Dipole magnet of synchrotron source for National Synchrotron Centre of Ukraine
The paper contains the revised design of a dipole magnet for a synchrotron radiation source. Usage of such a magnet allows to reach the energy of electrons in a ring up to 1.2 GeV. In paper the result of simulation of a magnet for all modes of operations of a source are shown. The proposed variant o...
Збережено в:
Дата: | 2001 |
---|---|
Автори: | , , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2001
|
Назва видання: | Вопросы атомной науки и техники |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/79022 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Dipole magnet of synchrotron source for National Synchrotron Centre of Ukraine / P.I. Gladkikh, I.M. Karnaukhov, A.O. Mytsykov, V.I. Muratov, F.A. Peev // Вопросы атомной науки и техники. — 2001. — № 5. — С. 137-140. — Бібліогр.: 4 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-79022 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-790222015-03-25T03:02:33Z Dipole magnet of synchrotron source for National Synchrotron Centre of Ukraine Gladkikh, P.I. Karnaukhov, I.M. Mytsykov, A.O. Muratov, V.I. Peev, F.A. The paper contains the revised design of a dipole magnet for a synchrotron radiation source. Usage of such a magnet allows to reach the energy of electrons in a ring up to 1.2 GeV. In paper the result of simulation of a magnet for all modes of operations of a source are shown. The proposed variant of the dipole magnet considerably raises parameters of the synchrotron radiation source. 2001 Article Dipole magnet of synchrotron source for National Synchrotron Centre of Ukraine / P.I. Gladkikh, I.M. Karnaukhov, A.O. Mytsykov, V.I. Muratov, F.A. Peev // Вопросы атомной науки и техники. — 2001. — № 5. — С. 137-140. — Бібліогр.: 4 назв. — англ. 1562-6016 PACS numbers: 02.30.Dk, 02.30.Em. http://dspace.nbuv.gov.ua/handle/123456789/79022 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
The paper contains the revised design of a dipole magnet for a synchrotron radiation source. Usage of such a magnet allows to reach the energy of electrons in a ring up to 1.2 GeV. In paper the result of simulation of a magnet for all modes of operations of a source are shown. The proposed variant of the dipole magnet considerably raises parameters of the synchrotron radiation source. |
format |
Article |
author |
Gladkikh, P.I. Karnaukhov, I.M. Mytsykov, A.O. Muratov, V.I. Peev, F.A. |
spellingShingle |
Gladkikh, P.I. Karnaukhov, I.M. Mytsykov, A.O. Muratov, V.I. Peev, F.A. Dipole magnet of synchrotron source for National Synchrotron Centre of Ukraine Вопросы атомной науки и техники |
author_facet |
Gladkikh, P.I. Karnaukhov, I.M. Mytsykov, A.O. Muratov, V.I. Peev, F.A. |
author_sort |
Gladkikh, P.I. |
title |
Dipole magnet of synchrotron source for National Synchrotron Centre of Ukraine |
title_short |
Dipole magnet of synchrotron source for National Synchrotron Centre of Ukraine |
title_full |
Dipole magnet of synchrotron source for National Synchrotron Centre of Ukraine |
title_fullStr |
Dipole magnet of synchrotron source for National Synchrotron Centre of Ukraine |
title_full_unstemmed |
Dipole magnet of synchrotron source for National Synchrotron Centre of Ukraine |
title_sort |
dipole magnet of synchrotron source for national synchrotron centre of ukraine |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2001 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/79022 |
citation_txt |
