Control system by the technological electron linac KUT-20
The high-power technological electron linac KUT-20 was developed at the Science Research Complex “Accelerator” of NSC KIPT. The linac consists of two 1.2 m length accelerating structures with a variable geometry and an injector. The latter comprises a diode electron gun, a klystron type buncher and...
Gespeichert in:
Datum: | 2001 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2001
|
Schriftenreihe: | Вопросы атомной науки и техники |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/79207 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Control system by the technological electron linac KUT-20 / Yu.I. Akchurin, V.N. Boriskin, Yu.V. Borgkovsky, V.A. Gurin, N.V. Demidov, M.V. Ivahnenko, A.N. Savchenko, S.P. Levandovsky, E.I. Orlova, V.A. Popenko, V.A. Momot, V.I. Tatanov, G.M. Tsebenko // Вопросы атомной науки и техники. — 2001. — № 3. — С. 126-127. — Бібліогр.: 13 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-79207 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-792072015-03-30T03:01:59Z Control system by the technological electron linac KUT-20 Akchurin, Yu.I. Boriskin, V.N. Borgkovsky, Yu.V. Gurin, V.A. Demidov, N.V. Ivahnenko, M.V. Savchenko, A.N. Levandovsky, S.P. Orlova, E.I. Popenko, V.A. Momot, V.A. Tatanov, V.I. Tsebenko, G.M. The high-power technological electron linac KUT-20 was developed at the Science Research Complex “Accelerator” of NSC KIPT. The linac consists of two 1.2 m length accelerating structures with a variable geometry and an injector. The latter comprises a diode electron gun, a klystron type buncher and an accelerating cavity. With a RF supply power at accelerating structure entries of 11 MW and with a current at the accelerator exit of 1 A, the beam energy will be up to 20 MeV. An average beam power is planned to be 20 kW [1]. All systems of the accelerator are controlled by a computerised control system. The program & technical complex consist of PC equipped with fast ADC, control console, synchronization unit, microprocessor-operated complexes. 2001 Article Control system by the technological electron linac KUT-20 / Yu.I. Akchurin, V.N. Boriskin, Yu.V. Borgkovsky, V.A. Gurin, N.V. Demidov, M.V. Ivahnenko, A.N. Savchenko, S.P. Levandovsky, E.I. Orlova, V.A. Popenko, V.A. Momot, V.I. Tatanov, G.M. Tsebenko // Вопросы атомной науки и техники. — 2001. — № 3. — С. 126-127. — Бібліогр.: 13 назв. — англ. 1562-6016 PACS numbers: 29.17.+w http://dspace.nbuv.gov.ua/handle/123456789/79207 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
The high-power technological electron linac KUT-20 was developed at the Science Research Complex “Accelerator” of NSC KIPT. The linac consists of two 1.2 m length accelerating structures with a variable geometry and an injector. The latter comprises a diode electron gun, a klystron type buncher and an accelerating cavity. With a RF supply power at accelerating structure entries of 11 MW and with a current at the accelerator exit of 1 A, the beam energy will be up to 20 MeV. An average beam power is planned to be 20 kW [1]. All systems of the accelerator are controlled by a computerised control system. The program & technical complex consist of PC equipped with fast ADC, control console, synchronization unit, microprocessor-operated complexes. |
format |
Article |
author |
Akchurin, Yu.I. Boriskin, V.N. Borgkovsky, Yu.V. Gurin, V.A. Demidov, N.V. Ivahnenko, M.V. Savchenko, A.N. Levandovsky, S.P. Orlova, E.I. Popenko, V.A. Momot, V.A. Tatanov, V.I. Tsebenko, G.M. |
spellingShingle |
Akchurin, Yu.I. Boriskin, V.N. Borgkovsky, Yu.V. Gurin, V.A. Demidov, N.V. Ivahnenko, M.V. Savchenko, A.N. Levandovsky, S.P. Orlova, E.I. Popenko, V.A. Momot, V.A. Tatanov, V.I. Tsebenko, G.M. Control system by the technological electron linac KUT-20 Вопросы атомной науки и техники |
