Functioning of LIA-30 accelerator in the mode of generating bremsstrahlung pulses shortened to several nanoseconds

Deceleration of electrons and further transformation of the beam current lead to the ~2-times increase of the pulse amplitude, self-excited acceleration ofelectrons at the cutoffand shortening of15…20 Gy bremsstrahlung pulse.

Збережено в:
Бібліографічні деталі
Дата:2004
Автори: Veresov, V.P., Gornostaj-Pol’ski, S.A., Gritsina, V.P., Grishin, A.V., Zalomina, N.N., Kul’gavchuk, V.V., Lazarev, S.A., Model’, B.I., Slusarenko, S.Ya., Tarasov, A.D.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2004
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/79295
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Functioning of LIA-30 accelerator in the mode of generating bremsstrahlung pulses shortened to several nanoseconds / V.P.Veresov, S.A.Gornostaj-Pol’ski, V.P.Gritsina, A.V.Grishin, N.N.Zalomina, V.V.Kul’gavchuk, S.A.Lazarev, B.I.Model’, S.Ya.Slusarenko, A.D.Tarasov // Вопросы атомной науки и техники. — 2004. — № 2. — С. 12-14. — Бібліогр.: 3 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-79295
record_format dspace
spelling irk-123456789-792952015-03-31T03:02:19Z Functioning of LIA-30 accelerator in the mode of generating bremsstrahlung pulses shortened to several nanoseconds Veresov, V.P. Gornostaj-Pol’ski, S.A. Gritsina, V.P. Grishin, A.V. Zalomina, N.N. Kul’gavchuk, V.V. Lazarev, S.A. Model’, B.I. Slusarenko, S.Ya. Tarasov, A.D. Состояние действующих и проекты новых ускорителей Deceleration of electrons and further transformation of the beam current lead to the ~2-times increase of the pulse amplitude, self-excited acceleration ofelectrons at the cutoffand shortening of15…20 Gy bremsstrahlung pulse. Гальмування електронів на фронті і наступна трансформація струму пучка приводять до збільшення амплітуди імпульсу у ~ 2 рази, до автоприскорення електронів на зрізі й укороченню імпульсу гальмового випромінювання з дозою 15…20 Гр. Торможение электронов на фронте и последующая трансформация тока пучка приводят к увеличению амплитуды импульса в ~ 2 раза, к автоускорению электронов на срезе и укорочению импульса тормозного излучения с дозой 15…20 Гр. 2004 Article Functioning of LIA-30 accelerator in the mode of generating bremsstrahlung pulses shortened to several nanoseconds / V.P.Veresov, S.A.Gornostaj-Pol’ski, V.P.Gritsina, A.V.Grishin, N.N.Zalomina, V.V.Kul’gavchuk, S.A.Lazarev, B.I.Model’, S.Ya.Slusarenko, A.D.Tarasov // Вопросы атомной науки и техники. — 2004. — № 2. — С. 12-14. — Бібліогр.: 3 назв. — англ. 1562-6016 PACS: 29.17.+w http://dspace.nbuv.gov.ua/handle/123456789/79295 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Состояние действующих и проекты новых ускорителей
Состояние действующих и проекты новых ускорителей
spellingShingle Состояние действующих и проекты новых ускорителей
Состояние действующих и проекты новых ускорителей
Veresov, V.P.
Gornostaj-Pol’ski, S.A.
Gritsina, V.P.
Grishin, A.V.
Zalomina, N.N.
Kul’gavchuk, V.V.
Lazarev, S.A.
Model’, B.I.
Slusarenko, S.Ya.
Tarasov, A.D.
Functioning of LIA-30 accelerator in the mode of generating bremsstrahlung pulses shortened to several nanoseconds
Вопросы атомной науки и техники
description Deceleration of electrons and further transformation of the beam current lead to the ~2-times increase of the pulse amplitude, self-excited acceleration ofelectrons at the cutoffand shortening of15…20 Gy bremsstrahlung pulse.
format Article
author Veresov, V.P.
Gornostaj-Pol’ski, S.A.
Gritsina, V.P.
Grishin, A.V.
Zalomina, N.N.
Kul’gavchuk, V.V.
Lazarev, S.A.
Model’, B.I.
Slusarenko, S.Ya.
Tarasov, A.D.
author_facet Veresov, V.P.
Gornostaj-Pol’ski, S.A.
Gritsina, V.P.
Grishin, A.V.
Zalomina, N.N.
