Enhancement of ion beam charge states by electron vortices in a plasma optical device

We consider the possibility of enhancing the ionization charge states of beam ions by electron vortices excited in cylindrically symmetric plasma optical systems of finite length with crossed radial electric and longitudinal magnetic fields.

Збережено в:
Бібліографічні деталі
Дата:2005
Автори: Goncharov, A., Maslov, V., Brown, I.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2005
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/78948
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Enhancement of ion beam charge states by electron vortices in a plasma optical device / A. Goncharov, V. Maslov, I. Brown // Вопросы атомной науки и техники. — 2005. — № 1. — С. 134-136. — Бібліогр.: 8 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-78948
record_format dspace
spelling irk-123456789-789482015-03-25T03:02:22Z Enhancement of ion beam charge states by electron vortices in a plasma optical device Goncharov, A. Maslov, V. Brown, I. Plasma electronics We consider the possibility of enhancing the ionization charge states of beam ions by electron vortices excited in cylindrically symmetric plasma optical systems of finite length with crossed radial electric and longitudinal magnetic fields. Розглядається можливість доіонизації іонів пучка електронними вихорами, що збуджуються в циліндрично симетричній плазмо-оптичній системі кінцевої довжини зі схрещеною конфігурацією радіального електричного і повздовжнього магнітного полів. Рассматривается возможность доионизации ионов пучка электронными вихрями, возбуждаемыми в цилиндрически симметричной плазмо-оптической системе конечной длины со скрещенной конфигурацией радиального электрического и продольного магнитного полей. 2005 Article Enhancement of ion beam charge states by electron vortices in a plasma optical device / A. Goncharov, V. Maslov, I. Brown // Вопросы атомной науки и техники. — 2005. — № 1. — С. 134-136. — Бібліогр.: 8 назв. — англ. 1562-6016 PACS: 52.27.Lw http://dspace.nbuv.gov.ua/handle/123456789/78948 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Plasma electronics
Plasma electronics
spellingShingle Plasma electronics
Plasma electronics
Goncharov, A.
Maslov, V.
Brown, I.
Enhancement of ion beam charge states by electron vortices in a plasma optical device
Вопросы атомной науки и техники
description We consider the possibility of enhancing the ionization charge states of beam ions by electron vortices excited in cylindrically symmetric plasma optical systems of finite length with crossed radial electric and longitudinal magnetic fields.
format Article
author Goncharov, A.
Maslov, V.
Brown, I.
author_facet Goncharov, A.
Maslov, V.
Brown, I.
author_sort Goncharov, A.
title Enhancement of ion beam charge states by electron vortices in a plasma optical device
title_short Enhancement of ion beam charge states by electron vortices in a plasma optical device
title_full Enhancement of ion beam charge states by electron vortices in a plasma optical device
title_fullStr Enhancement of ion beam charge states by electron vortices in a plasma optical device
title_full_unstemmed Enhancement of ion beam charge states by electron vortices in a plasma optical device
title_sort enhancement of ion beam charge states by electron vortices in a plasma optical device
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2005
topic_facet Plasma electronics
url http://dspace.nbuv.gov.ua/handle/123456789/78948
citation_txt Enhancement of ion beam charge states by electron vortices in a plasma optical device / A. Goncharov, V. Maslov, I. Brown // Вопросы атомной науки и техники. — 2005. — № 1. — С. 134-136. — Бібліогр.: 8 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT goncharova enhancementofionbeamchargestatesbyelectronvorticesinaplasmaopticaldevice
AT maslovv enhancementofionbeamchargestatesbyelectronvorticesinaplasmaopticaldevice
AT browni enhancementofionbeamchargestatesbyelectronvorticesinaplasmaopticaldevice
first_indexed 2025-07-06T03:04:56Z
last_indexed 2025-07-06T03:04:56Z
_version_ 1836865129131540480
