High-current ion linac calculation

The research on multibeam ion accelerators has been carried. Full analysis of the oscillating system on example of a HCIL cell containing a pair of conducting rings (CR) with drift tubes (DT) and a central drift channel was carried out. High-current electronic beam is used as an electromagnetic powe...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2001
Автори: Gavrilov, N.M., Bogatchenkov, D.A., Komarov, D.A., Struckov, J.N., Krasnogolovets, M.A., Volkolupov, Yu.Ya.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2001
Назва видання:Вопросы атомной науки и техники
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/78987
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:High-current ion linac calculation / N.M. Gavrilov, D.A. Bogatchenkov, D.A. Komarov, J.N. Struckov, M.A. Krasnogolovets, Yu.Ya. Volkolupov // Вопросы атомной науки и техники. — 2001. — № 5. — С. 69-70. — Бібліогр.: 5 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-78987
record_format dspace
spelling irk-123456789-789872015-03-25T03:01:46Z High-current ion linac calculation Gavrilov, N.M. Bogatchenkov, D.A. Komarov, D.A. Struckov, J.N. Krasnogolovets, M.A. Volkolupov, Yu.Ya. The research on multibeam ion accelerators has been carried. Full analysis of the oscillating system on example of a HCIL cell containing a pair of conducting rings (CR) with drift tubes (DT) and a central drift channel was carried out. High-current electronic beam is used as an electromagnetic power supply, which not exclude an external power source. Interaction factor of an electronic beam with a field of about 100%, kiloampere currents and megawatt power levels allows to produce a compact electron-beam pumping system with drift tubes shorter then wavelength. 2001 Article High-current ion linac calculation / N.M. Gavrilov, D.A. Bogatchenkov, D.A. Komarov, J.N. Struckov, M.A. Krasnogolovets, Yu.Ya. Volkolupov // Вопросы атомной науки и техники. — 2001. — № 5. — С. 69-70. — Бібліогр.: 5 назв. — англ. 1562-6016 PACS number: 29.17.+w http://dspace.nbuv.gov.ua/handle/123456789/78987 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The research on multibeam ion accelerators has been carried. Full analysis of the oscillating system on example of a HCIL cell containing a pair of conducting rings (CR) with drift tubes (DT) and a central drift channel was carried out. High-current electronic beam is used as an electromagnetic power supply, which not exclude an external power source. Interaction factor of an electronic beam with a field of about 100%, kiloampere currents and megawatt power levels allows to produce a compact electron-beam pumping system with drift tubes shorter then wavelength.
format Article
author Gavrilov, N.M.
Bogatchenkov, D.A.
Komarov, D.A.
Struckov, J.N.
Krasnogolovets, M.A.
Volkolupov, Yu.Ya.
spellingShingle Gavrilov, N.M.
Bogatchenkov, D.A.
Komarov, D.A.
Struckov, J.N.
Krasnogolovets, M.A.
Volkolupov, Yu.Ya.
High-current ion linac calculation
Вопросы атомной науки и техники
author_facet Gavrilov, N.M.
Bogatchenkov, D.A.
Komarov, D.A.
Struckov, J.N.
Krasnogolovets, M.A.
Volkolupov, Yu.Ya.
author_sort Gavrilov, N.M.
title High-current ion linac calculation
title_short High-current ion linac calculation
title_full High-current ion linac calculation
title_fullStr High-current ion linac calculation
title_full_unstemmed High-current ion linac calculation
title_sort high-current ion linac calculation
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2001
url http://dspace.nbuv.gov.ua/handle/123456789/78987
citation_txt High-current ion linac calculation / N.M. Gavrilov, D.A. Bogatchenkov, D.A. Komarov, J.N. Struckov, M.A. Krasnogolovets, Yu.Ya. Volkolupov // Вопросы атомной науки и техники. — 2001. — № 5. — С. 69-70. — Бібліогр.: 5 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT gavrilovnm highcurrentionlinaccalculation
AT bogatchenkovda highcurrentionlinaccalculation
AT komarovda highcurrentionlinaccalculation
AT struckovjn highcurrentionlinaccalculation
AT krasnogolovetsma highcurrentionlinaccalculation
AT volkolupovyuya highcurrentionlinaccalculation
first_indexed 2025-07-06T03:06:59Z
last_indexed 2025-07-06T03:06:59Z
_version_ 1836865258362241024
