Fullerene-diamond transformation under irradiation with charged particles (review)

For the first time nanodiamonds were obtained at the Max Planck Institute (Stuttgart, Germany) in 1997. Dr Banhart and his group investigated transformation of fullerenes into diamond under electron beam irradiation in the electron microscope (electron beam energy is 1.25 MeV). Next experiment in MP...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2001
Автор: Khoruzhiy, V.M.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2001
Назва видання:Вопросы атомной науки и техники
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/79032
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Fullerene-diamond transformation under irradiation with charged particles (review) / V.M. Khoruzhiy // Вопросы атомной науки и техники. — 2001. — № 5. — С. 209-210. — Бібліогр.: 16 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-79032
record_format dspace
spelling irk-123456789-790322015-03-25T03:02:00Z Fullerene-diamond transformation under irradiation with charged particles (review) Khoruzhiy, V.M. For the first time nanodiamonds were obtained at the Max Planck Institute (Stuttgart, Germany) in 1997. Dr Banhart and his group investigated transformation of fullerenes into diamond under electron beam irradiation in the electron microscope (electron beam energy is 1.25 MeV). Next experiment in MPI (Stuttgart) hows that much larger amounts of diamond can be obtained if uses ions from linac instead of electrons as irradiating particles. A fullerene sample was irradiated with 3 MeV Ne+ from the pelletron accelerator. Under the ion irradiation, the temperature of a sample reached 1000-1400K. The maximum range of 3 MeV Ne+ ions in a sample is about 2 µm. 2001 Article Fullerene-diamond transformation under irradiation with charged particles (review) / V.M. Khoruzhiy // Вопросы атомной науки и техники. — 2001. — № 5. — С. 209-210. — Бібліогр.: 16 назв. — англ. 1562-6016 PACS number: 81.05.Uw http://dspace.nbuv.gov.ua/handle/123456789/79032 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description For the first time nanodiamonds were obtained at the Max Planck Institute (Stuttgart, Germany) in 1997. Dr Banhart and his group investigated transformation of fullerenes into diamond under electron beam irradiation in the electron microscope (electron beam energy is 1.25 MeV). Next experiment in MPI (Stuttgart) hows that much larger amounts of diamond can be obtained if uses ions from linac instead of electrons as irradiating particles. A fullerene sample was irradiated with 3 MeV Ne+ from the pelletron accelerator. Under the ion irradiation, the temperature of a sample reached 1000-1400K. The maximum range of 3 MeV Ne+ ions in a sample is about 2 µm.
format Article
author Khoruzhiy, V.M.
spellingShingle Khoruzhiy, V.M.
Fullerene-diamond transformation under irradiation with charged particles (review)
Вопросы атомной науки и техники
author_facet Khoruzhiy, V.M.
author_sort Khoruzhiy, V.M.
title Fullerene-diamond transformation under irradiation with charged particles (review)
title_short Fullerene-diamond transformation under irradiation with charged particles (review)
title_full Fullerene-diamond transformation under irradiation with charged particles (review)
title_fullStr Fullerene-diamond transformation under irradiation with charged particles (review)
title_full_unstemmed Fullerene-diamond transformation under irradiation with charged particles (review)
title_sort fullerene-diamond transformation under irradiation with charged particles (review)
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2001
url http://dspace.nbuv.gov.ua/handle/123456789/79032
citation_txt Fullerene-diamond transformation under irradiation with charged particles (review) / V.M. Khoruzhiy // Вопросы атомной науки и техники. — 2001. — № 5. — С. 209-210. — Бібліогр.: 16 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT khoruzhiyvm fullerenediamondtransformationunderirradiationwithchargedparticlesreview
first_indexed 2025-07-06T03:09:00Z
last_indexed 2025-07-06T03:09:00Z
_version_ 1836865385307045888
fulltext FULLERENE-DIAMOND TRANSFORMATION UNDER IRRADIATION WITH CHARGED PARTICLES (REVIEW) V.M. Khoruzhiy NSC KIPT Akademicheskaya Str., 1, Kharkov, 61108, Ukraine e-mail: khoruzhiy@kipt.kharkov.ua For the first time nanodiamonds were obtained at the Max Planck Institute (Stuttgart, Germany) in 1997. Dr Banhart and his group investigated transformation of fullerenes into diamond under electron beam irradiation in the electron microscope (electron beam energy is 1.25 MeV). Next experiment in MPI (Stuttgart) hows that much larger amounts of diamond can be obtained if uses ions from linac instead of electrons as irradiating particles. A fullerene sample was irradiated with 3 MeV Ne+ from the pelletron accelerator. Under the ion irradiation, the temperature of a sample reached 1000-1400K. The maximum range of 3 MeV Ne+ ions in a sample is about 2 µm. PACS number: 81.05.Uw Linear accelerators are very important instruments for experimental investigations in modern