High-current ion linac calculation
The research on multibeam ion accelerators has been carried. Full analysis of the oscillating system on example of a HCIL cell containing a pair of conducting rings (CR) with drift tubes (DT) and a central drift channel was carried out. High-current electronic beam is used as an electromagnetic powe...
Збережено в:
Дата: | 2001 |
---|---|
Автори: | , , , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2001
|
Назва видання: | Вопросы атомной науки и техники |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/78987 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | High-current ion linac calculation / N.M. Gavrilov, D.A. Bogatchenkov, D.A. Komarov, J.N. Struckov, M.A. Krasnogolovets, Yu.Ya. Volkolupov // Вопросы атомной науки и техники. — 2001. — № 5. — С. 69-70. — Бібліогр.: 5 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-78987 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-789872015-03-25T03:01:46Z High-current ion linac calculation Gavrilov, N.M. Bogatchenkov, D.A. Komarov, D.A. Struckov, J.N. Krasnogolovets, M.A. Volkolupov, Yu.Ya. The research on multibeam ion accelerators has been carried. Full analysis of the oscillating system on example of a HCIL cell containing a pair of conducting rings (CR) with drift tubes (DT) and a central drift channel was carried out. High-current electronic beam is used as an electromagnetic power supply, which not exclude an external power source. Interaction factor of an electronic beam with a field of about 100%, kiloampere currents and megawatt power levels allows to produce a compact electron-beam pumping system with drift tubes shorter then wavelength. 2001 Article High-current ion linac calculation / N.M. Gavrilov, D.A. Bogatchenkov, D.A. Komarov, J.N. Struckov, M.A. Krasnogolovets, Yu.Ya. Volkolupov // Вопросы атомной науки и техники. — 2001. — № 5. — С. 69-70. — Бібліогр.: 5 назв. — англ. 1562-6016 PACS number: 29.17.+w http://dspace.nbuv.gov.ua/handle/123456789/78987 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
The research on multibeam ion accelerators has been carried. Full analysis of the oscillating system on example of a HCIL cell containing a pair of conducting rings (CR) with drift tubes (DT) and a central drift channel was carried out. High-current electronic beam is used as an electromagnetic power supply, which not exclude an external power source. Interaction factor of an electronic beam with a field of about 100%, kiloampere currents and megawatt power levels allows to produce a compact electron-beam pumping system with drift tubes shorter then wavelength. |
format |
Article |
author |
Gavrilov, N.M. Bogatchenkov, D.A. Komarov, D.A. Struckov, J.N. Krasnogolovets, M.A. Volkolupov, Yu.Ya. |
spellingShingle |
Gavrilov, N.M. Bogatchenkov, D.A. Komarov, D.A. Struckov, J.N. Krasnogolovets, M.A. Volkolupov, Yu.Ya. High-current ion linac calculation Вопросы атомной науки и техники |
author_facet |
Gavrilov, N.M. Bogatchenkov, D.A. Komarov, D.A. Struckov, J.N. Krasnogolovets, M.A. Volkolupov, Yu.Ya. |
author_sort |
Gavrilov, N.M. |
title |
High-current ion linac calculation |
title_short |
High-current ion linac calculation |
title_full |
High-current ion linac calculation |
title_fullStr |
High-current ion linac calculation |
title_full_unstemmed |
High-current ion linac calculation |
title_sort |
high-current ion linac calculation |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2001 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/78987 |
citation_txt |
High-current ion linac calculation / N.M. Gavrilov, D.A. Bogatchenkov, D.A. Komarov, J.N. Struckov, M.A. Krasnogolovets, Yu.Ya. Volkolupov // Вопросы атомной науки и техники. — 2001. — № 5. — С. 69-70. — Бібліогр.: 5 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT gavrilovnm highcurrentionlinaccalculation AT bogatchenkovda highcurrentionlinaccalculation AT komarovda highcurrentionlinaccalculation AT struckovjn highcurrentionlinaccalculation AT krasnogolovetsma highcurrentionlinaccalculation AT volkolupovyuya highcurrentionlinaccalculation |
first_indexed |
2025-07-06T03:06:59Z |
last_indexed |
2025-07-06T03:06:59Z |
_version_ |
1836865258362241024 |
fulltext |
HIGH-CURRENT ION LINAC CALCULATION
N.M. Gavrilov, D.A. Bogatchenkov, D.A. Komarov, J.N. Struckov, M.A. Krasno-
golovets1, Yu.Ya. Volkolupov1
Moscow State Engineering Physics Institute (Technical University)
115409, Russia, Moscow, Kashirskoe str, 31
1 KTURE, Kharkov, Ukraine
The research on multibeam ion accelerators has been carried. Full analysis of the oscillating system on example of a
HCIL cell containing a pair of conducting rings (CR) with drift tubes (DT) and a central drift channel was carried
out. High-current electronic beam is used as an electromagnetic power supply, which not exclude an external power
source. Interaction factor of an electronic beam with a field of about 100%, kiloampere currents and megawatt pow-
er levels allows to produce a compact electron-beam pumping system with drift tubes shorter then wavelength.