fulltext ENHANCEMENT OF ION BEAM CHARGE STATES BY ELECTRON VORTICES IN A PLASMA OPTICAL DEVICE A. Goncharov1, V. Maslov2 and I. Brown3 1Institute of Physics NASU, Kiev 252650, Ukraine; 2NSC Kharkov Institute of Physics and Technology, Kharkov 61108, Ukraine, E-mail: vmaslov@kipt.kharkov.ua; 3Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA We consider the possibility of enhancing the ionization charge states of beam ions by electron vortices excited in cylindrically symmetric plasma optical systems of finite length with crossed radial electric and longitudinal magnetic fields. PACS: 52.27.Lw INTRODUCTION Electron vortex structures can be excited in cylindrically symmetric systems of finite length with crossed radial electric and longitudinal magnetic fields. In this paper, we consider the possibility of enhancing the ionization charge states of beam ions by such electron vortices. We show that the electron velocity in the vortices can be sufficiently large to increase the ionization charge states of beam ions. The cylindrical configuration that we consider here makes use of a number of ring electrodes along which an electric potential is distributed. We show that maximum ionization is achieved for minimum ion beam velocity through the vortex region. Though electron-ion collisions provide ionization, they also result in electron transport, in turn leading to reduced electron density. Increased magnetic field results in improved electron confinement. However, for large magnetic field the electron distribution is laminar, resulting in reduced ionization. For a given value of magnetic field, a specific number of discrete electrodes are required, along which the externally applied electric potential is distributed, or (alternatively) for a given number of the electrodes the maximum ionization is reached at a certain magnetic field. The experimentally observed dependence of electron density ne on magnetic field Ho has been analytically investigated. For Ho less than the optimum magnetic field Hopt the electron density increases with Ho; for Ho somewhat greater than Hopt, ne falls with increasing Ho; and for Ho much greater than Hopt, ne increases with Ho increasing. We consider the possibility of increasing the ionization charge states of beam ions by electron vortices self consistently excited in the plasma-optical system. The intensity of the excited vortex turbulence is proportional to magnetic field Ho, and the confinement of electrons is improved with increased Ho; thus the system calls for large Ho. It is necessary to use a certain minimum number of cylindrical electrodes, along which the electric potential is distributed, so that the radial distribution of electrons is not layered. A plasma-optical system for increasing the ionization state of ions from charge state n up to n+1 by electron vortices is considered. The system consists of three cylindrically symmetric segments located axially in the longitudinal direction (see Fig. 1). The configuration is of finite length located in the field of a chain of short coils, the sense of which is such as to create opposing magnetic fields Ho, and the separate segments trap electrons. Fig. 1. Schematic of system for increasing ion charge states Fig. 2. Longitudinal distribution of electric potential along each segment Cylindrical electrodes are also positioned axially, along which an electric potential Фo is distributed (see Fig. 2). In each segment the electrons are trapped by Ho and Фo. The magnetic field structure and the electric potential distribution due to the ring electrodes along each segment are shown qualitatively in Fig. 3. Fig. 3. Magnetic field structure and electric potential distribution of ring electrodes along one segment of the system The system is filled with electrons by secondary electron emission from ion bombardment of the cylindrical electrodes by peripheral beam ions. In each trap volume, crossed electric and magnetic fields are formed. Such a system is unstable [1-3] and leads to electron vortex excitation due to the radial gradient of Но. The interaction of beam ions with vortices can result in 134 Problems of Atomic Science and Technology. 