author_facet |
Akchurin, Yu.I. Boriskin, V.N. Borgkovsky, Yu.V. Gurin, V.A. Demidov, N.V. Ivahnenko, M.V. Savchenko, A.N. Levandovsky, S.P. Orlova, E.I. Popenko, V.A. Momot, V.A. Tatanov, V.I. Tsebenko, G.M. |
author_sort |
Akchurin, Yu.I. |
title |
Control system by the technological electron linac KUT-20 |
title_short |
Control system by the technological electron linac KUT-20 |
title_full |
Control system by the technological electron linac KUT-20 |
title_fullStr |
Control system by the technological electron linac KUT-20 |
title_full_unstemmed |
Control system by the technological electron linac KUT-20 |
title_sort |
control system by the technological electron linac kut-20 |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2001 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/79207 |
citation_txt |
Control system by the technological electron linac KUT-20 / Yu.I. Akchurin, V.N. Boriskin, Yu.V. Borgkovsky, V.A. Gurin, N.V. Demidov, M.V. Ivahnenko, A.N. Savchenko, S.P. Levandovsky, E.I. Orlova, V.A. Popenko, V.A. Momot, V.I. Tatanov, G.M. Tsebenko // Вопросы атомной науки и техники. — 2001. — № 3. — С. 126-127. — Бібліогр.: 13 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT akchurinyui controlsystembythetechnologicalelectronlinackut20 AT boriskinvn controlsystembythetechnologicalelectronlinackut20 AT borgkovskyyuv controlsystembythetechnologicalelectronlinackut20 AT gurinva controlsystembythetechnologicalelectronlinackut20 AT demidovnv controlsystembythetechnologicalelectronlinackut20 AT ivahnenkomv controlsystembythetechnologicalelectronlinackut20 AT savchenkoan controlsystembythetechnologicalelectronlinackut20 AT levandovskysp controlsystembythetechnologicalelectronlinackut20 AT orlovaei controlsystembythetechnologicalelectronlinackut20 AT popenkova controlsystembythetechnologicalelectronlinackut20 AT momotva controlsystembythetechnologicalelectronlinackut20 AT tatanovvi controlsystembythetechnologicalelectronlinackut20 AT tsebenkogm controlsystembythetechnologicalelectronlinackut20 |
first_indexed |
2025-07-06T03:15:52Z |
last_indexed |
2025-07-06T03:15:52Z |
_version_ |
1836865817336086528 |
fulltext |
CONTROL SYSTEM BY THE TECHNOLOGICAL ELECTRON LINAC
KUT-20
Yu.I. Akchurin, V.N. Boriskin, Yu.V. Borgkovsky, V.A. Gurin, N.V. Demidov,
M.V. Ivahnenko, A.N. Savchenko, S.P. Levandovsky, E.I. Orlova, V.A. Popenko,
V.A. Momot, V.I. Tatanov, G.M. Tsebenko
NSC KIPT, Kharkov, Ukraine
The high-power technological electron linac KUT-20 was developed at the Science Research Complex “Acceler-
ator” of NSC KIPT. The linac consists of two 1.2 m length accelerating structures with a variable geometry and an
injector. The latter comprises a diode electron gun, a klystron type buncher and an accelerating cavity. With a RF
supply power at accelerating structure entries of 11 MW and with a current at the accelerator exit of 1 A, the beam
energy will be up to 20 MeV. An average beam power is planned to be 20 kW [1].
All systems of the accelerator are controlled by a computerised control system. The program & technical com-
plex consist of PC equipped with fast ADC, control console, synchronization unit, microprocessor-operated com-
plexes.
PACS numbers: 29.17.+w
1 AUTOMATIC CONTROL SYSTEM
A special system has been developed for linac con-
trol [3, 5]. It controls the electron beam current, the en-
ergy and the position, defends accelerating and scanning
systems from damage caused by the beam; blocks the
modulator and the klystron amplifier in the case of in-
tolerable operation modes; regulates the phase and pow-
er of HF signals in the injecting system and also regu-
lates the source power currents in the magnetic system.
