Parallel coupled cavity structure with constant magnets focusing system

Accelerator for intensive electron beam (average current up to 2 A) from energy 50 keV up to energy 3-5 MeV is offered. Accelerating structure consist of a few resonators fed parallel from one waveguide. Focusing system contains constant radial magnets located between accelerating resonators and cre...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2001
Автори: Pavlov, V.M., Shiyankov, S.V., Ivannikov, V.I., Chernousov, Yu.D., Shebolaev, I.V.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2001
Назва видання:Вопросы атомной науки и техники
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/78990
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Parallel coupled cavity structure with constant magnets focusing system / V.M. Pavlov, S.V. Shiyankov, V.I. Ivannikov, Yu.D. Chernousov, I.V. Shebolaev // Вопросы атомной науки и техники. — 2001. — № 5. — С. 74-76. — Бібліогр.: 11 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-78990
record_format dspace
spelling irk-123456789-789902015-03-25T03:01:53Z Parallel coupled cavity structure with constant magnets focusing system Pavlov, V.M. Shiyankov, S.V. Ivannikov, V.I. Chernousov, Yu.D. Shebolaev, I.V. Accelerator for intensive electron beam (average current up to 2 A) from energy 50 keV up to energy 3-5 MeV is offered. Accelerating structure consist of a few resonators fed parallel from one waveguide. Focusing system contains constant radial magnets located between accelerating resonators and creating the axial alternating-gradient focusing magnetic field. Geometry and results of beam dynamics calculation such kind accelerator are presented. 2001 Article Parallel coupled cavity structure with constant magnets focusing system / V.M. Pavlov, S.V. Shiyankov, V.I. Ivannikov, Yu.D. Chernousov, I.V. Shebolaev // Вопросы атомной науки и техники. — 2001. — № 5. — С. 74-76. — Бібліогр.: 11 назв. — англ. 1562-6016 PACS number: 29.17.+w http://dspace.nbuv.gov.ua/handle/123456789/78990 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Accelerator for intensive electron beam (average current up to 2 A) from energy 50 keV up to energy 3-5 MeV is offered. Accelerating structure consist of a few resonators fed parallel from one waveguide. Focusing system contains constant radial magnets located between accelerating resonators and creating the axial alternating-gradient focusing magnetic field. Geometry and results of beam dynamics calculation such kind accelerator are presented.
format Article
author Pavlov, V.M.
Shiyankov, S.V.
Ivannikov, V.I.
Chernousov, Yu.D.
Shebolaev, I.V.
spellingShingle Pavlov, V.M.
Shiyankov, S.V.
Ivannikov, V.I.
Chernousov, Yu.D.
Shebolaev, I.V.
Parallel coupled cavity structure with constant magnets focusing system
Вопросы атомной науки и техники
author_facet Pavlov, V.M.
Shiyankov, S.V.
Ivannikov, V.I.
Chernousov, Yu.D.
Shebolaev, I.V.
author_sort Pavlov, V.M.
title Parallel coupled cavity structure with constant magnets focusing system
title_short Parallel coupled cavity structure with constant magnets focusing system
title_full Parallel coupled cavity structure with constant magnets focusing system
title_fullStr Parallel coupled cavity structure with constant magnets focusing system
title_full_unstemmed Parallel coupled cavity structure with constant magnets focusing system
title_sort parallel coupled cavity structure with constant magnets focusing system
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2001
url http://dspace.nbuv.gov.ua/handle/123456789/78990
citation_txt Parallel coupled cavity structure with constant magnets focusing system / V.M. Pavlov, S.V. Shiyankov, V.I. Ivannikov, Yu.D. Chernousov, I.V. Shebolaev // Вопросы атомной науки и техники. — 2001. — № 5. — С. 74-76. — Бібліогр.: 11 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT pavlovvm parallelcoupledcavitystructurewithconstantmagnetsfocusingsystem
AT shiyankovsv parallelcoupledcavitystructurewithconstantmagnetsfocusingsystem
AT ivannikovvi parallelcoupledcavitystructurewithconstantmagnetsfocusingsystem
AT chernousovyud parallelcoupledcavitystructurewithconstantmagnetsfocusingsystem
AT shebolaeviv parallelcoupledcavitystructurewithconstantmagnetsfocusingsystem
first_indexed 2025-07-06T03:07:07Z
last_indexed 2025-07-06T03:07:07Z
_version_ 1836865267306594304