2005. № 1. Series: Plasma Physics (10). P. 134-136 z ϕ ϕ z r ϕ o ϕ o /2ϕ=0 H o enhanced ionization of transiting beam ions. In Fig. 4 a schematic of the concept with vortex electron trajectories is shown. Fig. 4. Excitation of electron vortices Fig. 5. Ionization of beam ions from charge state n (shown by light circles) up to charge state n+1 (shown by dark circles) by electron vortices The electrons can rotate around the axes of the vortices with significant super-thermal velocities. In Fig. 5 the ionization of beam ions from charge state n (ions shown by light circles) up to charge state n+1 (ions shown by dark circles) by electron vortices is shown schematically. DEPENDENCE OF RADIAL ELECTRIC FIELD ON MAGNETIC FIELD Let us consider the dependence of the radial electric field that can be supported in the system on Но. We consider radial collisional electron transport (the continuous curve in Fig. 6, for Но less than the optimum, Но<Нopt) and anomalous electron transport (the continuous curve in Fig. 6 for Но much greater, Но>>Нopt). By Нopt we mean that derived in [4, 5], for which vortices are not excited in the system. We use the fact that the electron density is inversely proportional to the radial electron velocity ne ~ 1/Vr. In the collisional case the radial electron velocity is given by Vr ≈ eEorν/meω2 ce, where ν is the electron collision frequency, Eor is the radial electrical field, and ωce is the electron cyclotron frequency. From this expression and using that at Нopt the electron density equals nopt, we find the electron density for Но<Нopt, ne = ni/2+[ni 2/4+nopt(nopt–ni)Ho/Hopt]1/2 One can see that ne = nopt at Ho = Hopt, and ne increases with increasing Ho for Но<Нopt. Upon excitation of turbulence, the radial electron transport increases sharply. The saturation amplitude of the excited vortices is determined by their dissipation rate. Hence the radial transport velocity Vr is approximately proportional to the growth rate γ of the instability, i.e. to the intensity of vortex excitation. For parameters close to the optimum, slow vortices are excited and γ is determined by their growth rate γsl . We have approximately ne ~ 1/Vr ~ 1/γsl ~ [ℓθ∆n/Ho]-1/3, ℓθ ~ [(1-η)(∂r(1/ωce)/Voθ]1/2, Voθ ~ ∆n/Ho. Fig. 6. Dependence of radial electric field on magnetic field We derive ne ~ Ho 1/3/[(1-η)ne∆n]1/6. Taking into account that Η = ηopt(∆n/∆nopt)(Hopt/Ho)2, ηopt = 1. ∆n ≡ noe-noi is the overcompensation of flow ions by the electrons, we have ne ~ Ho 1/3/{ne∆n[1-(∆n/∆nopt)(Hopt/Ho)2]}1/6 It can be seen that when Ho exceeds Hopt, ne decreases (the dash-dot curve in Fig. 6). For Ho>>Hopt, when the saturation amplitude of the excited turbulence does not strongly depend on Но, one can introduce an effective electron collision frequency νef. Then the velocity of radial motion of the electrons equals eEorνэфф/meω2 ce . Thus we find that ne-ni ~ Ho. MAXIMUM ENERGY OF ELECTRON ROTATION IN A VORTEX Let us estimate the velocity, δVe, of electron rotation in a vortex and compare it with the electron drift velocity, Vθ o = -(e/mωHe)[ez,Ero], in crossed Ero and Ho fields. One can show [6] that the maximum saturation amplitude of electric potential in a vortex, φsm, is φsm ≈ (me/ek2)[ω2 He/2-(∆n/noe)ω2 pe] where k is the wave vector of the vortex perturbation. From it an approximate expression follows for the longitudinal component of rotation of the electron velocity, which characterizes angular speed Ω ≡ Vθ/r of their rotation in the vortex field, α≡ezrotV ≈ (ω2 pe/ωHe)δ ne/neo ≈ ωHe/2. Now taking into account that the vortex perturbations are unstable and are excited initially with small azimuth numbers, lθ, the radius of a vortex approximately equals half the system radius, Rv ≈ R/4. We find the following approximate expression for δVe δVe/Vθo ≈ RωHe/4Vθo ≈ (ωHe/ωpe)2(noe/∆n) >> 1. From the previous ratio we find that the maximum electron energy due to rotation in the vortex is εe ≈ meR2ω 2 He/32. For experimental parameters such as R = 3.5 cm, Но = 1000 Oe, one obtains that εe ≈ 62.5 keV. But due to magnetic field inhomogeneity εe is limited by Фo. 135 H opt H o E or V V V V V V INCREASING THE ION FLOW RESIDENCE TIME IN THE SYSTEM If we use a plateau-type longitudinal distribution of potential, it