Pulse shaping system for INR proton linac
The system for proton beam pulse shaping in the 400 keV injection line of the INR linac is developed, built and implemented. The use of a traveling wave fast deflector and the Behlke Electronic fast HV transistor switch with operation voltage up to 6 kV enables formation and adjustment of differen...
Gespeichert in:
Datum: | 2006 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2006
|
Schriftenreihe: | Вопросы атомной науки и техники |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/79299 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Pulse shaping system for INR proton linac / V.V. Kouznetsov, A.N. Mirzojan, A.N. Naboka, A.V. Novikov-Borodin, V.L. Serov, A.V. Feschenko // Вопросы атомной науки и техники. — 2006. — № 3. — С. 46-48. — Бібліогр.: 2 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-79299 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-792992015-03-31T03:02:44Z Pulse shaping system for INR proton linac Kouznetsov, V.V. Mirzojan, A.N. Naboka, A.N. Novikov-Borodin, A.V. Serov, V.L. Feschenko, A.V. Ускорители заряженных частиц The system for proton beam pulse shaping in the 400 keV injection line of the INR linac is developed, built and implemented. The use of a traveling wave fast deflector and the Behlke Electronic fast HV transistor switch with operation voltage up to 6 kV enables formation and adjustment of different macro- and micro-pulses of the accelerated beam thus expanding considerably accelerator possibilities. It is important for many accelerator applications, especially for time-of-flight neutron studies. Реализована система формирования импульсов протонного пучка с энергией 400 кэВ на канале инжекции ускорителя ИЯИ РАН. Эта система с использованием быстрого дефлектора на бегущей волне и быстрого высоковольтного полупроводникового ключа фирмы Behlke Electronic с рабочим напряжением до 6 кВ существенно расширяет возможности ускорителя, так как обеспечивает регулирование частоты следования макроимпульсов, а также формирование различных микроимпульсов пучка. Реализация этих режимов необходима для проведения различных физических экспериментов, в том числе для времяпролетных исследований на нейтронных источниках. Реалізовано систему формування імпульсів протонного пучку з енергією 400 кеВ на каналі інжекції прискорювача ІЯД РАН. Ця система з використанням швидкого дефлектора на хвилі, що біжить, і швидкого високовольтного напівпровідникового ключа фірми Behlke Electronіc з робочою напругою до 6 кВ істотно розширює можливості прискорювача, тому що забезпечує регулювання частоти проходження макроімпульсів, а також формування різних мікроімпульсів пучка. Реалізація цих режимів необхідна для проведення різних фізичних експериментів, у тому числі для часопролітних досліджень на нейтронних джерелах. 2006 Article Pulse shaping system for INR proton linac / V.V. Kouznetsov, A.N. Mirzojan, A.N. Naboka, A.V. Novikov-Borodin, V.L. Serov, A.V. Feschenko // Вопросы атомной науки и техники. — 2006. — № 3. — С. 46-48. — Бібліогр.: 2 назв. — англ. 1562-6016 PACS: 29.27Eg http://dspace.nbuv.gov.ua/handle/123456789/79299 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Ускорители заряженных частиц Ускорители заряженных частиц |
spellingShingle |
Ускорители заряженных частиц Ускорители заряженных частиц Kouznetsov, V.V. Mirzojan, A.N. Naboka, A.N. Novikov-Borodin, A.V. Serov, V.L. Feschenko, A.V. Pulse shaping system for INR proton linac Вопросы атомной науки и техники |
description |
The system for proton beam pulse shaping in the 400 keV injection line of the INR linac is developed, built and
implemented. The use of a traveling wave fast deflector and the Behlke Electronic fast HV transistor switch with operation
voltage up to 6 kV enables formation and adjustment of different macro- and micro-pulses of the accelerated