Dipole magnet of synchrotron source for National Synchrotron Centre of Ukraine / P.I. Gladkikh, I.M. Karnaukhov, A.O. Mytsykov, V.I. Muratov, F.A. Peev // Вопросы атомной науки и техники. — 2001. — № 5. — С. 137-140. — Бібліогр.: 4 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT gladkikhpi dipolemagnetofsynchrotronsourcefornationalsynchrotroncentreofukraine AT karnaukhovim dipolemagnetofsynchrotronsourcefornationalsynchrotroncentreofukraine AT mytsykovao dipolemagnetofsynchrotronsourcefornationalsynchrotroncentreofukraine AT muratovvi dipolemagnetofsynchrotronsourcefornationalsynchrotroncentreofukraine AT peevfa dipolemagnetofsynchrotronsourcefornationalsynchrotroncentreofukraine |
first_indexed |
2025-07-06T03:08:35Z |
last_indexed |
2025-07-06T03:08:35Z |
_version_ |
1836865359498444800 |
fulltext |
DIPOLE MAGNET OF SYNCHROTRON SOURCE FOR NATIONAL
SYNCHROTRON CENTRE OF UKRAINE
P.I. Gladkikh, I.M. Karnaukhov, A.O. Mytsykov, V.I. Muratov, F.A. Peev
IHEPNP NSC KIPT, Kharkov
The paper contains the revised design of a dipole magnet for a synchrotron radiation source. Usage of such a magnet
allows to reach the energy of electrons in a ring up to 1.2 GeV. In paper the result of simulation of a magnet for all
modes of operations of a source are shown. The proposed variant of the dipole magnet considerably raises parame-
ters of the synchrotron radiation source.
PACS numbers: 02.30.Dk, 02.30.Em.
1 INTRODUCTION
In 1994 in NSC KIPT the design of a 800 МeV syn-
chrotron radiation source for Ukrainian Synchrotron
Center was developed. To realize this design in 6 years,
it is expedient to revise some physical properties of the
facility. With this purpose the upgrading of the design
of a dipole magnet is conducted. The basic purpose of
this upgrading is the raise of a maximum energy of a
synchrotron ring.
2 MAIN SPECIFICATIONS OF
A DIPOLE MAGNET
The main specifications of a dipole magnet are listed
in Table 1. In this table the parameters of a former
dipole magnet are given too.
Table 1. Comparison of demanded parameters of former
and updated dipole magnets
Parameter ISI-800M ISI-800
Bending radius, m 2.3 2.005
Eff. Angular Dim.,deg. 30° 30°
Field nom.(B), T. 1.45 1.34
Max dev., ∆B/B 1⋅10-4 1⋅10-4
Gradient, Т/m 0.0208 0.03
Field index 3.3 3
Work area mm×mm 40×20 30×20
Gap, mm 36 36
Sexst. strength (no more),
Т/м
3
Oct. strength (no more),
Т/m2
30
Gradient dev. in work
area, %
±1 ±1
Number of magnet in proj. 12 12
As it is seen from presented data that updating of a
magnet is reduced to expansion of an area of a good
field, modification of the field index and increasing the
bending radius of the magnet. As a matter of fact, it is
the new design. Let's consider the basic calculated pa-
rameters for a dipole magnet.
3 FIELD OF A DIPOLE MAGNET IN A REG-
ULAR PART
Concerning a high bending radius allows to use a
flat 2-D model for calculation of the pole shape of mag-
net. For calculation both numerical methods [1, 2], and
analytical ones were used [3]. The basic geometrical pa-
rameters of the magnet were selected so to minimize a
field in a yoke. Fig. 1 illustrates the cross- section of the
magnet.
Fig. 1. Cross section of dipole magnet.
The pole shape was determined, considering the re-
quirements:
• ·at a rated energy of nonlinearity fields should be
minimum;
• ·the field on a pole should not exceed a field on an
equilibrium orbit more than by 10 %.
The cross-section of a pole shape is illustrated in
Fig. 2.
-10 -5 5 10 y,cm
1
2
3
4
5
x,cm
A1=(-7.85434,2.89907)
A2(-3.88477,1.70393)
A3(-3.42138,1.70393 A4(3.548,1.8497)
A5(5.62782,2.78058)
Fig. 2. Pole shape in a regular part of the magnet.