fulltext HIGH-CURRENT ION LINAC CALCULATION N.M. Gavrilov, D.A. Bogatchenkov, D.A. Komarov, J.N. Struckov, M.A. Krasno- golovets1, Yu.Ya. Volkolupov1 Moscow State Engineering Physics Institute (Technical University) 115409, Russia, Moscow, Kashirskoe str, 31 1 KTURE, Kharkov, Ukraine The research on multibeam ion accelerators has been carried. Full analysis of the oscillating system on example of a HCIL cell containing a pair of conducting rings (CR) with drift tubes (DT) and a central drift channel was carried out. High-current electronic beam is used as an electromagnetic power supply, which not exclude an external power source. Interaction factor of an electronic beam with a field of about 100%, kiloampere currents and megawatt pow- er levels allows to produce a compact electron-beam pumping system with drift tubes shorter then wavelength. PACS number: 29.17.+w 1 INTRODUCTION In earlier works [1, 2] the research on the multibeam cavity of HCIL was performed according to analytical calculations of Boyd [3] and Andreev [5]. However, previous calculation does not permit to investigate fully the structure geometry dimensions. In this research presented is a full analysis of the os- cillating system. The equivalent Prieszhev’s method re- places Boyd’s method [4]. 2 MULTIBEAM CAVITY ANALYSIS It is obvious, that effective interaction between multibeam ion jets and the field could be achieved only at a resonance frequency when the base mode prevails. So the ultimate aim of this research was to determine the structure geometry. Examining a single cavity cell containing a pair of conducting rings (CR) with drift tubes (DT) and central drift channel (CDC), assumed that the resonance frequency of a cell equivalent to the eigenfrequency of the cavity, on conditions that a phase difference between single cells by the cavity length is zero, and identifying the structure with a Boyd type cav- ity, we could write down a dispersion equation based on the circuit theory. It allows connecting phase shift on an azimuthal period with a resonance frequency: ( ) 2 0 0 0cos cos 0.4 sin Fϕ θ θ θ= − , (1) where ( ) 22 1 td krF λ λ= − , ( )0 2 td DFθ π λ= , dtλ – cell wavelength, D – azimuthal period, ϕ - phase shift between azimuthal parallel channels. krλ is a parameter defining the geometry structure: ζ ηπλ )(2 dt kr d−≅ , (2) where h g 2 2=ζ ; b aη = − , 2g – distance between DT. All dimensions are shown in Fig. 1. 2h is a period along the cavity. The equation 02h β λ= defines zero wave mode in the structure, where 0λ is a cell wave- length without loading DT. The value of 0λ could be obtained from the partial areas method [2]. Thus, set of equations (1), (2) allows to solve the problem put by. Fig. 1. Single cell geometry. 3 CALCULATION RESULTS The multibeam cavity calculation was carried out us- ing the methods described in part 2. The equation (1) was replaced by the simplified version: ( ) 2 0 0 0cos 1 0.4 sin Fθ θ θ= + , (3) where 0ϕ = because of identical conditions of accel- erating ions by azimuthal channels. ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2001. №5. Серия: Ядерно-физические исследования (39), с. 69-70. 69 Fig. 2. Unloaded cell geometry versus wavelength. Fig. 3. General geometry parameters of HCIL. Fig. 2 shows the dependence ( )0 02r λ β with var- ious η for an unloaded cell. As graph shows, 0λ is weakly depended from dimensions of CR that is ex- plained by features of zero wave modes, i.e. by the ab- sence of field variations along the structure. The graph obtained specifies initial conditions for calculations. Then from Fig. 2 we choose values of η , 0λ , 0r and N – number of DT by azimuth (in our case 20N = ). From Eq. (3) we could find out the reso- nance wavelength as a function of ς with various η . Fig. 3 shows the graphs determining DT dimensions from equations: ( ) 0 0 2 1dt g ς λ β λ β λ ς =  = − (4) For all graphs: β ∈(0.01 – 0.1), d = 10 cm, a = 5 cm, 1r = 10 cm, α = 0.9. 4 CONCLUSION As a result it became possible to calculate he multi- beam cavity for a specified mode. Also, presented graphs could be used in construction of an experimental model. Note that the structures with such a complicated configuration should be calculated in programs like MAPHIA, which are expensive and give miscalculation in determining the resonance frequency for sophisticat- ed structures about 20-30%. It is obvious, that if the method presented also would give miscalculation about 30%, it must be preferred. In any case it determines all general parameters of the model, which may be later ad- justed in experiment. The way of using graphs is following (Fig. 2-3). For the calculation one should assign values of dtd , a , 1r , α , η then define 0λ with a fixed 0r (Fig. 2), after this ς should be selected and dtλ calculated ( dtλ in differ- ent cells should be constant). Fig. 3 defines general ge- ometry parameters. REFERENCES 1. N.M.Gavrilov, D.A.Komarov, J.N.Struckov. Multi- beam structures // Engineering physics. 2001, N 1. p. 6-8. 2. N.M.Gavrilov, D.A.Bogatchenkov, D.A.Komarov, J.N.Strukov. Electrodynamics characteristics of the MAM // Engineering physics. 2001, N 1, p. 8-12. 3. M.K.Boyd et. al. // IRE. Trans. 1962, v. ED-9. № 3, p. 247. 4. J.M.Prieszhev // Radio electronics problems. ser. 2. 1964, v. 7, p. 322-327. 5. V.G.Andreev // JTP. 1968, v. XXXVIII. N 8, p. 1018-1021. 70