beam thus expanding considerably accelerator possibilities. It is important for many accelerator applications, especially
for time-of-flight neutron studies. |
format |
Article |
author |
Kouznetsov, V.V. Mirzojan, A.N. Naboka, A.N. Novikov-Borodin, A.V. Serov, V.L. Feschenko, A.V. |
author_facet |
Kouznetsov, V.V. Mirzojan, A.N. Naboka, A.N. Novikov-Borodin, A.V. Serov, V.L. Feschenko, A.V. |
author_sort |
Kouznetsov, V.V. |
title |
Pulse shaping system for INR proton linac |
title_short |
Pulse shaping system for INR proton linac |
title_full |
Pulse shaping system for INR proton linac |
title_fullStr |
Pulse shaping system for INR proton linac |
title_full_unstemmed |
Pulse shaping system for INR proton linac |
title_sort |
pulse shaping system for inr proton linac |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2006 |
topic_facet |
Ускорители заряженных частиц |
url |
http://dspace.nbuv.gov.ua/handle/123456789/79299 |
citation_txt |
Pulse shaping system for INR proton linac / V.V. Kouznetsov, A.N. Mirzojan, A.N. Naboka, A.V. Novikov-Borodin,
V.L. Serov, A.V. Feschenko // Вопросы атомной науки и техники. — 2006. — № 3. — С. 46-48. — Бібліогр.: 2 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT kouznetsovvv pulseshapingsystemforinrprotonlinac AT mirzojanan pulseshapingsystemforinrprotonlinac AT nabokaan pulseshapingsystemforinrprotonlinac AT novikovborodinav pulseshapingsystemforinrprotonlinac AT serovvl pulseshapingsystemforinrprotonlinac AT feschenkoav pulseshapingsystemforinrprotonlinac |
first_indexed |
2025-07-06T03:22:59Z |
last_indexed |
2025-07-06T03:22:59Z |
_version_ |
1836866266126614528 |
fulltext |
PULSE SHAPING SYSTEM FOR INR PROTON LINAC
V.V. Kouznetsov, A.N. Mirzojan, A.N. Naboka, A.V. Novikov-Borodin,
V.L. Serov, A.V. Feschenko
INR RAS, Moscow, Russia
The system for proton beam pulse shaping in the 400 keV injection line of the INR linac is developed, built and
implemented. The use of a traveling wave fast deflector and the Behlke Electronic fast HV transistor switch with op-
eration voltage up to 6 kV enables formation and adjustment of different macro- and micro-pulses of the accelerated
beam thus expanding considerably accelerator possibilities. It is important for many accelerator applications, espe-
cially for time-of-flight neutron studies.
PACS: 29.27Eg
1. INTRODUCTION
Normally all the accelerator pulse systems of INR
RAS linac, including injector and RF system, operate at
100 Hz (or 50 Hz) and provide beam pulses with a dura-
tion up to 200 µs. To satisfy both fundamental and ap-
plied research requirements it is necessary to realize a fre-
quency adjustment of beam macro-pulses from 1 Hz to
100 Hz as well as to create within one macro-pulse one or
two 20…50 µs micro-pulses with edge times less than
10 µs or 0.3…5 µs micro-pulses with edge times less
than 100 ns. Short micro-pulses are important for time-
of-flight neutron studies. The delay time between the two
micro-pulses must be varied within the range of 20…
100 µs. Beam pulse formation is done by deflecting and
completely absorbing appropriate beam macro-pulses (or
parts of the macro-pulses) in the 400 keV injection line.
Special high voltage fast deflector is used to deflect the
beam. HV deflecting pulses are produced with a high
voltage pulse generator along with a fast transistor
switch. The system is also used to lock out the accelerat-
ed beam in case of any accelerator breakdown or fast pro-
tection system actuation.
Fig.1. Time diagrams for different modes of pulse shaping system operation
2. PULSE SHAPING SYSTEM
____________________________________________________________
PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2006. № 3.
Series: Nuclear Physics Investigations (47), p.46-48.