For calculation of the pole shape, 6 areas were se-
lected. Areas ]-∞, А1], [A5, ∞[ are the bevels of a pole.
Their inclination angle (of ±66°) was selected so that
the field decreases from a surface of a pole inward a
yoke. The shape of shims (areas [A1, A2], [A4, A5])
was selected so that the field on them did not exceed a
certain magnitude (see Fig. 3). The total field on a pole
depends on the product of the contributions of fields of
different areas (see Fig. 4).
ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2001. №5.
Серия: Ядерно-физические исследования (39), с. 137-140.
137
-10 -5 5
t
0.8
0.85
0.9
0.95
1.05
1.1
B/B0
a1 a3 a4 a5
a2
L
R
M
-10 -5 5
t
0.8
0.85
0.9
0.95
1.05
1.1
B/B0
a1 a3 a4 a5
a2
L
R
M
Fig. 3. Contributions of different areas of a pole in
the field.
-10 -5 5 10
t
0.2
0.4
0.6
0.8
B/B0
a1 a3 a4 a5
1.09682
a2
Bmax
Fig. 4. Total field on the pole.
So, for the left shim [A1, A2] (curve L in Fig. 3) the
field should be less, than for the right one [A4, A5]
(curve R in a Fig. 3), because the resultant field is
shaped with considering a field of a medial part [A3,
A4] (curve of M in a Fig. 3). The shapes of the corre-
sponding pieces are selected so that on the left-hand and
right-hand shims the field was equal and did not exceed
a field at centre of a magnet more than on 10%.
On a pole the horizontal segment [A2, A3] was pro-
vided intended for a stay of poles on the spacer of a gau-
ged thickness. It is necessary for preventing a modifica-
tion of a gap under an operating radiation-pressure for-
ces.
The shape of the segment [A3, A4] was determined
so that with allowing for the shape of all above men-
tioned segments, the field in a working area satisfies the
requirements illustrated in Table 1. In Fig. 5 the distri-
bution of the gradient, normalized on the field for differ-
ent values of the field is illustrated. In Fig. 5 it is seen,
that the minimum of nonlinearities is reached in fields,
corresponding to the energy 1.1-1.16 GeV. The charac-
teristics of a field of such anideal magnet are shown in
Table 2 and are illustrated by Fig. 6-Fig. 9.
However the real magnet is produced from a materi-
al, the permeability of which can differ from a perme-
ability, which one was taken into consideration in our
calculations. Assembly and manufacture of poles also
are yielded with a certain exactitude. Therefore the in-
fluence at any rate of enumerated factors should be esti-
mated.
-2 -1 0 1 2
-0,0154
-0,0152
-0,0150
-0,0148
-0,0146
-0,0144
-0,0142
-0,0140
-0,0138
-0,0136
9
8
7
6
5
4 3 2
1
G
(x
)/
B
(0
),
[c
m
-1
]
X,cm
1- 0.30 T, 0.20 GeV
2- 0.68 T, 0.46 GeV
3- 1.09 T, 0.74 GeV
4- 1.36 T, 0.92 GeV
5- 1.48 T, 1.01 GeV
6- 1.61 T, 1.09 GeV
7- 1.72 T, 1.16 GeV
8- 1.76 T, 1.20 GeV
9- 1.85 T, 1.26 GeV
Fig. 5. Radial distribution of the normalized gradi-
ent at different field values.
5000 10000 15000 20000 25000 30000
0,2
0,4
0,6
0,8
1,0
1,2
1,4
1,6
1,8
B
,T
I,AW/pol
Fig. 6. A magnetization curve of a magnet.
0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8
-0,0149
-0,0148
-0,0147
-0,0146
-0,0145
-0,0144
-0,0143
-0,0142
N
B,T
Fig. 7. Dependence of the field index on a stable or-
bit.