Kul’gavchuk, V.V.
Lazarev, S.A.
Model’, B.I.
Slusarenko, S.Ya.
Tarasov, A.D.
author_sort Veresov, V.P.
title Functioning of LIA-30 accelerator in the mode of generating bremsstrahlung pulses shortened to several nanoseconds
title_short Functioning of LIA-30 accelerator in the mode of generating bremsstrahlung pulses shortened to several nanoseconds
title_full Functioning of LIA-30 accelerator in the mode of generating bremsstrahlung pulses shortened to several nanoseconds
title_fullStr Functioning of LIA-30 accelerator in the mode of generating bremsstrahlung pulses shortened to several nanoseconds
title_full_unstemmed Functioning of LIA-30 accelerator in the mode of generating bremsstrahlung pulses shortened to several nanoseconds
title_sort functioning of lia-30 accelerator in the mode of generating bremsstrahlung pulses shortened to several nanoseconds
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2004
topic_facet Состояние действующих и проекты новых ускорителей
url http://dspace.nbuv.gov.ua/handle/123456789/79295
citation_txt Functioning of LIA-30 accelerator in the mode of generating bremsstrahlung pulses shortened to several nanoseconds / V.P.Veresov, S.A.Gornostaj-Pol’ski, V.P.Gritsina, A.V.Grishin, N.N.Zalomina, V.V.Kul’gavchuk, S.A.Lazarev, B.I.Model’, S.Ya.Slusarenko, A.D.Tarasov // Вопросы атомной науки и техники. — 2004. — № 2. — С. 12-14. — Бібліогр.: 3 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT veresovvp functioningoflia30acceleratorinthemodeofgeneratingbremsstrahlungpulsesshortenedtoseveralnanoseconds
AT gornostajpolskisa functioningoflia30acceleratorinthemodeofgeneratingbremsstrahlungpulsesshortenedtoseveralnanoseconds
AT gritsinavp functioningoflia30acceleratorinthemodeofgeneratingbremsstrahlungpulsesshortenedtoseveralnanoseconds
AT grishinav functioningoflia30acceleratorinthemodeofgeneratingbremsstrahlungpulsesshortenedtoseveralnanoseconds
AT zalominann functioningoflia30acceleratorinthemodeofgeneratingbremsstrahlungpulsesshortenedtoseveralnanoseconds
AT kulgavchukvv functioningoflia30acceleratorinthemodeofgeneratingbremsstrahlungpulsesshortenedtoseveralnanoseconds
AT lazarevsa functioningoflia30acceleratorinthemodeofgeneratingbremsstrahlungpulsesshortenedtoseveralnanoseconds
AT modelbi functioningoflia30acceleratorinthemodeofgeneratingbremsstrahlungpulsesshortenedtoseveralnanoseconds
AT slusarenkosya functioningoflia30acceleratorinthemodeofgeneratingbremsstrahlungpulsesshortenedtoseveralnanoseconds
AT tarasovad functioningoflia30acceleratorinthemodeofgeneratingbremsstrahlungpulsesshortenedtoseveralnanoseconds
first_indexed 2025-07-06T03:22:43Z
last_indexed 2025-07-06T03:22:43Z
_version_ 1836866251792580608
fulltext FUNCTIONING OF LIA-30 ACCELERATOR IN THE MODE OF GENERATING BREMSSTRAHLUNG PULSES SHORTENED TO SEVERAL NANOSECONDS V.P.Veresov, S.A.Gornostaj-Pol’ski, V.P.Gritsina, A.V.Grishin, N.N.Zalomina, V.V.Kul’gavchuk, S.A.Lazarev, B.I.Model’, S.Ya.Slusarenko, A.D.Tarasov Russian Federal Nuclear Center – All-Russia Scientific Research Institute of Experimental Physics (RFNC – VNIIEF) 607188, Sarov, Nizhni Novgorod region, Mira Ave., Russia E-mail: otd4@expd.vniief.ru Deceleration of electrons and further transformation of the beam current lead to the ~2-times increase of the pulse amplitude, self-excited acceleration of electrons at the cutoff and shortening of 15…20 Gy bremsstrahlung pulse. PACS: 29.17.+w INTRODUCTION LIA-30 linear induction accelerator of electrons is a basic irradiating facility of RFNC – VNIIEF [1]. In the list of its potentialities there is available a mode of gen- erating bremsstrahlung pulses of short duration τγ ~5ns with a peak bremsstrahlung dose power Pγ ~ 5⋅109Gy/s and integral dose up to Dγ ~15 Gy. The mode by itself is interesting both from the point of view of its physical realization and for simulating some aspects of nuclear burst injurious effects. As differentiated from high-current (~100kA) direct- action accelerators a 36-module structure of LIA-30 is a convenient instrument for realization of different func- tioning modes. This can be fulfilled through the possibili- ty of changing the number of enabled modules by means of some moderate variations in configurations of high- voltage electrodes contained in a