The thin structure of waveguide dielectric accelerating system elements

Last years the works appeared in which models of artificial dielectrics containing in a frequency band simultaneously negative values of the dielectric permittivity and magnetic permeability were discussed [1, 2]. As is shown in [3], the electromagnetic wave propagation in such a media is characteri...

Full description

Saved in:
Bibliographic Details
Date:2001
Main Authors: Bryzgalov, G.A., Nikolaichuk, L.N., Khizhnyak, N.A.
Format: Article
Language:English
Published: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2001
Series:Вопросы атомной науки и техники
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/79005
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:The thin structure of waveguide dielectric accelerating system elements / G.A. Bryzgalov, L.N. Nikolaichuk, N.A. Khizhnyak // Вопросы атомной науки и техники. — 2001. — № 5. — С. 150-153. — Бібліогр.: 13 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:Last years the works appeared in which models of artificial dielectrics containing in a frequency band simultaneously negative values of the dielectric permittivity and magnetic permeability were discussed [1, 2]. As is shown in [3], the electromagnetic wave propagation in such a media is characterized with peculiarities that are important to understand the electromagnetic radiation interaction with tissues in vivo. The aim of this work is to show that such a media in organic nature can be meet at every step, and the mechanism of formation of simultaneous negative values of ε(ω) and μ(ω) is contained already by their physical structures. Moreover, experimental facts are known confirming the existence of positive and negative values of ε and μ in a narrow frequency band that, unfortunately, is still not completely understood till now.