Feedback effects between resonance surface and space harmonics of external perturbations in tokamak

Resonant magnetic surfaces in a tokamak can amplify the spatial harmonics of external perturbations, which may come from other resonant surfaces, from error fields, or from a feedback system. The behavior of this active resonant media can be roughly approximated with a system of coupled Van der Pole...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2005
Hauptverfasser: Semenov, I.B., Mirnov, S.V., Fredrickson, E.D., Voznesensky, V.A.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2005
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/79310
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Feedback effects between resonance surface and space harmonics of external perturbations in tokamak / I.B. Semenov, S.V. Mirnov, E.D. Fredrickson, V.A. Voznesensky // Вопросы атомной науки и техники. — 2005. — № 2. — С. 11-13. — Бібліогр.: 15 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-79310
record_format dspace
spelling irk-123456789-793102015-04-01T03:02:04Z Feedback effects between resonance surface and space harmonics of external perturbations in tokamak Semenov, I.B. Mirnov, S.V. Fredrickson, E.D. Voznesensky, V.A. Magnetic confinement Resonant magnetic surfaces in a tokamak can amplify the spatial harmonics of external perturbations, which may come from other resonant surfaces, from error fields, or from a feedback system. The behavior of this active resonant media can be roughly approximated with a system of coupled Van der Pole oscillators. The effect of frequency injection locking (or spatial harmonics injection locking in the plasma frame) is typical for these nonlinear systems. It happens when the amplitude of one modes increases and this mode becomes a dominant mode. Transition into synchronized condition can occur in a time scale of ~ 50 -100 µsec. For a tokamak it means that the stability of a large scale MHD perturbation can change jumpily, because frequency (phase) lock may create a positive feedback between resonant surfaces (or between resonant surfaces and the external feedback system). This effect probably determines the explosive dynamic of the disruptive instability. Резонансна магнітна поверхня в токамаці може підсилювати просторові гармоніки збурювань інших резонансних поверхонь, збурювання просторових гармонік обмоток полоідального і тороідального полів (Error field) або обмоток зворотних зв'язків (Feedback field). Поводження цього активного резонансного середовища грубо можна апроксимувати системою зв'язаних генераторів Ван дер Поля. Ефект захоплення частоти (або захоплення просторових гармонік збурювань у системі координат, зв'язаної з плазмою), є типовим для подібних нелінійних систем. Він відбувається в тому випадку, коли амплітуда однієї з мод збільшується і ця мода стає домінантною модою. Перехід у стан захоплення (синхронізації) частоти відбувається за часи ~ 50 -100 µsec. У цей момент стійкий стан великомасштабних МГД-збурювань може стрибком стати нестійким унаслідок появи позитивного зворотного зв'язку між резонансними поверхнями (або між резонансними поверхнями і системою зворотних зв'язків). Цей ефект можливо визначає вибуховий характер розвитку нестійкості зриву. Резонансная магнитная поверхность в токамаке может усиливать пространственные гармоники возмущений других резонансных поверхностей, возмущения пространственных гармоник обмоток полоидального и тороидального полей (Error field) или обмоток обратных связей (Feedback field). Поведение этой активной резонансной среды грубо можно аппроксимировать системой связанных генераторов Ван дер Поля. Эффект захвата частоты (или захвата пространственных гармоник возмущений в системе координат, связанной с плазмой), является типичным для подобных нелинейных систем. Он происходит в том случае, когда амплитуда одной из мод увеличивается и эта мода становится доминантной модой. Переход в состояние захвата (синхронизации) частоты происходит за времена ~ 50 -100 µsec. В этот момент устойчивое состояние крупномасштабных МГД-возмущений может скачком стать неустойчивым вследствие появления положительной обратной связи между резонансными поверхностями (или между резонансными поверхностями и системой обратных связей). Этот эффект возможно определяет взрывной характер развития неустойчивости срыва. 2005 Article Feedback effects between resonance surface and space harmonics of external perturbations in tokamak / I.B. Semenov, S.V. Mirnov, E.D. Fredrickson, V.A. Voznesensky // Вопросы атомной науки и техники. — 2005. — № 2. — С. 11-13. — Бібліогр.: 15 назв. — англ. 1562-6016 PACS: 52.55.Fa; 52.27.Gr; 52.35.Mw http://dspace.nbuv.gov.ua/handle/123456789/79310 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Magnetic confinement
Magnetic confinement
spellingShingle Magnetic confinement
Magnetic confinement
Semenov, I.B.