vacuum track and through varying delays of voltage appearance in the ac- celerating gaps of one or another group of modules [2]. In the experiments aimed at forming high currents of relativistic electron beams (REB) Iп ~ 100 кА much at- tention was paid to the shape transformation of REB current pulses when the beam was accelerated in LIA- 30 modules. Fig.1a, b gives for different time dependen- cies of current at the accelerating system input iinp(t) fur- ther changes of its shape in the cross-sections of mod- ules No 10, 20, 36. To make the picture more demon- strative the oscillograms of currents were synchronized in terms of time delays of currents appearance in the blocks specified. In correlation with the observed “peaks” of current amplitude i36(t) there were registered at the accelerator output the pulses modulated with high- frequency oscillations and shortened as a whole by dura- tion Рγ (t). It was clear that at a definite time dependence of current iinp(t) there can be realized the conditions of REB acceleration in subsequent modules to get a short pulse of bremsstrahlung. However, this was a difficult task as a whole because of the lack of a calculation model of REB space-time location needed to measure its current pulse in the accelerating structure of LIA-30. Under these circumstances there was selected an ex- perimental method of finding conditions for the realiza- tion of the accelerator operation mode with bremsstrahlung shortened pulses generation. For this purpose it seemed expedient to use the accelerator of the system of pulse currents and voltages registration avail- able almost in each accelerator module. iin i10 i20 i36 t IjkA а) rise time ~ 23 ns i10 i20 i36 t Ij iin kA б) rise time ~ 15 ns Fig.1. Time dependence of REB currents pulses in LIA- 30 modules No 10, 20, 36 at gently sloping and drasti- cally growing front pulse of the injection current iinp SOME PHYSICAL ASPECTS Simple calculations of transition processes in induc- tor blocks demonstrate that owing to the availability of inductively resistant output impedance of accelerating gaps (~6 Ω as stated in terms of one module on the main operation frequency f ~ 10 MHz), when passing the cur- rent pulse of ~100 kA amplitude and standard duration of ~50 ns, there takes place the induction decrease and increase of accelerating voltage values at the front and trail of its pulse, respectively. The total change of volt- age in the gaps of 10 modules may constitute a suffi- ciently high for acceleration – deceleration value ∆ U~ 6 MV. More precise calculations in terms of LIA-30 accelerating track electric parameters per unit length [3] lead to variations of the total induced voltage in N-ac- celerator modules in the following form: ___________________________________________________________ PROBLEMS OF ATOMIC SIENCE AND TECHNOLOGY. 2004. № 2. Series: Nuclear Physics Investigations (43), p.12-14. 12 mailto:otd4@expd.vniief.ru ∆U = N⋅ (IREB ⋅W + L ⋅ d IREB /dt), where W~2,8 Ω is the total wave resistance of the con- nected module; L ~ 110 nH is the inductance of torus shaped cavity between the block inductors and REB boundary (∅ ~ 250 mm). They point to even higher pos- sible values of ∆U > 14 MV at N=10 and considerable abruptness of current rise dIREB /dt > 10 kA/ns. The use of this physical peculiarity forecasted effec- tive deceleration – acceleration of electrons at REB front (trail) and, finally, shortening of current pulses and bremsstrahlung. Fig.2 presents for different current pulse shapes the examples of voltage (in relative units) changes in 8 and 30 modules at an additional delay of their switching for the following cases, respectively: а) t8 =11 ns and б) t30→∞ (passive condition of mod- ule). i8 U8 t U,I,kA r.u. а) t8 = 11 ns i30 t U30 U, .r.uI,kA б) t30 → ∞ Fig.2. Voltage changes in the accelerating tracks of the 8th and 30th module depending on the passing current of the beam during delayed modules switching As is well seen from the oscillograms in the acceler- ating gaps of modules there actually induce additional negative and positive potentials depending on the delay of module switching and abruptness of current pulses time dependence. For the current pulses of >100 kA these potentials were registered