Also the radiation dose of technological samples is con-
trolled and the target devices are operated. The program
& technical complex consists of PC equipped with two
fast channels ADC (Fig. 1), synchronization unit (S),
microprocessor-operated complexes (MC) to monitor
the klystron amplifier operation, the thermostating sys-
tem (t°C), magnet power supplies (MPS), the target
equipment (TE).
Fig. 1. Functional schematic diagram of the KUT-20
linac control system.
The specially developed supple source (MFSsc) with
digital control [2] shapes the excitation current of the
scanator-magnet at KUT-20 exit. The multiplexer (МР)
and the analog-to-digital converters (ADC) with 8 digits
receive the signal from the analog pulse sensors with the
50 or 100 nsec discreteness by 2 (from 32) switching
channels simultaneously. The information of the linac
system state and the beam parameters are shown on the
local unit terminals (CP) and on the color graphics dis-
play (D) in the form of the triple-screen control panel
(Fig. 2). The operator can monitor the linac work from
the PC keyboard and from the local control panels. The
program units can provide the momentary or repeated
control of system parameters or give operating com-
mands. Simultaneously the parameters of several sys-
tems can be controlled and only one of them regulated.
Fig. 2. Videogram of the calibration process of the
magneto-induction beam current transducer on the
linac KUT-20.
2 OPERATIVE CONTROL OF CURRENT,
POSITION AND ENERGY OF THE ELEC-
TRON BEAM
The linac is equipped with magnetoinductance trans-
ducers established at an input and an output of acceler-
ating structures for measurement of the value and the
form of the beam pulse current [7, 8]. The signals from
transducers are used in the control system for a rating
amplitude and average current value (Fig. 2). The cali-
bration of sensors is carried out periodically with the
test pulse trains from a special current generator [9].
The linac exit also is equipped with four winding po-
sition sensors [11]. These sensors admit the center beam
position measurement with a 0.5 mm error.
The wide-aperture (50 x 200mm) one-coordinate
magneto-induction position transducer [6] and beam
profile monitor [12] are used for the energy and position
control of the sweeped electron beam at the linac exit.
One of the program modules provides simultaneous
measurement of the value of the scanning magnet exci-
tation current and the signal from the sensor winding
(Fig. 3).
It is shown in [4, 6] that the scanning electromagnet
equipped with a beam position sensor can be used for
ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2001. №3.
Серия: Ядерно-физические исследования (38), с. 126-127.
126
the on-line control of the electron energy (E). With an
inductive transduser or profile monitor the beam center
deviation from the axis (R) is evaluated, the amplitude
of the electromagnet excitation current (I) is determined
at the same time, and then the value E=f (I, R) [4] is cal-
culated with an error of about 5%.
Fig. 3. Videogram of testing the electromagnet exci-
tation current of the scanator-magnet on the linac
KUT-20.
3 SYNCHRONIZING SYSTEMS
A synchronizing system of the technological accel-
erator complex KYT-20 forms the frequency scale of
the pedestal pulses f0 =600/n, where n=1, 2, 3, 4, 6, 12,
24 (25 – 600 Hz). The operation startup frequency of
EGM and KPA modulator are f0. A lower operation fre-
quency of EGM may be equal 6.25, 3.125 or 1.562 Hz.
The synchronizer has 10 channels. The pulse amplitude
is no more than 15 V, the pulse width is 2.5±0.5µs, the
delay range is from 0 to 10 µs with the step 0.1 µs.
When alarm signals “Beam switching off” from the ac-
celerator systems are received the electron beam turns
off with the additional delay of EGM startup pulses on
11µs. Pulses with a frequency of f0 are synchronous with
the frequency of supply line (50 ±0.5 Hz) and can be
fixed in phase from 0 to 990 µs.
4 TERMOSTABILIZATION SYSTEM
A thermostabilization system of the accelerator KUT
ensures the termostabilization of two accelerating struc-
tures, injector and an accelerating cavity. The ther-
mostabilization system consists of 19 detectors for tem-
perature measurement, 23 detectors in the water-cooling
system, 6 water pressure detectors, 2 water discharge
detectors and 1 water level detector. The 60-channel
measuring transformer analyzes the detector signals and
for the temperature stabilization regulative pro-
grammable microprocessor devices are used.
