probes. The magnet and
cryogenic design of the wiggler are presented in [3].
2. MAGNETIC MEASUREMENTS
IN THE BATH CRYOSTAT
After the fabrication and assembling of the wiggler
magnetic system, it was tested in the bath cryostat. The
magnetic measurements have been carried out by using
an array of five LakeShore Hall probes which were
placed inside the liquid helium at 4.2 K. The Hall
probes were mounted on a rotating disk with a rotation
angle of 90 degrees. In spite of that the Hall probes were
previously calibrated at 4.2 K and high level field value,
there is no guarantee that calibration will be the same
after subsequent cooling down. In order to increase the
field quality measurements, a relative calibration proce-
dure was performed first. For the calibration procedure,
the Hall probes array was rotated in such a way that the
probes are going in one way following one another for
the relative probes calibration. The next measurements
have been carried out when the probes are placed per-
pendicular to the motion direction. In this case, during
the probes movement, the magnetic map in one plane
has been measured.
3. MAGNETIC MEASUREMENTS IN THE
OWN CRYOSTAT
The magnetic measurements of the wiggler assem-
bled within its own cryostat have been done with the use
of a special scanning measuring system. The assembled
wiggler length from flange to flange is about 2.2 meters.
As was mentioned above, the accessible space for the
magnetic measurements is 9.5×50 mm and is defined by
the copper liner (at the temperature about 20 K).
Thus, to make the magnetic measurement conduct-
ing at a room temperature, an antechamber has been
used inside the copper liner. This is a titanium tube with
an internal diameter of 6 mm (see Fig.1). This tube is
movable and is a part of the scanning system. There are
two types of the measurements that can be done with
this tube − the magnetic map measurements with the use
of the Hall probe inside the tube and the field integrals
measurements with a wire with a current placed inside
the tube. The scanning range of the tube is ±15 mm in
the horizontal plane and ±1 mm in the vertical plane (at
the central horizontal position only). The photo of the
one part of the system is presented in Fig.2.
Fig.1. The copper liner and the tube positions
All control and measuring equipment is produced
according to the VME standard.
3.1. WIGGLER MAGNETIC MAP MEASURING
Due to a small internal size of the tube only two Hall
probes are used for the magnetic map measurements.
These two probes were mounted perpendicular one an-
other to measure simultaneously the vertical By and hor-
izontal Bx magnetic field components. 3-D magnetic
field map is a result of scanning of tube ends in X and Y
__________________________________________________________
PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2006. № 2.
Series: Nuclear Physics Investigations (46), p.175-177. 175
directions and the Hall probes movement inside the tube
with appropriate steps.
Fig.2. Photo of the scanning part of the system
Simultaneous measurements of the magnetic field
components Bx and By give a possibility to make correc-
tion to the magnetic field strength in the median plane in
case of the Hall probes rotation as whole during longitu-
dinal scanning. The minimum step between the mea-
surements along the wiggler is 0.1 mm.
Fig.4,a and Fig.4,b show Bx and By field components
behavior along the wiggler at 2 T magnetic field. The
angle and the full magnetic field value taking into ac-
count both the field components are presented in Fig.4,c
and Fig.4,d, correspondingly. An overlapping of 5 lon-
gitudinal passes of the Hall probe with the horizontal
coordinate at -10 mm, -5 mm, 0 mm, 5 mm, 10 mm at
the field of 2 Tesla are presented in Fig.3.
3.2. FIELD INTEGRALS MEASUREMENTS
A stretched wire method was used for the magnetic
field integrals measurements. This method has been al-
ready applied for previous wigglers measurements [4].
In the proposed wiggler field integrals measure-
ments, the Hall probes were replaced by a wire with a
current. The DC current of the wire is 2 A. The wire
was stretched with force of 19N for modeling of
2.9 GeV electron beam. The AC current with
1.125 MHz are used for wire position monitoring during
the measurements. The measurement precision of the ±
1 mkm corresponds to the 2 Gs*cm of the first field in-
tegral and 500 Gs*cm2 for the second field integral.
The scheme of the wire method is presented in Fig.5.
Fig.3. Overlapping of 5 longitudinal passes of the Hall
probe with the horizontal coordinate of -10 mm, -5 mm,
0 mm, 5 mm, 10 mm at the field of 2 Tesla
0 200 400 600 800 1000 1200
-2
-1
0
1
2
B
H
al
l1
Z mm.
a)
0 200 400 600 800 1000 1200
-1.0
-0.5
0.0
0.5
B
H
al
l2
X Axis Titleb)
0 200 400 600 800 1000 1200
-30
-20
-10
0
10
20
30
A
ng
le
g
ra
d
Z mm
c)
0 200 400 600 800 1000 1200
-2
-1
0
1
2
B
Z mm.
d)
Fig.4. Results of the magnetic field measurements at
2 Tesla magnetic field: (a)Bz field component,
__________________________________________________________
PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2006. № 2.