to be even more in- creased. Deeper understanding of the processes follows from space-time apprehension of REB. An appreciable cur- rent pulse transformation occurs if a considerable share of electrons notably fall behind high-energy electrons moving at a rate υ≈ с. In the course of deceleration low- energy electrons with с υ<<с generally pass from inner to outer trajectories. At a constant azimuth density of currents a large electron charge can be dislocated just in the outer annular layers of the tubular REB. Moreover, electrons leaving the process of acceleration collide with the track walls causing intrinsic leakage currents of modules what was observed in reality. Later it leads to an abrupt reduction of acceleration tempo for all elec- trons. This is and important limiting point for the real- ization of current pulse transformation with no loss of bremsstrahlung dose and power. To prevent shunting of accelerator gaps there was proposed in one of operation versions to discharge the remaining electrons by means of local decrease of the leading longitudinal magnetic field. On the other hand it followed from the experiments that transformation of current pulses can be easier realized for the beams of large diameters (>150 mm). In this case there appeared a proposal to use for space separation of electrons a sep- arate outer beam injected simultaneously with the chief one with the aid of additional coaxial emitter especially because the amplitude of the total current could be con- siderable due to additional outer layer of electrons. INVESTIGATION RESULTS The first experiments were performed for the accel- erating track configuration presented in Fig.3, i.e. step- by-step coaxial cathode possessing 100 and 150 mm-di- ameter annular emitters to form two simultaneous beams. The emitters provided REB injection with rela- tively low for LIA-30 current iinp=50…70 kA (through disconnecting of a share of inductors of 1-4 modules). To decelerate the beams there was installed a program of advance injection according to which modules No 5,6,7,8 were connected with the following delays, correspondingly: t5=4 ns, t6 =4 ns, t7=3 ns, t8=3 ns. The total delay of the 8th model switching as related to the 4th module constituted 14 ns. The establishment to cathode-anode gap of three di- aphragms with the aperture of ∅ 210…240 mm and at a distance of 0,1…1,0 m from the cathode trail (Fig.3, dotted) made it possible to increase through the decrease of anode-cathode gap the input current up to 100 kA, cause effective pulse transformation and essential short- ening of τγ. However, the operation mode was not stable enough because of the fact that the beams were too close to each other. Constant shift of beams by ~60 mm from the axis caused by some engineering peculiarities of magnetic field realization on the accelerator track hampered the mode realization as well. 15 0III III IV 10 0 21 0 22 0 24 0 39 0 5 6 7 8 15 16 17 18 19 36 37 42 1 40 0 4 30 HVSSU(t )1 U(t )2 U(t )3 U(t )4 TT 26 м OD Fig.3. Scheme of LIA-30 accelerating track with a step- by-step two-emitter cathode: 1, 2, 3…36 – serial number of modules; U(t1), U(t2), U(t3), U(t4) – starting voltages; ТТ – transportation track ; OD – output device; HVSS – high-voltage system of modules synchronization. I, II – cathode-anode electrodes; III – drift tube with solenoid; IV – target Finally the mode was elaborated in the configuration presented in Fig.3, where the emitters 135 and 245 mm in diameter were used instead of the available ones. The ___________________________________________________________ PROBLEMS OF ATOMIC SIENCE AND TECHNOLOGY. 