Mirnov, S.V.
Fredrickson, E.D.
Voznesensky, V.A.
Feedback effects between resonance surface and space harmonics of external perturbations in tokamak
Вопросы атомной науки и техники
description Resonant magnetic surfaces in a tokamak can amplify the spatial harmonics of external perturbations, which may come from other resonant surfaces, from error fields, or from a feedback system. The behavior of this active resonant media can be roughly approximated with a system of coupled Van der Pole oscillators. The effect of frequency injection locking (or spatial harmonics injection locking in the plasma frame) is typical for these nonlinear systems. It happens when the amplitude of one modes increases and this mode becomes a dominant mode. Transition into synchronized condition can occur in a time scale of ~ 50 -100 µsec. For a tokamak it means that the stability of a large scale MHD perturbation can change jumpily, because frequency (phase) lock may create a positive feedback between resonant surfaces (or between resonant surfaces and the external feedback system). This effect probably determines the explosive dynamic of the disruptive instability.
format Article
author Semenov, I.B.
Mirnov, S.V.
Fredrickson, E.D.
Voznesensky, V.A.
author_facet Semenov, I.B.
Mirnov, S.V.
Fredrickson, E.D.
Voznesensky, V.A.
author_sort Semenov, I.B.
title Feedback effects between resonance surface and space harmonics of external perturbations in tokamak
title_short Feedback effects between resonance surface and space harmonics of external perturbations in tokamak
title_full Feedback effects between resonance surface and space harmonics of external perturbations in tokamak
title_fullStr Feedback effects between resonance surface and space harmonics of external perturbations in tokamak
title_full_unstemmed Feedback effects between resonance surface and space harmonics of external perturbations in tokamak
title_sort feedback effects between resonance surface and space harmonics of external perturbations in tokamak
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2005
topic_facet Magnetic confinement
url http://dspace.nbuv.gov.ua/handle/123456789/79310
citation_txt Feedback effects between resonance surface and space harmonics of external perturbations in tokamak / I.B. Semenov, S.V. Mirnov, E.D. Fredrickson, V.A. Voznesensky // Вопросы атомной науки и техники. — 2005. — № 2. — С. 11-13. — Бібліогр.: 15 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT semenovib feedbackeffectsbetweenresonancesurfaceandspaceharmonicsofexternalperturbationsintokamak
AT mirnovsv feedbackeffectsbetweenresonancesurfaceandspaceharmonicsofexternalperturbationsintokamak
AT fredricksoned feedbackeffectsbetweenresonancesurfaceandspaceharmonicsofexternalperturbationsintokamak
AT voznesenskyva feedbackeffectsbetweenresonancesurfaceandspaceharmonicsofexternalperturbationsintokamak
first_indexed 2025-07-06T03:23:35Z
last_indexed 2025-07-06T03:23:35Z
_version_ 1836866303478988800
fulltext FEEDBACK EFFECTS BETWEEN RESONANCE SURFACES AND SPACE HARMONICS OF EXTERNAL PERTURBATIONS IN TOKAMAK I.B. Semenov 1, S.V. Mirnov 2, E.D. Fredrickson 3, V.A. Voznesensky 1 1 RRC “Kurchatov Institute”, 123182, Moscow, Russia, isemenov@nfi.kiae.ru; 2 TRINITI, Troitsk, 142092, Moscow Reg., Russia, mirnov@triniti.ru; 3 Plasma Physics Laboratory, Princeton, NJ 08543, USA, efredrickson@pppl.gov Resonant magnetic surfaces in a tokamak can amplify the spatial harmonics of external perturbations, which may come from other resonant surfaces, from error fields, or from a feedback system. The behavior of this active resonant media can be roughly approximated with a system of coupled Van der Pole oscillators. The effect of frequency injection locking (or spatial harmonics injection locking in the plasma frame) is typical for these nonlinear systems. It