is possible to increase considerably the ion residence time in the system. Then the ion beam velocity in the system equals Vbi = [(2/mi)(εi-eФo)]1/2 . If the ion beam energy is only slightly greater than this, εI ≥ eФo , then the beam ion transit velocity in the system will be decreased and the residence time increased. SYSTEM LENGTH REQUIRED FOR COMPLETE IONIZATION OF FLOW IONS TO CHARGE STATE n+1 Let us estimate the minimum length of the system, L , for which, during the ion beam propagation with velocity Vbi through the system, τпр = L/Vbi , there will be complete ionization of beam ions from charge state n up to charge state n+1. The time required for additional ionization is given by τI = 1/niσVe . The ion beam velocity should exceed Vbi ≥ (2eФo/mi)1/2 for the ion beam propagation through the system. We choose for the best additional ionization, Vbi ¿ (2eФo/mi)1/2 . Then the ion residence time in the system is the longest. Fig. 7. Dependence of ionization cross section from Ta 2+ to Ta 3+ on electron energy For complete ionization to charge state n+1 the system length L should be greater than L ≥ Vbi/Veniσ. Estimations show that a very long system is necessary for significant ionization. Therefore we use, instead of an ion beam, a vacuum-arc plasma flow. In this case there is no necessity for secondary ion-electron emission, and electrons are moved with the ion flow. The energy of the streaming ions is 100 eV. For vortex excitation we use LF wave pumping of frequency approximately equal to the ion plasma frequency, similar to HF wave pumping on electron cyclotron frequency in [7]. To determine L, σ has been calculated (see Fig. 7) using an expression given in [8]. Using ni = 1012cm-3 and σ = 0.82 x 10-16cm2 for ionization from Ta 2+ to Ta 3+ we find that if the amplitude of the vortex electric potential is limited to Фo, L should be longer than L > 26cm. CONCLUSION We have shown that because the magnitude of the excited vortex perturbation is significantly greater than the electron cyclotron radius and because the excited fields of the vortex perturbations are significantly greater than the radial electrical field of the system, the electron vortex velocity can considerably exceed the electron drift velocity in crossed electric and magnetic fields. This results in the possibility of additional ionization of ions. These vortices can be enhanced by LF wave pumping at a frequency approximately equal to the ion plasma frequency. REFERENCES 1. A. Goncharov, A. Dobrovolskiy, A. Zatuagan, and I. Protsenko. High current plasma lens.// IEEE Trans. Plasma Sci. (21). 1993, № 5, pp. 573–577. 2. A.A.Goncharov, A.Dobrovolskiy et al. // Plasma Phys. Rep. (20). 1994, № 5, P. 499. 3. A.A. Goncharov, S.N. Gubarev, V.I. Maslov, I.N. Onishchenko. Problems of Atomic Science and Technology, Kharkov, 2001. № 3. P. 1524. 4. A.A. Goncharov, S.M. Gubarev, I.M. Protsenko, I. Brown // Problems of Atomic Science and Technology. (6). 2000, p.124 5. A.A. Goncharov, V.I. Maslov, I.N. Onishchenko// Problems of Atomic Science and Technology. Ser: “Plasma Physics” (7). 2002, № 4, P. 152. 6. A.A. Goncharov, V.I. Maslov, I.N. Onishchenko// Plasma Phys. Rep. (30). 2004, № 7. P. 1. 7. See, for instance, D. Leitner and C. Lyneis. ECR Ion Sources./edited by I.G. Brown// Physics and Technology of Ion Sources. Vol. 2, Wiley-VCH, Berlin, 2004. 8. A.Muller, E.Salzborn, R.Frodl, R.Becker, H.Klein, H.Winter.// J.Phys. B. Atom. Molec. Phys. (13). 1980, P. 1877-1899. ДОИОНИЗАЦИЯ ИОННОГО ПУЧКА ЭЛЕКТРОННЫМИ ВИХРЯМИ В ПЛАЗМО-ОПТИЧЕСКОЙ СИСТЕМЕ А.А. Гончаров, В.И. Маслов, Я. Браун Рассматривается возможность доионизации ионов пучка электронными вихрями, возбуждаемыми в цилиндрически симметричной плазмо-оптической системе конечной длины со скрещенной конфигурацией радиального электрического и продольного магнитного полей. ДОІОНИЗАЦІЯ ІОННОГО ПУЧКА ЕЛЕКТРОННИМИ ВИХОРАМИ В ПЛАЗМО-ОПТИЧНІЙ СИСТЕМІ О.А. Гончаров, В.І. Маслов, Я. Браун Розглядається можливість доіонизації іонів пучка електронними вихорами, що збуджуються в циліндрично симетричній плазмо-оптичній системі кінцевої довжини зі схрещеною конфігурацією радіального електричного і повздовжнього магнітного полів. 136