PES fabric modification with a corona discharge
Paper presents results of experiments with polyethylene terephtalate (PET) focused on the applicability of atmospheric corona discharge for polyester fabric (PES) modification, mainly on the relation between corona discharge input power and the fabric’s hydrophobicity and modification efficiency. Mo...
Gespeichert in:
Datum: | 2005 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2005
|
Schriftenreihe: | Вопросы атомной науки и техники |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/79060 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | PES fabric modification with a corona discharge / J. Pichal, J. Koller, T. Vatuna, L. Aubrecht, P. Spatenka // Вопросы атомной науки и техники. — 2005. — № 1. — С. 175-177. — Бібліогр.: 7 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-79060 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-790602015-03-26T03:01:59Z PES fabric modification with a corona discharge Pichal, J. Koller, J. Vatuna, T. Aubrecht, L. Spatenka, P. Low temperature plasma and plasma technologies Paper presents results of experiments with polyethylene terephtalate (PET) focused on the applicability of atmospheric corona discharge for polyester fabric (PES) modification, mainly on the relation between corona discharge input power and the fabric’s hydrophobicity and modification efficiency. Modification effect strongly grew according to the discharge input power, but the growth was limited by the corona discharge conversion into the spark discharge. Modification effect aging expressed in the feathering spot size time changes sharply diminished in time. Results of corona discharge modification were compared with those of the RF discharge modification В роботі подаються результати експериментів з поліетилен-терфталатом (РЕТ), метою яких було виявлення можливості вживання атмосферного коронного розряду для модифікації поліефірного матеріалів (PES), головним чином, залежності гідрофобності матеріалів та ефективності їх модифікації від споживаної потужності коронного розряду. Ефект модифікації помітно зростав з споживаною потужністю, проте цей зріст обмежувався переходом коронного розряду в іскровий. Результати модифікації коронним розрядом порівнюються з результатами, які були одержані з застосуванням ВЧ розряду. В работе представлены результаты экспериментов с полиэтилен-терфталатом (РЕТ), целью которых было выяснение возможности применения атмосферного коронного разряда для модификации полиэфирного материалов (PES), главным образом, зависимости гидрофобности материалов и эффективности их модификации от потребляемой мощности коронного разряда. Эффект модификации заметно возрастал с потребляемой мощностью, но это возрастание ограничивалось переходом коронного разряда в искровой разряд. Результаты модификации коронным разрядом сравниваются с результатами, полученными при использовании ВЧ разряда. 2005 Article PES fabric modification with a corona discharge / J. Pichal, J. Koller, T. Vatuna, L. Aubrecht, P. Spatenka // Вопросы атомной науки и техники. — 2005. — № 1. — С. 175-177. — Бібліогр.: 7 назв. — англ. 1562-6016 PACS: 52.25.Jm http://dspace.nbuv.gov.ua/handle/123456789/79060 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Low temperature plasma and plasma technologies Low temperature plasma and plasma technologies |
spellingShingle |
Low temperature plasma and plasma technologies Low temperature plasma and plasma technologies Pichal, J. Koller, J. Vatuna, T. Aubrecht, L. Spatenka, P. PES fabric modification with a corona discharge Вопросы атомной науки и техники |
description |
Paper presents results of experiments with polyethylene terephtalate (PET) focused on the applicability of atmospheric corona discharge for polyester fabric (PES) modification, mainly on the relation between corona discharge input power and the fabric’s hydrophobicity and modification efficiency. Modification effect strongly grew according to the discharge input power, but the growth was limited by the corona discharge conversion into the spark discharge. Modification effect aging expressed in the feathering spot size time changes sharply diminished in time. Results of corona discharge modification were compared with those of the RF discharge modification |
format |
Article |
author |
Pichal, J. Koller, J. Vatuna, T. Aubrecht, L. Spatenka, P. |
author_facet |
Pichal, J. Koller, J. Vatuna, T. Aubrecht, L. Spatenka, P. |
author_sort |
Pichal, J. |
title |
PES fabric modification with a corona discharge |