2004. № 2. Series: Nuclear Physics Investigations (43), p.12-14.13 axial distance between the ends of emitters constituted ~1 m. To keep sufficiently high current of injection Iinp =90 kA the blocks from 7…15 and from 16…36 were connected 4 and 8 ns earlier, respectively. For the purpose of local dump of decelerated particles to the walls of the accelerating track the magnetic field in the 12th module was decreased from 0.5T to 0.4 T. As a result there was achieved a required transformation of REB cur- rent pulses and decrease of τγ to the value of <4 ns at the bremsstrahlung integral dose Dγ = 19 Gy and peak dose rate of bremsstrahlung Рγ ~ 5 ⋅109 Gy/s. However, after some pulses had passed there took place a breakdown of a solenoid of the leading magnetic field in module 15 be- cause of failure of its coils insulation resulting from their irradiation with locally dumped electrons. To somehow disperse the dumped electrons the magnetic field was reduced by a lower value (from 0.50 to 0.45 T) simultaneously in three modules: No 10,11,12. Finally the shortening of current pulses was not so efficient and the value of τγ was higher- ~6 ns. Fig.3 presents transformation of the REB current pulse in the accelerating operation mode at which the injection current was additionally increased to the am- plitude iinp = 100 kA. The magnetic field was kept at a level of 0.5T by the entire accelerator length. A more regular dump of scattered electrons was implemented through their deceleration in some disconnected mod- ules (No 12,14,17,21,36). In this case there took place the reduction of bremsstrahlung parameters to the level Dγ = 15 Gy, Рγ ~ 3 ⋅ 109 Gy/s the shortening of pulses remaining equal to τγ = 5 ns. i1 t Ij, Pγi36 Pγ i5 i11 i26 kA Fig. 4. Time dependence of current beam pulses in ac- celerator modules 1, 5, 11, 26, 36 and bremsstrahlung dose rate at the LIA-30 output The characteristic peculiarity of bremsstrahlung was reduction of its spot diameter (as compared to the avail- able in the standard mode of operation) by >20% be- cause in the generation of bremsstrahlung at electron de- celeration in the target there basically participates an in- ternal beam ~135 mm in diameter. CONCLUSIONS The performed experimental investigations of the process of REB current pulse transformation made it possible to realize generation of shortened - by duration - bremsstrahlung pulses with the following parameters: τγ = 5...10 ns, Dγ = 15...20 Gy, Рγ up to 5⋅109 Gy/s. Of course, to increase the levels of Dγ and Рγ with keeping τγ ~ 5 ns unchanged one must perform more optimiza- tion of selecting amplitude, shape of current beam pulse iinp(t) and program of accelerator modules connection. The maximum dose and dose rate could be realized in case of total joining of all the accelerator modules due to the lack of modules shunted by intrinsic leakage cur- rents initiated by transformation electrons spreader by the current pulse, with axial REB shift elimination. Most probably at that time we managed to implement the distributed dump of electrons from υ << c in the available prolonged (≈ 4 m) transportation magnetic track connecting the last accelerator module (No 36) with its output assembly and target. REFERENCES 1. A.I.Pavlovskii, V.S.Bossamykin, A.I.Gerasimov et al. // IX Intern. Conf. on High. Power Particle Beams "Beams '92". Washington, DC, May 25-29, 1992. Springfield, V.A. NTIS. 1992, v.1, p.273. 2. A.I.Gerasimov, A.S.Fedotkin, A.D.Tarasov, V.S.- Gordeev, A.V.Grishin et al. Powerful linear pulse accelerator of an electron beam LIA-30 // Pribory i tekhnika ehksperiment. 1998, №2, p.13-25. 3. V.S. Bossamykin, A.I. Gerasimov, V.S. Gordeev et. al. // X Intern. Conf. on High. Power Particle Beams "Beams ‘94". San Diego, CA, June 20-24, 1994. Springfield, V.A. NTIS. 1994, v.1, p.128. РАБОТА УСКОРИТЕЛЯ ЛИУ-30 В РЕЖИМЕ ГЕНЕРАЦИИ ИМПУЛЬСОВ ТОРМОЗНОГО ИЗЛУЧЕНИЯ, УКОРОЧЕННЫХ ДО НЕСКОЛЬКИХ НАНОСЕКУНД В.П. Вересов, С.А. Горностай-Польски, В.П. Грицина, А.В. Гришин, Н.Н. Заломина, В.В. Кильгавчук, С.А. Лазарев, Б.И. Модель, С.Ю. Слюсаренко, А.Д. Тарасов Торможение электронов на фронте и последующая трансформация тока пучка приводят к увеличе- нию амплитуды импульса в ~ 2 раза, к автоускорению электронов на срезе и укорочению импульса тормоз- ного излучения с дозой 15…20 Гр. РОБОТА ПРИСКОРЮВАЧА ЛІП-30 У РЕЖИМІ ГЕНЕРАЦІЇ ІМПУЛЬСІВ ГАЛЬМОВОГО ВИПРОМІНЮВАННЯ, УКОРОЧЕНИХ ДО ДЕКІЛЬКОХ НАНОСЕКУНД В.П. Вересов, С.А. Горностай-Польскі, В.П. Грицина, А.В. Гришин, Н.Н. Заломіна, В.В. Кільгавчук, С.А. Лазарєв, Б.І. Модель, С.Ю. Слюсаренко, А.Д. Тарасов Гальмування електронів на фронті і наступна трансформація струму пучка приводять до збільшення амплітуди імпульсу у ~ 2 рази, до автоприскорення електронів на зрізі й укороченню імпульсу гальмового випромінювання з дозою 15…20 Гр. 14 Introduction излучения, укороченных до нескольких наносекунд