Series: Nuclear Physics Investigations (46), p.175-177. 175
(b) By field component, (c) rotating angle of the Hall
probes (degree), (d)full magnetic field
X
Z
F
z
x
ADC I=0..2A
VME
1.125МГЦ
F
Filter
комму
татор
Fig.5. The scheme of the stretched wire method
A dynamical stability of the first and second integral
during ramping up and down of the wiggler field with
the help of the stretched wire method was tested. The
results are shown in Fig.6 and Fig.7.
5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 12.5 13 13.5 14
Time, min
0
0.5
1
1.5
2
2.5
B
, Tesla
-0.001
-0.0005
0
0.0005
0.001
1s
t i
nt
eg
ra
l,
Te
sl
a*
m
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
Time, min
0
0.5
1
1.5
2
2.5
B
, Tesla
-0.001
-0.0005
0
0.0005
0.001
1s
t i
nt
eg
ra
l,
Te
sl
a*
m
1st Integral
B, Tesla
1st integral, Tesla*m
Fig.6. First field integral behavior during ramping up
of the wiggler field
RESUME
The magnetic field measurements of the supercon-
ducting multipole wiggler were carried out under condi-
tions of the very low temperature and small available
space. The results are in good agreement with the calcu-
lations and the contract requirements.
5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 12.5 13 13.5 14
Time, min
0
0.5
1
1.5
2
2.5
B
, Tesla
-0.0003
-0.0002
-0.0001
0
0.0001
0.0002
0.0003
2n
d
in
te
gr
al
, T
es
la
*m
2
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
Time, min
0
0.5
1
1.5
2
2.5
B
, Tesla
-0.0003
-0.0002
-0.0001
0
0.0001
0.0002
0.0003
2n
d
in
te
gr
al
, T
es
la
*m
2
2nd Integral
B, Tesla
2nd integral, Tesla*m2
Fig.7. Second field integral behavior during ramping
up of the wiggler field
REFERENCES
1. M.G. Fedurin, M.V. Kuzin, N.A. Mezentsev,
V.A. Shkaruba. Status of the activity on fabrication
and application of the high-field superconducting
wigglers in Budker INP // Nucl. Instrum. and Meth-
ods. 2001, v.A470, №1-2, p.34-37.
2. A. Batrakov, V. Jurba, S. Khrushchev et al. A Su-
perconducting 3.5 T multipole wiggler for the
ELETTRA storage ring. Proc. of EPAC-2002, Paris,
France. 2002, p.2634-2636.
3. S.V. Khruschev, E.A. Kuper, V.H. Lev et al. Super-
conducting 63-pole 2 Tesla wiggler for canadian
light source // this issue, p.172-174.
4. A. Batrakov, V. Borovikov, E. Bekhtenev et al.
Magnetic measurements of the 10 T superconduct-
ing wiggler for the SPring-8 storage ring. 7th Inter-
national conference on synchrotron radiation instru-
mentation: Abstract POS1-018. 2000, Germany,
Berlin: BESSY.
МАГНИТНЫЕ ИЗМЕРЕНИЯ 63-ПОЛЮСНОГО СВЕРХПРОВОДЯЩЕГО ВИГГЛЕРА С ПОЛЕМ 2
ТЕСЛА ДЛЯ КАНАДСКОГО ИСТОЧНИКА СИНХРОТРОННОГО ИЗЛУЧЕНИЯ
Е.А. Бехтенев, М.В. Кузин, С.В. Хрущев, Н.А. Мезенцев, Е.Г. Мигинская, В.А. Шкаруба, В.М. Цуканов
Описаны методы магнитных измерений для многополюсного сверхпроводящего вигглера с использова-
нием датчиков Холла и натянутой проволоки с током. Приведены результаты магнитных измерений 63-по-
люсного сверхпроводящего вигглера в погруженном (при температуре датчиков Холла 4.2 К) и собственном
(с иcпользованием специальной сканирующей аванкамеры комнатной температуры) криостатах.
МАГНІТНІ ВИМІРИ 63-ПОЛЮСНОГО НАДПРОВІДНОГО ВІГГЛЕРА З ПОЛЕМ 2 ТЕСЛА ДЛЯ
КАНАДСЬКОГО ДЖЕРЕЛА СИНХРОТРОННОГО ВИПРОМІНЮВАННЯ
Є.А. Бехтенєв, М.В. Кузін, С.В. Хрущьов, М.А. Мезенцев, Є.Г. Мігінська, В.А. Шкаруба, В.М. Цуканов
Описано методи магнітних вимірів для багатополюсного надпровідного вігглера з використанням
датчиків Холу й натягнутого дроту зі струмом. Наведено результати магнітних вимірів 63-полюсного
надпровідного вігглера в зануреному (при температурі датчиків Холу 4.2 К) і особистому (з використанням
спеціальної скануючьої аванкамери кімнатної температури) кріостатах.
168
магнитные измерения 63-полюсного сверхпроводящего вигглера с полем 2 тесла для канадского источника синхротронного излучения
Описаны методы магнитных измерений для многополюсного сверхпроводящего вигглера с использованием датчиков Холла и натянутой проволоки с током. Приведены результаты магнитных измерений 63-полюсного сверхпроводящего вигглера в погруженном (при температуре датчиков Холла 4.2 К) и собственном (с иcпользованием специальной сканирующей аванкамеры комнатной температуры) криостатах.
|