title_short |
PES fabric modification with a corona discharge |
title_full |
PES fabric modification with a corona discharge |
title_fullStr |
PES fabric modification with a corona discharge |
title_full_unstemmed |
PES fabric modification with a corona discharge |
title_sort |
pes fabric modification with a corona discharge |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2005 |
topic_facet |
Low temperature plasma and plasma technologies |
url |
http://dspace.nbuv.gov.ua/handle/123456789/79060 |
citation_txt |
PES fabric modification with a corona discharge / J. Pichal, J. Koller, T. Vatuna, L. Aubrecht, P. Spatenka // Вопросы атомной науки и техники. — 2005. — № 1. — С. 175-177. — Бібліогр.: 7 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT pichalj pesfabricmodificationwithacoronadischarge AT kollerj pesfabricmodificationwithacoronadischarge AT vatunat pesfabricmodificationwithacoronadischarge AT aubrechtl pesfabricmodificationwithacoronadischarge AT spatenkap pesfabricmodificationwithacoronadischarge |
first_indexed |
2025-07-06T03:10:07Z |
last_indexed |
2025-07-06T03:10:07Z |
_version_ |
1836865455442100224 |
fulltext |
PES FABRIC MODIFICATION WITH A CORONA DISCHARGE
J. Pichal1, J. Koller1, T. Vatuna2, L. Aubrecht1, P. Spatenka2
1Czech Technical University, Faculty of Electrical Engineering,
Department of Physics, Technicka 2, Prague, Czech Republic;
2Technical University of Liberec, Faculty of Mechanical Engineering,
Department of Material Science, Halkova 6, 461 17 Liberec, Czech Republic
Paper presents results of experiments with polyethylene terephtalate (PET) focused on the applicability of atmospheric
corona discharge for polyester fabric (PES) modification, mainly on the relation between corona discharge input power
and the fabric’s hydrophobicity and modification efficiency.
Modification effect strongly grew according to the discharge input power, but the growth was limited by the corona
discharge conversion into the spark discharge. Modification effect aging expressed in the feathering spot size time
changes sharply diminished in time. Results of corona discharge modification were compared with those of the RF
discharge modification.
PACS: 52.25.Jm
1. INTRODUCTION
In the textile industry there is permanent search for new
methods of technological optimisation and cost-effective
production of fabrics. One of mostly used synthetic
fabrics is PES based on PET, with still growing world
production.
Since begin of the PET production single-minded effort
was paid to the PET hydrophobicity improvement
because of the PET low wettability, low adhesion, high
oil impurities cohesion and undesirable electric discharge
generation. The most reliable way how to change the
wettability of the PET is the change of its surface
chemical characteristics. The modification can be
achieved [1] by different processes, e.g. by enzymatic
hydrolysis, low pressure and atmospheric pressure plasma
application, chemical grafting or excimer laser
application [2].
The most extensive number of potential chemical
reactions on the fabric’s surface seems to be related with
the plasma modification. The effect of the surface plasma
modification depends on properties of used gas, because
of methane, ethylene, ethanol participation in the
graftage, oxide, tetrafloromethane (CF4) and ammonia
can be used for sloughing, or noble gases as helium, neon,
argon etc. effectivity as admixtures for better chemical
processes initialization.
At present fabrics modification by low–pressure plasma
is among most frequently investigated treatment methods.
It seems to be more advantageous than classical chemical
methods and offers distinctive advantages, especially easy
modification process control (control parameters being
e.g. plasma pressure, discharge input power, modification
time and distance between electrode and modified fabric),
for details see e.g. [3], [4], [5].
On the other hand the low–pressure plasma employment
is mostly joined with higher financial expenses due to the
necessity of the vacuum equipment application and batch
processing. Necessary purchase of the complex
equipment also significantly advances the final product
price. The disadvantages of the low-pressure plasma
employment might be removed with design of the
continual modification system exploiting stable
atmospheric plasma discharges. Due to relative simplicity
of continual modification system exploiting stable
atmospheric plasma discharges its operating expenses
might be lower that that of the low-pressure equipment.