happens when the amplitude of one modes increases and this mode becomes a dominant mode. Transition into synchronized condition can occur in a time scale of ~ 50 -100 µsec. For a tokamak it means that the stability of a large scale MHD perturbation can change jumpily, because frequency (phase) lock may create a positive feedback between resonant surfaces (or between resonant surfaces and the external feedback system). This effect probably determines the explosive dynamic of the disruptive instability. PACS: 52.55.Fa; 52.27.Gr; 52.35.Mw We use the following definitions: • Active mode is the tearing or kink mode which has positive or close to 0 positive growth. The behavior of this mode depends on main plasma parameters such as shear, pressure profile, etc • Passive mode is the mode which has negative growth or close to 0 negative growth. The behavior of this mode depends on amplitude and phase of the external perturbations. • Dominant mode is the mode, which determines the global phase synchronization of the secondary active or passive modes. Perturbations in a torus are coupled so that the development of an active mode at a resonance surface may excite a cascade of secondary passive (slave) modes at other appropriate m/n resonance surfaces q(r)=(m/n), where r- m is the poloidal, and n is the toroidal number of the helical perturbation (Fig.1a). Real excitation of these modes depends on the spatial structure of the driving perturbation (which comes from the active mode or from an external error field) and depends on conditions of the mode excitation, such as the geometry of the plasma, the current and pressure density profile, the values of toroidal magnetic field and plasma current, electromagnetic conditions of the vacuum wall and also depends on the relative velocity of the resonance surfaces and external perturbations. In the laboratory frame these phenomena can be described in frequency terms as resonance, frequency capture or mode locking. Destruction of resonances between different resonance surfaces and between resonance surfaces and error fields may greatly improve high-performance tokamak operation. Experiments show the number of different m/n resonant perturbations, measured in different discharges at q≤5, do not exceed 16. This particular case is shown in Fig. 1b. Usually, total amount of active and passive modes, which are developing in one shot simultaneously do not exceed 4-6 (for the case Fig. 1a). In Fig. 1b the circus show possible modes excitation in the case, for example, when the active primary mode m/n=1 excites the set of passive secondary modes 2/1, 3/1, 4/1, 5/1. 7/ 3 0 0.2 0.4 0.6 0.8 1 0 1 2 3 4 5 q( ρ) ρ 7/ 2 m /n =1 /1 ,2 /2 ,3 /3 ,4 /4 2/ 1, 4/ 2, 6/ 3, 8/ 4 3/ 1, 6/ 2, 9/ 3, 12 /4 4/ 1, 8/ 2, 12 /3 5/ 1, 10 /2 5/ 4 4/ 3 3/ 2, 6/ 4 7/ 4 5/ 3 5/ 2, 10 /4 9/ 4 10 /3 11 /3 9/ 2 11 /4 8/ 3 Theoretically 32 active or passive modes could be abserved at rational surfaces in the case q=m/n=(1-12)/(1-4)<5 Fig. 1a Fig.1 Problems of Atomic Science and Technology. Series: Plasma Physics (11). 2005. № 2. P. 11-13 11 0 0.2 0.4 0.6 0.8 1 0 1 2 3 4 5 q( ρ) ρ 5/ 1 m /n =1 /1 ,2 /2 , 3/ 3, 4/ 4 4/ 3 Experimentally ~16 Active or Passive coupled modes could be observed in tokamak at q(a)=m/n<5 2/ 1, 4/ 2, 6/ 3 3/ 1, 6/ 2, 9/ 3 3/ 2 5/ 3 4/ 1 5/ 2 E R R O R F IE LD FE E D B A C K F IE LD One of the possible feedback channels A P P P P Fig. 1b injectedA a b a b cThe secondary modes interact with each other on the tertiary basis and interact with space harmonics of error fields - Aerror sum and feedback systems - A feedback sum . In such a way the complicated system of resonant interactions is realized [1, 2, 3]. At each resonance surface the sum of these external perturbations are forming the resultant perturbation Ainjected sum , which determines the dynamics of