Table 2. Physical properties of a calculated magnet
E, GeV I, кAW/pol B, T G0/B0, cm-1 S0/B0, cm-2 S0/B0, cm-3 N N/N0-1
0.20 4.4 0.3 -0.01487 2.4·10-4 8.7·10-5 -3.42 -0.04
0.46 10. 0.7 -0.01473 2.4·10-4 8.5·10-5 -3.39 -0.03
0.74 16. 1.1 -0.01466 2.2·10-4 8.1·10-5 -3.37 -0.02
0.92 20. 1.4 -0.01461 2.0·10-4 7.6·10-5 -3.36 -0.02
1.01 22. 1.5 -0.01458 1.8·10-4 7.2·10-5 -3.35 -0.02
1.09 24. 1.6 -0.01449 1.1·10-4 6.7·10-5 -3.33 -0.01
1.16 26. 1.7 -0.01436 5.3·10-6 4.0·10-5 -3.30 -8.48·10-4
1.20 27. 1.76 -0.01429 -5.4·10-5 2.7·10-5 -3.29 0.004
ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2001. №5.
Серия: Ядерно-физические исследования (39), с. 138-140.
138
1.25 29. 1.85 -0.01415 -2.1·10-4 6.9·10-6 -3.25 0.01
0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8 2,0
-0,0002
-0,0001
0,0000
0,0001
0,0002
0,0003
S
, B
/c
m
2
B,T
Fig. 8. Dependence of the sextupole component from
the field on a stable orbit.
0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8 2,0
0,00000
0,00002
0,00004
0,00006
0,00008
0,00010
O
, B
/c
m
3
B,T
Fig. 9. Dependence of the octupole component from
the field on a stable orbit.
4 INFLUENCE OF PERMEABILITY
The above-mentioned results were obtained in the
supposition that both the pole and the yoke are manu-
factured from the steel 10, the magnetic permeability of
which is characterized by a curve labeled as st10 in
Fig. 10.
15000 16000 17000 18000 19000 20000 21000 22000 23000 24000 25000
0
100
200
300
400
500
600
700
800
900
1000 0 5000 10000 15000 20000 25000
0
1000
2000
3000
4000
5000
m
u
B,Gs
st10
armco
m
u
B,Gs
armco
st10
Fig. 10. Comparison of permeabilities for Armco
and steel 10.
To estimate influence of permeability, the poles
were calculated in the supposition that they are made of
different materials and have the same shape. The results
are shown in Fig. 11.
-2 -1 0 1 2
-0,025
-0,020
-0,015
-0,010
-0,005
0,000
0,005
0,010
0,015
0,020
∆G
/G
0-1
X,cm
armco
st10
Fig. 11. Comparison of a gradient for poles of equal
shape but manufactured from different materials.
The optimization was done for a pole of steel st10.
The Fig. 11 testifies that the magnetic permeability
essentially influences on the magnitude of nonlineari-
ties. Therefore should be correct of a pole shape on data
of measuring of the permeability. On the other hand the
permeability deviations at a homogeneous material will
have an effect only on the field magnitude, at which one
the minimum of nonlinearities is reached. For a magnet
under consideration the optimum energy is decreased
from 1.15 GeV at poles from steel 10, up to 1.0 GeV at
poles from Armco.
Thus a basic criterion of the material quality is ho-
mogeneity of a material, even to the detriment of magni-
tude of the permeability.
5 INFLUENCE OF AN EXACTITUDE
OF MANUFACTURING
When estimating the manufacturing tolerances for
the magnet pole surface the perturbations of the pole
shape showed in Fig. 12-15 were considered. Here in
this figures shown are the perturbations in a gradient
following from the errors of pole manufacturing.
-10 -5 5 10
y,cm
1
2
3
4
5
x,cm
A1=(-7.85434,2.89907)
A2(-3.88477,1.70393)
A3(-3.42138,1.70393, A4(3.548,1.8497)
A5(5.62782,2.78058)A=10mkm
-3 -2 -1 1 2 3
-0.01
-0.005
0.005
0.01
Fig. 12. The cavity of the central part of the pole
(upper part of the figure) results to uprising of the
sextupole component of the field (bottom part of the
figure).