That is why we focused on the applicatibility of
atmospheric corona discharge for PES fabric
modification. We studied the relation between the corona
discharge input power and the fabric’s hydrophobicity
and modification effect aging expressed in the feathering
spot size time changes. Results of measurements were
compared with values obtained in radio–frequency (RF)
and microwave (MW) low–pressure discharges.
2. EXPERIMENTS
For all experiments described in this paper the
specimens made from the polyester fabric “Tesil12” were
used. The specimens had to be properly cleaned before
modification. The modification was performed in
atmospheric corona discharge generated between
grounded large plane brass electrode, diameter 45 mm
and a electrode matrix (72 Ч 54) mm, a set of “single
point” iron electrodes, each of cylindrical shape, diameter
0.7 mm and spike curvature radius about 25 µm, placed in
vertices of rectangular square grid, dimensions of each
square being (9 Ч 9) mm, hence the distance of electrodes
was fixed at 9 mm. The electrodes were put into the open
cylindrical vessel (diameter 15 cm, height 15 cm). During
modification specimens were placed right on the large
plane electrode. All experiments were performed in
stationary air under atmospheric pressure and room
temperature. Stabilized D.C. voltage (7,4-8,4) kV was
applied to the electrodes, typical current values were (50-
281) µA. The voltage setting limited spark discharge
ignition. Modification time was 600 seconds.
Hydrophobicity was evaluated by means of the drop test
[6], 20 µl of distilled water being the test liquid. After
start of every experiment the feathering spot size was
recorded with a camera until 10 minutes from the start.
The area of the spot in the 300th second after start of the
test was used as the standard for the evaluation. The
experiment was stopped if the drop did not soak into the
fabric after 10 minutes from the start.
Problems of Atomic Science and Technology. 2005. № 1. Series: Plasma Physics (10). P. 175-177 175
3. RESULTS
Figure 1 represents the time dependence of the fabric
moistened and feathering area with obvious difference of
the fabric moistened and feathering area time evolution
for supply voltage 7.7 kV and 8.1 kV. Almost linear
shapes of 7.1 kV and 7.7 kV curves changed into the
polynomial for 8.1 kV and 8.4kV ones. This change of
shape might be connected with the rise of fabric
modification degree or/and existence of fabric area
“modification inhomogeneities” in case of less modified
specimens.
0 100 200 300 400 500 600
0
100
200
300
400
500
600
8,4 kV
8,1 kV
7,7 kV
7,4 kV
A
re
a
of
th
e
fe
at
he
rin
g
[m
m
2 ]
Time [s]
Fig. 1. Time dependence of the fabric moistened and
feathering area
The corona discharge column had conical shape.
Particles ionised in corona discharge modified the fabric
in the close surroundings of their touch points with
textile. Final shape of treated area was almost circular.
The regions of ionised particle–fabric touch points were
not completely joined together in case of low
modification intensity and the test drop had to pour over
unmodified zones. The time necessary for “unmodified
zones overflowing” was relatively long and feathering
area seemed to be almost straight time dependent. The
modification “irregularities” might be corrected by
optimising of the interelectode distance.
7,0 7,2 7,4 7,6 7,8 8,0 8,2 8,4 8,6
0
500
1000
1500
2000
2500
A
re
a
of
th
e
fe
at
he
rin
g
[m
m
2 ]
Discharge input power [W]
Fig. 2. Discharge input power dependence of moistened
and feathering area
More effective modification expressed by the treated
fabric area changes can be achieved by discharge input
power rise (Fig. 2). For in experiment used input power
values the feathering area–time dependence seemed to be
exponential, hence small change of input power resulted
in greater change of the hydrophobicity. PES fabric
hydrophobicity changes were related with number and
characteristics of ionised particles, too. Measurements in
more intensive corona discharge were impossible due to
the spark discharge ignition.
Corona PES fabric modification effect aging expressed
in the feathering spot size time changes for different
discharge input power is shown in Fig. 3.