physics. Here we consider obtaining the nanodiamonds under electron or ion irradiation of fullerenes [1-4] using linear acceler- ators. For the first time nanodiamonds were obtained at the Max Planck Institute (MPI) in Stuttgart (Germany) [5]. Dr Banhart and his group investigated transforma- tion of fullerenes into diamond under electron beam ir- radiation in the electron microscope (electron beam en- ergy is 1.25 MeV) [5-8]. The fullerenes-electron beam interaction has three consecutive stages. At the first stage fullerenes and nanotubes [9-11] transform into onion-like fullerenes [12-13] at sample temperatures above 600K. Onion-like fullerenes ("onions") consist of an arrangement of closed, concentrically nested graphitic shells. The "onion" diameters can reach some tens nanometers. `The distance between graphitic shells is 0.34 nm. At the second stage, the distance between the graphitic shells decreasing from 0.34 nm to 0.22 nm towards the center means that the onions are in a state of high self-compression. At last, at the third stage under electron irradiation at temperatures above 900K the cores of compressed carbon onions transform into dia- mond. Once nucleated, these diamond crystals grow un- der continuing irradiation until almost the whole onions have transformed into diamond. Theory of graphite-dia- mond transformation [14] predicts that after nucleation the growth process takes place at low pressure. The largest diamonds produced in the electron microscope were about 100 nm in size. The total amount of dia- mond which can be produced during the irradiation peri- od in the electron microscope is extremely small be- cause the sample areas have to be irradiated with an in- tense focused electron beam of only a few microns in diameter. Next experiment in MPI (Stuttgart) [15] shows that much larger amounts of diamond can be ob- tained if ions from the linac is used instead of electrons as irradiating particles. The fullerene sample was irradi- ated with 3 MeV Ne+ at a current density of 60 µA/cm2 from the pelletron accelerator. Diameter of a sample is 3 mm. Under ion irradiation, the temperature of a sam- ple reached 1000-1400 K. The maximum range of 3 MeV Ne+ ions in a sample is about 2 µm. Using stan- dard thermodynamics, M. Zaiser and F. Banhart have derived a non-equilibrium phase diagram [14] that gives the regions of stability for graphite and diamond as a function of the irradiation intensity and temperature. Next step for more amounts of nanodiamonds is scaling increasing of the output energy and average current of a beam in a heavy ion linear accelerator. This year Florian Banhart used an electron beam to link (or to weld) two hollow carbon nanotubes [16] for creation of ultra- miniaturized electronic circuits in future. REFERENCES 1. H.W.Kroto, J.R.Heath, S.C.O'Brien, R.F.Curland, R.E.Smalley. C60: Buckminsterfullerene // Nature. 1985, v. 318, p. 162. 2. H.W.Kroto. Space, Stars, C60, and Soot // Science. 1988, v. 242, p. 1139. 3. R.F.Curl, R.E.Smalley. Fullerenes: The Third Form of Pure Carbon // Sci. Am. 1991, v. 265, p. 54. 4. W.Krakow, N.M.Rivera, R.A.Roy, R.S.Ruoff, and J.J.Cuomo. The Growth of Crystalline Vapor De- posited C60 Thin Films // Appl. Phys. 1993, v. A56, p. 185. 5. F.Banhart, P.M.Ajayan. Carbon onions as nanoscopic pressure cells for diamond formation // Nature. 1996, v. 382, p. 433-435. 6. F.Banhart. The transformation of graphitic onions to diamond under electron irradiation // J. Appl. Phys. 1997, v. 81 (8), p. 3440-3445. 7. F.Banhart, T.Fuller, Ph.Redlich, P.M.Ajayan. The formation, annealing and self-compression of car- bon onions under electron irradiation // Chem. Phys. Let. 1997, v. 269, p. 349-355. 8. Ph.Redlich, F.Banhart, Y.Lyutovich and P.M.A- jayan. EELS study of the irradiation-induced com- pression of carbon onions and their transformation to diamond // Carbon. 1998, v. 36 (5-6), p. 561- 563. 9. S.Iijima. Helical Microtubules Of Graphitic Carbon // Nature. 1991, v. 354, p. 56. 10. T.Guo, P.Nikolaev, A.G.Rinzler, D.Tomсnek, D.T.- Colbert, R.E.Smalley. Self-Assemebly of Tubular Fullerenes // J. Phys. Chem. 1995, v. 99, p. 10694. 11. T.W.Ebbesen. Carbon Nanotubes // Annu. Rev. Mater. Sci. 1994, v. 24, p. 235. ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2001. №5. Серия: Ядерно-физические исследования (39), с. 209-210. 209 mailto:khoruzhiy@linda.kipt.kharkov 12. D.Ugarte. Curling and closure of graphitic net- works under electron-beam irradiation // Nature. 1992, v. 359, p. 707-709. 13. D.Ugarte. Canonical Structure of Large Carbon Clusters: Cn, n>100 // Europhys. Lett. 1993, v. 22 (1), p. 45-50. 14. M.Zaiser, F.Banhart. Radiation-Induced Transfor- mation of Graphite to Diamond // Phys. Rev. Let. 1997, v. 79 (19), p. 3680-3683. 15. P.Wesolowski, Y.Lyutovich, F.Banhart, H.D.Cars- tanjen and H.Kronmuller. Formation of diamond in carbon onions under MeV ion irradiation // Appl. Phys. Lett. 1997, v. 71 (14), p. 1948-1950. 16. F.Banhart. The formation of a connection between carbon nanotubes in an electron beam // Nano Let- ters. 2001, v. 1, p. 329-332. 210