139
-5
1
2
3
A2(-3.88477,1.70393)
A3(-3.42138,1.70393, A4
A=10mkm
-3 -2 -1 1 2 3
-0.0175
-0.015
-0.0125
-0.01
-0.0075
-0.005
-0.0025
5
Fig. 13. The skewness of the central part of the pole
(upper part of the figure) results in uprising of the
octupole component of the field (bottom part of the
figure) let alone quadrupole.
-5
1
2
3
A2(-3.88477,1.70393)
A3(-3.42138,1.70393)
, A4
A=10mkm
-3 -2 -1 1 2 3
-0.01
-0.005
0.005
0.01
∆ G(t)
5
4
Fig. 14. The nonsymmetrical cavity of central part
of the pole (upper part of the figure results in upris-
ing of the sextupole, octupole components of the
field and of the quadrupole error (bottom part of the
figure).
-5 5
1
2
3
A2(-3.88477,1.70393)
A3(-3.42138,1.70393
, A4
A=10mkm
-3 -2 -1 1 2 3
-0.01
-0.005
0.005
0.01
∆ G(t)
Fig. 15. See the caption of Fig. 14.
The tolerance on a gap follows from the expression:
H
B
G 0
2
0
0
α
−= ;
where α0- inclination of the pole profile at center;
H-half-gap; B0-field at center of the gap.
This means, that an error surveyed before in manu-
facturing the pole are much more dangerous and their
amplitude should not exceed 5 µm.
6 THE EDGE SHAPE OF A MAGNET
The edge shape of the magnet is determined by fol-
lowing reasons:
• on the edge there should not be a supersaturation;
• the magnet should have a boundary focusing.
The first requirement is ensured with the shape of
the magnet edge along a bending radius (Fig. 16). The
smoothly varying passage to a yoke ensures a weak de-
pendence of the effective length of the magnet on the
field. The difference of the effective length of the mag-
net at a maximum and minimum fields is 150 µm.
2 4 6 8 10
1
2
3
4
5
A4(2.9844, 1.8)
A5(6.6199 , 3.00946)
B/B0
Fig. 16. Edge of the magnet and field distribution on
the magnet edge azimuth.
The boundary focusing is ensured that since an az-
imuth 13.58º concerning centre of a magnet the edge of
a pole will be formed by means of translation of cut
conducted in this place, under this angle to radius to a
vector with a scaling ratio, equal the ration of a gap
(Fig. 16) to a gap of a regular part.
The edge shape of the magnet should be correct be-
fore manufacturing.
7 CONCLUSION
The calculations conducted for upgrading the design
of the magnet system ISI-800M shows that a magnet
manufactured with calculated tolerances under the cal-
culated shapes completely meets the requirements,
which are following from a beam dynamics in a syn-
chrotron. The magnet with such requirements/specifica-
tions can be manufactured in Ukraine already in the
next year under condition of sufficient financing.
REFERENCES
1. POISSON Group Programs. User's Guide, CERN,
1965.
2. Mermaid Users's Guide, Sim Limited, Novosibirsk,
1994 (in Russian).
3. А.Mytsykov. Application of conformal represen-
tation for model operation of flat fields created by
smooth poles // Problems of Atomic Science and
Technology. Issue: Nuclear-physics Research (33).
1999, v. 1, p. 102-103 (In Russian).
4. E.Bulyak, A.Dovbnya, P.Gladkikh et al, A multi-
purposal accelerator facility for the Kharkov Na-
tional Scientific Center // Proceedings of Interna-
tional Synchrotron Radiation Conference, Novosi-
birsk-98.
ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2001. №5.
Серия: Ядерно-физические исследования (39), с. 140-140.
140
|