fulltext PARALLEL COUPLED CAVITY STRUCTURE WITH CONSTANT MAGNETS FOCUSING SYSTEM V.M. Pavlov, S.V. Shiyankov, V.I. Ivannikov1, Yu.D. Chernousov1, I.V. Shebolaev1 Budker Institute of Nuclear Physics, 630090 Novosibirsk, Russia, Lavrentiev av., 11 e-mail: Pavlov@inp.nsk.su 1 Institute of Chemical Kinetic and Combustion 630090 Novosibirsk, Russia, Institutskaya str., 3 e-mail: Chern@catalysis.nsk.su Accelerator for intensive electron beam (average current up to 2 A) from energy 50 keV up to energy 3-5 MeV is of- fered. Accelerating structure consist of a few resonators fed parallel from one waveguide. Focusing system contains constant radial magnets located between accelerating resonators and creating the axial alternating-gradient focusing magnetic field. Geometry and results of beam dynamics calculation such kind accelerator are presented. PACS number: 29.17.+w The development of an electron accelerator on low energies β ≅ (0.4-1) with pulse current more than 0.1 A represents some difficulties due to influence of the space charge on beam dynamics. To retain a beam the magnetic field of the order 0.05 - 0.2 T is necessary. The weight a focusing solenoid is significant, the DC power sources and cooling system are necessary. All these essentially increase the weight and cost of such kind of accelerators. The focusing of a beam by a sign-alternating mag- netic field allows reducing the weight and cost of the fo- cusing system [1]. Permanent magnets with a large re- manence are attractive for producing strong magnetic fields. The focusing of a beam, for example in powerful klystrons, is carried out by Sm-Co permanent magnets keeping on axes of beams an alternating field with max- imum induction 0.1-0.2 Т [2]. However such fields, ca- pable of retaining a beam current of several ampere, in making injector -accelerators are not utilized. The rea- son is simple: due to the construction of usual accelerat- ing structure, in which the accelerating cavities are lo- cated close to each other, or the intervals are occupied by coupling cavities [3-5]. In parallel coupled structure [6] the creation of an al- ternating magnetic field on the axis of a beam with the help of radially magnetized magnets is possible. In such a structure the accelerating cavities are located sequen- tially one after another and are excited from a wave- guide through a common wall [6, 7]. If for excitation a rectangular wave-guide is used, the condition of a trav- elling wave with the phase velocity vϕ > c is fulfilled. The cavities should be installed at the distance ( )gvcL Λ+= /// 00 λλ apart, where 0λ , gΛ - wave- lengths of the accelerating field in free space and in the wave-guide respectively. The direction of particle mo- tion in the structure must be opposite to the direction of the wave-guide phase velocity. Under these conditions the synchronous acceleration of particles with variable velocity v is possible. The intervals between accelerat- ing cavities are free and can be used for installation of focusing magnets. The sizes of cavity coupling slots become consider- able even if cavity quality-factor is equal to 105 [8]. That can result in the appearance of asymmetric field compo- nents in the accelerating cavity. In our case at quality- factor of accelerating resonators Q ≅ 104 the sizes of coupling holes can be essentially reduced by exciting accelerating cavities through the transmission-type cavi- ty. The scheme of such a structure with built-in magnets is shown in Fig. 1. The accelerating cavities (1) are ex- cited from the transmission-type cavity (6) through cou- pling slots (3) in the common wall. Excitation of the whole system is carried out through a coupling hole (7). The cavity (6) represents a cut of the rectangular wave- guide, operated on H104 -mode. The wave-guide is load- ed by capacity protuberances (2) to reduce the wave- length. In the transmission-type cavity (6) the standing wave with a period L = λ o/2 is settled. The distance between the neighboring coupling holes (3) is also λo/2. There- fore accelerating cavities are exited by the transversal component of the magnetic field of cavity (6) with a phase shift π. The wave-guide-fed slots of all cavities (1) are in identical conditions. They are connected in series and can be considered as one equivalent cavity. Thus the structure can be described as a system of two coupled cavities [9, 10]. ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2001. №5. Серия: Ядерно-физические исследования (39), с. 74-76. 74 mailto:Pavlov@inp.nsk.su mailto:Chern@catalysis.nsk.su Fig. 1. Scheme of the accelerating structure. 