The information from the tested devices through the
RS-232 interface is transmitted to the control PC; the
lock signals by 10 channels come in the alarm system.
5 ALARM SYSTEM
An alarm system tests more than 60 discrete state
signals of the accelerator systems. It allows turning on
the high supply voltage for the injector and two modula-
tors. The local control is conducted from the klystron
room and the remote control from the local control pan-
el. The information about the system is represented on
the local control panel [13] and is transmitted to the mi-
croprocessor complex [11].
6 TARGET DEVICE OPERATION
Special target devices will be set up in the accelera-
tor bunker for transfer of irradiated samples. There are
manual and automatic modes of its operation. The tech-
nological file is created for each sample; target position
number and corresponding exposure doze are written
there. The microprocessor complex changes the irradiat-
ed sample position with an electromotor if a PC com-
mand passes. When the sample gets the required doze
the operator is informed about it.
REFERENCES
1. K.I.Antipov, M.I.Ayzatsky, I.Yu.Akchurin et al.
High-Power Electron Linac for Irradiation Applica-
tions // Proc. PAC’01, Chicago, 2001.
2. A.N.Dovbnya et al. The Output Beam Scanning
and Forming in the Multipurpose Electron Acceler-
ators of KIPT // Problems of Atomic Science and
Technology. Issue: Nuclear-Physics Research (28).
1997, v. 1, p. 114-121 (in Russian).
3. V.N.Boriskin et al. Control System for a Linear
Resonance Accelerator of Intense Electron Beams
// Nucl. Instr. and Meth. in Phys. Res. 1994, A 352,
p. 61-62.
4. V.N.Boriskin, A.E.Tolstoy, V.L.Uvarov et al. Au-
tomatic Control of the Electron Energy in the Tech-
nological Linear Electron Accelerators // Proc. of
the XIV Meeting on the Accelerated Particles,
Protvino, Russia, 1994, v. 2, p. 97-98.
5. V.Boriskin. Control System for Technological
Linacs // Proc.EPAC98, Stockholm, 1998.
6. V.N.Boriskin, A.N.Savchenko, V.I.Tatanov. Moni-
toring of the Electron Beam Position in Industrial
Linacs // Proc. PAC’99, NY, 1999.
7. V.N.Boriskin, V.A.Vishnyakov, V.A.Gurin et al.
Measuring system of beam parameters at LUE-
2000 // Proc. of the XI Meeting on the Accelera-
tores, Dubna, Russia, 1989, v. 1, p. 61-63.
8. Yu.V.Avdeev, V.N.Boriskin, et al. Metrological
Research of Measurement Facility Parameters of
Electron Radiation LU-10 и LU-40 KIPT. Pre-print
KIPT 91-6, Kharkov, 1991.
9. V.L.Uvarov et al. A Beam Monitoring & Calibra-
tion System for High-Power Electron Linacs // Bul-
letin of the American Physical Society, May 1997,
v. 42, No. 3, p. 1367.
10. V.N.Boriskin, V.A.Gurin, L.V.Reprintsev et al.
Channel of the Control of the Beam Position in the
High-Current LEA // Proc. of the XV Meeting on
the Accelerated Particles, Dubna, Russia, 1996.
11. Yu.I.Akchurin et al. Linac failure diagnostic //
Problems of Atomic Science and Technology. Is-
sue: Nuclear-Physics Research (35). 1999, v. 4,
p. 40-41.
12. V.N.Boriskin, V.A.Gurin, V.A.Popenko, et al.
Monitoring Channel of the Technological Linac
Beam Cross-Section // Problems of Atomic Science
and Technology. Issue: Nuclear-Physics Research
(39). 2001, v. 5, p. 147-149.
13. Yu.I.Akchurin. Experience of centralization of
LUE 2 GeV operating // Problems of Atomic Sci-
ence and Technology. Issue: Automation of Physi-
127
cal Experiment. 1973, p. 30. (in Russian).
|