46
Emergency
Protection
Module
Triggering
Module
(TM)
Control
Module
(CM)
accelerator
breakdown
ext. triggering
100 Hz
100 Hz−Fbeam Fbeam
∼
=
∼
ext. triggering
1 Hz
D
ef
le
ct
orInduction
Voltage
Regulator
HV
Transformer
HV
Rectifier
H
V
P
ul
se
Tr
an
sf
or
m
er
H
V
A
rti
fic
ia
l
Tr
an
sm
is
si
on
Li
ne
Modulator
H
V
V
al
ve
Sw
itc
h
1500 Ohm
Pr
ob
e
N
27
71
A
0.3 µF
HV Fast
Switch
High Voltage Pulse
Generator
75 Ohm
fast protection
system
Beam from
injector
Accelerated
beam
HV pulses
on Deflector
Beam micro-pulses 20…50 µs
TM, pulses
100 Hz−F beam
TM, pulses
F beam
CM, pulses to
Modulator
CM, pulses to
Fast Switch
Beam macro-pulses up to 200 µs Beam micro-pulses 0.3…5 µs Lock out of the beam
HV pulses from
Generator
The time diagrams for different modes of pulse
shaping system operation are shown in Fig.1. Block dia-
gram of the system is presented in Fig.2. The deflector
installed in the injection line represents a 75 Ohm spiral
retarding system, each period consisting of a strip line
and coaxial line elements. The deflecting field is formed
between the strips and an additional grounded plate [1-
2]. The velocity of high voltage traveling wave is select-
ed to be equal to that of a 400 keV proton beam. The
edge times of the beam pulses for this configuration are
estimated to be less than 10 ns. The deflector is foreseen
to operate with the voltages up to 6 kV. The picture of
the spiral system is shown in Fig.3.
Fig.3. Deflector spiral retarding system
The triggering module (TM) generates a short pulse
sequences Fbeam and 100Hz−Fbeam, where Fbeam is an ad-
justable beam pulse repetition frequency, and triggers
the Control Module (CM). The CM generates pulses ap-
plied to the High Voltage Generator (HVPG) and the
HV Fast Switch. The generator along with the switch
provides high voltage pulses of different frequency, du-
ration, and edge times on the deflector. The capacitor
0.3 µF installed at the output of the generator is con-
nected to the circuit only for the mode of 0.3…5 µs mi-
cro-pulses generation. In case of accelerator breakdown
or accelerator fast protection system actuation the Emer-
gency Protection Module (EPM) is activated resulting in
generation of 100 Hz 320 µs pulses by TM and CM. In
this case all the beam pulses are deflected and absorbed
in the injection line. As a result no beam is accelerated.
The control modules are installed in an accelerator
control room, the HVPG is located in an accelerator RF
gallery, the deflector is installed in an accelerator tunnel
about 50 m away from the HVPG and the HV Fast
Switch is installed in the vicinity of the deflector.
3. EXPERIMENTAL RESULTS
To provide accelerated beam macro-pulse repetition
frequency Fbeam, the CM generates 320 µs pulses with a
frequency of 100Hz−Fbeam. The corresponding beam
pulses are deflected and absorbed, the rest of the pulses
are accelerated. The value of Fbeam is foreseen to be
equal to 1, 5, 10, 25, 50, and 100 Hz with a uniform
spacing as well as 40 and 80 pulses per second as a
100 Hz pulse packet. Fig.4 shows the signal at the CM
output and the deflecting voltage for beam macro-pulses
frequency adjustment mode of operation. The deflecting
voltage of 2.5 kV is sufficient to absorb the deflected
beam in the injection line.
To provide 20…50 µs beam micro-pulses, the corre-
sponding deflecting pulses are generated with the
HVPG only. The HV Fast Switch in this mode is always
off. Fig.5 shows the signal at the CM output and the de-
flecting voltage for 20…50 µs mode of operation. The
corresponding beam micro-pulses are shown in Fig.6
(lower line). The rising and the falling edges are equal
to 12 µs and 20 µs, correspondingly. The falling edge is
additionally increased due to a 4.2 nF deflector line ca-
pacitance discharge through 1575 Ohm resistance. The
edges of the beam pulses can be decreased by increasing
the deflecting voltage. As an example, Fig.7 demon-
strates the beam pulse with the edges better than 10 µs
for 3.5 kV deflecting voltage.
Fig.4. Above−control pulse to generator, below−high
voltage pulse 320 µs on deflector
Fig.5. Beam micro-pulses for 20…50 µs mode of opera-
tion (upper line−CM output, lower line-deflecting volt-
age)
Fig.6. Beam micro-pulses for 20…50 µs mode of opera-
tion (upper line−CM output, lower line-two beam mi-
cro-pulses)
Fig.7. Beam micro-pulse for 20…50 µs mode of opera-
tion (upper line−CM output, lower line−beam micro-
pulse with duration 42 µs and edges better than 10 µs)
To obtain 0.3…5 µs beam micro-pulses, the HV Fast
Switch is additionally incorporated. A Behlke Electron-
ic HTS 61-12-B fast HV transistor switch with 6 kV
maximum voltage and 125 A maximum peak current is
used. Typical turn-on and turn-off times of the switch
____________________________________________________________
PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2006. № 3.