PACS number: 29.17.+w
1 INTRODUCTION
In earlier works [1, 2] the research on the multibeam
cavity of HCIL was performed according to analytical
calculations of Boyd [3] and Andreev [5]. However,
previous calculation does not permit to investigate fully
the structure geometry dimensions.
In this research presented is a full analysis of the os-
cillating system. The equivalent Prieszhev’s method re-
places Boyd’s method [4].
2 MULTIBEAM CAVITY ANALYSIS
It is obvious, that effective interaction between
multibeam ion jets and the field could be achieved only
at a resonance frequency when the base mode prevails.
So the ultimate aim of this research was to determine
the structure geometry. Examining a single cavity cell
containing a pair of conducting rings (CR) with drift
tubes (DT) and central drift channel (CDC), assumed
that the resonance frequency of a cell equivalent to the
eigenfrequency of the cavity, on conditions that a phase
difference between single cells by the cavity length is
zero, and identifying the structure with a Boyd type cav-
ity, we could write down a dispersion equation based on
the circuit theory. It allows connecting phase shift on an
azimuthal period with a resonance frequency:
( ) 2
0 0 0cos cos 0.4 sin Fϕ θ θ θ= − , (1)
where ( ) 22 1 td krF λ λ= − , ( )0 2 td DFθ π λ= ,
dtλ – cell wavelength, D – azimuthal period, ϕ
- phase shift between azimuthal parallel channels.
krλ is a parameter defining the geometry structure:
ζ
ηπλ )(2 dt
kr
d−≅ , (2)
where
h
g
2
2=ζ ; b aη = − , 2g – distance between DT.
All dimensions are shown in Fig. 1. 2h is a period
along the cavity. The equation 02h β λ= defines zero
wave mode in the structure, where 0λ is a cell wave-
length without loading DT. The value of 0λ could be
obtained from the partial areas method [2].
Thus, set of equations (1), (2) allows to solve the
problem put by.
Fig. 1. Single cell geometry.
3 CALCULATION RESULTS
The multibeam cavity calculation was carried out us-
ing the methods described in part 2. The equation (1)
was replaced by the simplified version:
( ) 2
0 0 0cos 1 0.4 sin Fθ θ θ= + , (3)
where 0ϕ = because of identical conditions of accel-
erating ions by azimuthal channels.
ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2001. №5.
Серия: Ядерно-физические исследования (39), с. 69-70.
69
Fig. 2. Unloaded cell geometry versus wavelength.
Fig. 3. General geometry parameters of HCIL.
Fig. 2 shows the dependence ( )0 02r λ β with var-
ious η for an unloaded cell. As graph shows, 0λ is
weakly depended from dimensions of CR that is ex-
plained by features of zero wave modes, i.e. by the ab-
sence of field variations along the structure. The graph
obtained specifies initial conditions for calculations.
Then from Fig. 2 we choose values of η , 0λ , 0r
and N – number of DT by azimuth (in our case
20N = ). From Eq. (3) we could find out the reso-
nance wavelength as a function of ς with various η .
Fig. 3 shows the graphs determining DT dimensions
from equations:
( )
0
0
2
1dt
g ς λ β
λ β λ ς
=
= −
(4)
For all graphs: β ∈(0.01 – 0.1), d = 10 cm, a = 5 cm,
1r = 10 cm, α = 0.9.
4 CONCLUSION
As a result it became possible to calculate he multi-
beam cavity for a specified mode. Also, presented
graphs could be used in construction of an experimental
model.
Note that the structures with such a complicated
configuration should be calculated in programs like
MAPHIA, which are expensive and give miscalculation
in determining the resonance frequency for sophisticat-
ed structures about 20-30%. It is obvious, that if the
method presented also would give miscalculation about
30%, it must be preferred. In any case it determines all
general parameters of the model, which may be later ad-
justed in experiment.
The way of using graphs is following (Fig. 2-3). For
the calculation one should assign values of dtd , a , 1r ,
α , η then define 0λ with a fixed 0r (Fig. 2), after this
ς should be selected and dtλ calculated ( dtλ in differ-
ent cells should be constant). Fig. 3 defines general ge-
ometry parameters.
REFERENCES
1. N.M.Gavrilov, D.A.Komarov, J.N.Struckov. Multi-
beam structures // Engineering physics. 2001, N 1.
p. 6-8.
2. N.M.Gavrilov, D.A.Bogatchenkov, D.A.Komarov,
J.N.Strukov. Electrodynamics characteristics of the
MAM // Engineering physics. 2001, N 1, p. 8-12.
3. M.K.Boyd et. al. // IRE. Trans. 1962, v. ED-9. № 3,
p. 247.
4. J.M.Prieszhev // Radio electronics problems. ser. 2.
1964, v. 7, p. 322-327.
5. V.G.Andreev // JTP. 1968, v. XXXVIII. N 8,
p. 1018-1021.
70
|