The feathering spot size and hence modification
effectivity had sharply diminished in time. The efficiency
drop might be connected with transformation of created
hydrophilous function groups on the fabric surface. The
transformation might be caused by chemical reactions of
created hydrophilous function surface groups with air
components. Dipoles orientation might also change
backwards in time returning into primary orientation.
Four days after modification no important difference in
hydrophobicity of modified and unmodified specimens
was found.
0 2 4 6 8
0
100
200
300
400
500
8,4 kV
8,1 kV
7,7 kV
7,4 kV
A
re
a
of
th
e
fe
at
he
rin
g
[m
m
2 ]
Time [days]
Fig.3. Atmospheric corona discharge PES fabric
modification effect aging expressed in the feathering spot
size time changes for different input power values
Results of corona discharge modification were compared
with results of the RF discharge modification [7]. There
were used specimens of the same PES fabric. The
modification process seemed to be more efficient in case
of RF discharges, but having in mind the costs of
modification process the comparison is more difficult. For
detailed comparison of both methods further experiments
are necessary.
4. SUMMARY
The PES fabric was modified with atmospheric corona
discharge. Modification effect strongly grew according to
the discharge input power. The growth was limited by the
corona discharge conversion into the spark discharge.
There was performed a study of PES fabric modification
effect aging expressed in the feathering spot size time
changes. The modification efficiency had sharply
diminished in time. There was found no important
difference in hydrophobicity of modified and unmodified
specimens four days after modification.
Results of corona discharge modification were
compared with those of the RF discharge modification.
The modification process seemed to be more efficient in
case of RF discharges, but having in mind the costs of
modification process the comparison is more difficult. For
176
detailed comparison of both methods further experiments
are necessary.
This work was supported by the projects MSM OC
527.60, OC527.120 and LB 00B090.
REFERENCES
[1]CH.M. Pastore, P. Kiekens. Marcel: Dekker, Inc. 2001.
49-52, ISBN 0-8247-0002-3
[2] W. Wong ,et all. // Journal of Materials Processing
Technology (103). 2000, p. 225–229.
[3] M. Sarmadi.// Text. Chemist and Colorist (28).1996,
N6, p. 17–22.
[4] T. Wakida et al:.//Text. Research J. (63). 1993, N8,
p.433–438.
[5] T. Okuno et al.// Textile Research J. (62). 1992,
p.474–480.
[6] A.M. Wrobel et. al.// Polymer (19). 1978, p.908–912.
[7] T. Vatuna et. al.// Czech. J. Phys. (54). 2004, C828-
C834.
МОДИФИКАЦИЯ ПОЛИЭФИРНЫХ МАТЕРИАЛОВ КОРОННЫМ РАЗРЯДОМ
И. Пихал, И. Коллер, Т. Ватуна, Л. Аубрехт, П. Шпатенка
В работе представлены результаты экспериментов с полиэтилен-терфталатом (РЕТ), целью которых было
выяснение возможности применения атмосферного коронного разряда для модификации полиэфирного
материалов (PES), главным образом, зависимости гидрофобности материалов и эффективности их
модификации от потребляемой мощности коронного разряда.
Эффект модификации заметно возрастал с потребляемой мощностью, но это возрастание ограничивалось
переходом коронного разряда в искровой разряд. Результаты модификации коронным разрядом сравниваются с
результатами, полученными при использовании ВЧ разряда.
МОДИФІКАЦІЯ ПОЛІЕФІРНИХ МАТЕРІАЛІВ КОРОННИМ РОЗРЯДОМ
І. Піхал, І. Коллер, Т. Ватуна, Л. Аубрехт, П. Шпатенка
В роботі подаються результати експериментів з поліетилен-терфталатом (РЕТ), метою яких було виявлення
можливості вживання атмосферного коронного розряду для модифікації поліефірного матеріалів (PES),
головним чином, залежності гідрофобності матеріалів та ефективності їх модифікації від споживаної
потужності коронного розряду.
Ефект модифікації помітно зростав з споживаною потужністю, проте цей зріст обмежувався переходом
коронного розряду в іскровий. Результати модифікації коронним розрядом порівнюються з результатами, які
були одержані з застосуванням ВЧ розряду.
|