Series: Nuclear Physics Investigations (47), p.46-48.
47
are about 30…50 ns, minimum on-time equals 180 ns.
An important feature of this mode of operation is the
use of the additional 0.3 µF capacitor shunting the
HVPG output. This capacitance is used to match the de-
flector and the corresponding cable for short pulses and
to decrease droop of these pulses. The basic oscillo-
grams are presented in Fig.8 and Fig.9.
Fig.8. Beam micro-pulses for 0.3…5 µs mode of opera-
tion (upper line−CM output, lower line−two beam mi-
cro-pulses with duration 1 µs, edges about 100 ns and
18 µs spacing)
Fig.9. Beam micro-pulse for 0.3…5 µs mode of opera-
tion (duration 0.280 µs, edges about 100 ns)
4. CONCLUSION
The new pulse shaping system is realized in the INR
RAS proton linac. The system provides the following
modes of operation: 1) beam macro-pulses with dura-
tion up to 200 µs and frequency adjustment from 1 to
100 Hz, 2) one or two micro-pulses with duration 20…
50 µs, edge times less than 10 µs, delay time between
pulses 20…100 µs, frequency adjustment from 1 to
100 Hz, 3) one or two micro-pulses with duration 0.3…
5 µs, edge times less than 100 ns, delay time between
pulses 20…100 µs, frequency adjustment from 1 to
100 Hz. The lock out of an accelerated beam is also pro-
vided in case of any accelerator breakdown or fast pro-
tection system actuation.
REFERENCES
1. Mirzojan A.N., Novikov A.V., Ostroumov P.N.
Fast Chopper for Micro-Pulse Structure of
Charged Particles Beam in Injection Line of INR
RAS MMF Linac. Proc. of the XIY conf. on particle
accelerators. Protvino, 1994, v.1, p.112-114 (in
Russian).
2. A.V. Novikov, P.N. Ostroumov. Beam Chopper for
the 750 keV LEBT of MMF Linac. Proc. of PAC97,
Vancouver. 1997, v.3, p.2732-2734.
СИСТЕМА ФОРМИРОВАНИЯ ИМПУЛЬСОВ ПУЧКА НА ПРОТОННОМ УСКОРИТЕЛЕ ИЯИ РАН
В.В. Кузнецов, А.Н. Мирзоян, А.Н. Набока, А.В. Новиков-Бородин, В.Л. Серов, А.В. Фещенко
Реализована система формирования импульсов протонного пучка с энергией 400 кэВ на канале инжек-
ции ускорителя ИЯИ РАН. Эта система с использованием быстрого дефлектора на бегущей волне и быстро-
го высоковольтного полупроводникового ключа фирмы Behlke Electronic с рабочим напряжением до 6 кВ
существенно расширяет возможности ускорителя, так как обеспечивает регулирование частоты следования
макроимпульсов, а также формирование различных микроимпульсов пучка. Реализация этих режимов необ-
ходима для проведения различных физических экспериментов, в том числе для времяпролетных исследова-
ний на нейтронных источниках.
СИСТЕМА ФОРМУВАННЯ ІМПУЛЬСІВ ПУЧКА НА ПРОТОННОМУ ПРИСКОРЮВАЧІ ІЯД РАН
В.В. Кузнецов, А.Н. Мірзоян, А.Н. Набока, А.В. Новіков-Бородін, В.Л. Серов, А.В. Фещенко
Реалізовано систему формування імпульсів протонного пучку з енергією 400 кеВ на каналі інжекції
прискорювача ІЯД РАН. Ця система з використанням швидкого дефлектора на хвилі, що біжить, і швидкого
високовольтного напівпровідникового ключа фірми Behlke Electronіc з робочою напругою до 6 кВ істотно
розширює можливості прискорювача, тому що забезпечує регулювання частоти проходження
макроімпульсів, а також формування різних мікроімпульсів пучка. Реалізація цих режимів необхідна для
проведення різних фізичних експериментів, у тому числі для часопролітних досліджень на нейтронних
джерелах.
48
4. CONCLUSION
REFERENCES
|