1 – accelerating cavity, 2 – capacity protuberance, 3 – coupling slot, 4 – symmetrized magnetic circuit, 5 – mag- nets, 6 – transmission-type cavity, 7 – input coupling hole. In such a system the coupling coefficient between cavities (final and intermediate) can vary over a wide range. The ratio of stored energies in final cavity W1 and intermediate cavity W2 depends on coupling coefficient k between the cavities and the quality-factor of the final cavity Q1: W1/W2 = k 2Q1 2. The system is matched, if the entering coupling coefficient is chosen from the require- ment: k o = 1 + k 2Q1⋅Q2. Thus, increasing the amplitude of the field in a trans- mission-type cavity with keeping the input matched re- duces the coupling coefficient between the cavities and, hence, decreases the sizes of the coupling holes. This re- duces the influence of coupling slot on the distribution of fields in the accelerating cavity. To create radially magnetized system four rectangu- lar Nd-Fe-B magnets (5) are used. The aperture magnet- ic field is symmetrized by Fe- bushes (4) with a round hole. Magnets (5) are located inside the intervals be- tween cavities (1). The magnets are magnetized alter- nately - from axis and to axis of structure. This produces an alternating longitudinal magnetic field on beam axis. The adjusting accessories of magnets are demountable, that allows to remove them if the structure must be heat- ed. The optimum sizes of accelerating cavities depend on the current of the beam and power input. When a large current is accelerated, the influence of longitudinal wake fields becomes essential. The voltage variation of the beam U on an single cavity with length L and effec- tive shunt impedance Z taking into account radiation is determined by the expression: U = (PZL)1/2 - IZL/2, where P – input RF power and I – average accelerating beam current. At given P and I, U as the function of (ZL) has maximum at (ZL)0 = P/I 2, and is equal to zero at ZL = 4(ZL)0 and unsignificantly (about 20 %) varies when changing ZL from (ZL)0 up to 2(ZL)0. The power P is always restricted by employed RF source, therefore ZL should be chosen from the requirements: (ZL)opt.=1.5⋅ Pmax/I 2 max. In this case at a variation of a power level the effective acceleration of currents up to Imax is possible. As an example one of the variants of beam dynamics calculation is presented. Basic data: Operate frequency 2856 MHz, Injection energy 50 kV (input energy spread 2%), Average beam current 1.95 A , Number of particles in bunch 0.36⋅1010, Pulse duration of input current is according to π injec- tion, Diameter of input beam 4 mm, Phase shift between cavities equal to π, Input RF powers (without current load) 0.025, 0.15, 0.25, 0.35 and 0.45 MW respectively. The distribution of accelerating field of Е010 cavities and its parameters were calculated previously using pro- gram SLANS [11]. The diameter of aperture is equal to 10 mm. Cavity diameter 80 mm, (operating frequency 2856 MHz). Length of cavities: 18, 22, 32, 36 and 36 mm respectively. Cavities are assumed not coupling. The magnetic field of radially magnetized perma- nent magnets was modelled by the field of thin close lo- cated solenoids with opposing current [1]. The lengths of magnets located between the cavities are 8 mm. ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2001. №5. Серия: Ядерно-физические исследования (39), с. 75-76. 75 The results of calculations are shown in Fig. 2. Fig. 2. The results of calculation. There one can see the distributions of focusing mag- netic field, relative amplitude of accelerating RF field in the cavities and results of calculation: Average output energy 3.6 MeV, root-mean-square deviation of energy ±0.7 %, Electrons capture 100 %. Calculated normalized emittance of accelerating parti- cles is less than 33 π⋅mm⋅mrad for both x and y axes. At present time the model of accelerator on parallel coupled cavity is in progress. REFERENCES 1. С.И.Молоковский, А.Д.Сушков. Интенсивные электронные и ионные пучки. M.: Энергоиздат, 1991. 304с. 2. Б.М.Быстров, С.В.Галактионов, Б.Е.Демин и др. // ВАНТ, Сер.ТФЭ (35). 1987, вып. 4. 3. О.А.Вальднер. Ускоряющие волноводы. М.: Атомиздат, 1973. 216с. 4. А.А.Завадцев, Б.В.Зверев. Новые ускоряющие системы для ЛУЭ на стоячей волне // Письма в ЖТФ. 1981, т. 7, № 21, с. 1332-1335. 5. В.И.Иванников, Ю.Д.Черноусов, И.В.Шеболаев. Ускоряющая структура с параллельной связью // ЖТФ. 1986, т. 56, N 12, с. 2407. 6. В.Е.Акимов, П.Д.Воблый, М.М.Карлинер, Е.В.Козырев, И.Г.Макаров, Н.В.Матяш, О.А.Не- жевенко, Г.Н.Острейко, Б.З.Персов, С.И.Ру- винский, Г.В.Сердобинцев, В.В.Яковлев. Уско- ряющая система разрезного микротрона. Пре- принт ИЯФ 89-162, Институт ядерной физики СО АН СССР, Новосибирск 1989 г. 7. В.И.Иванников, Ю.Д.Черноусов, И.В.Шеболаев. О возможности создания структуры с парал- лельной связью для ЛУЭ на малые энергии // ВАНТ. Сер.ТФЭ (35). 1987, в. 4, с. 55. 8. H.Matsumoto et.al. // Nucl. Instr. Meth. 1993, v. A330, p. 1-11. 9. В.И.Иванников, Ю.Д.Черноусов, И.В.Шеболаев. Переходные процессы в паре связанных резона- торов // ЖТФ. 1996, т. 66, N 5, с. 162-167. 10. В.И.Иванников, Ю.Д.Черноусов, И.В.Шеболаев. Cвойства связанных резонаторов // Радиотехни- ка и электроника, 2000, т. 45, № 2, с. 180-184. 11. D.G.Myakishev, V.P.Yuakovlev. An interactive code SLANS for evaluation of RF-cavities and ac- celerator structure // IEEE Particle Accelerator Conference. May 6-9, 1991, San-Francisco, Cali- fornia. 91CH3038-7, Conference Record. v. 5, p. 3002-3004. 76