this magnetic surface (for example 2/1 at Fig. 1b). Experimentally it is possible to observe 3 forms of the mode excitation: First, the passive eigenmode excitation by corresponding harmonic of the external perturbation. Second, the triggering of the active eigenmode (this excitation is similar to hard excitation of the generator by external perturbation or, for example, an excitation of pendulum clock). In this case at the resonant surface, in laboratory frame, it is possible to observe two identical m/n modes with different frequencies. For example at q=2 (Fig. 1b), we can measure the free running 2/1eigenmode and injected 2/1 mode with the frequency equals to 1/1 at q=1. Third, it is possible to observe all modes synchronization or frequency locking under the influence of dominant mode. It happens when amplitude one of the modes reaches the level of ~ 5 Gauss (data were corrected according [4]). Synchronization (mode-locked mode) is accompanied by sharp increase in amplitude. Mode-locked mode, as a rule is observing directly before disruptive instability. To all appearance, the sharp modes amplitude growth is possible to explain by onset of positive feedback between active modes. One possible feedback channels is shown by dashed curve in Fig. 1b.Previously described MHD-perturbation dynamics in coupled system of resonant magnetic surfaces is similar to dynamics of coupled nonlinear oscillators. For the first time it was mentioned by Huygens [5] for the coupled pendulum system. This phenomenon is well known in modern engineering and describes by system of coupled quadrupoles (see Fig. 2) based on Van der Pole generators [6, 7, 8]. Fig.2 Van der Pole equations set for coupled magnetic surfaces is possible to write as: where – the sum amplitude of the injected perturbations at resonant surface q; ω0 q= 1 LqC q - free running frequency at q=k=m /n ; k , Φk , μk - injected frequency, phase and coupling coefficient between other resonant surfaces at q≠k=m /n ; α , β , Rg q , RL q - Van der Pole generator parameters As is known, the locking amplitude Ainjected sum =Ainjected locking describes for this system by Adler ratio[9]: where Q is the resonant quality of the system. Application of the Adler ratio to resonant magnetic surfaces is the subject of the next article. Note if the coupled system has high Q and small frequency difference, the locking maybe happen under very small Ainjected locking amplitude. The fact of modes slippage and sharp transformation into condition when dominant mode guides all other modes is very important for feedback control studies because the perturbation from feedback system in some cases could play the role of dominant mode and excite local positive feedback between internal modes, which could lead to disruptive instability. Analytical model of resonant field amplification in tokamaks is considered by V. Pustovitov [10] and A. Boozer [11]. Simulation of the frequency locking dynamics as a function of injected perturbation amplitude Ainjected sum was carried out by Dr. Yu. Mitrishkin. Fig. 3 shows the sharp suppression of the free running perturbation and transition into locking condition for the case of high frequency difference ωinjected=2ω0 . Fig.3 Note that the external error field can play an important role as dominant mode with ω=0. Fig. 4 shows that case (TFTR). As amplitude of stationary perturbation n=1 increases (Fig. 4a) the abrupt changes in mode structure are happened (Fig. 4c). 12 injected q out q out q out q out AAAAA =+−− )1( 2 0 2 ωβα  sum Ainjected sum =∑ k≠q μk Aout k Cos k tΦk  t Aerror sum A feedback sum qL qC injectedA q outAq LR q gR− Nonlinear circuit element Quadrupole cellFig. 2 0 2 4 6 8 100 4 8 12 16 O ut pu t S pe ct ra l D en si ty (A .U .) ω 0 ω 02 Injected perturbation amplitude at ω 02ω= Simulation Fig. 3 3.953.943.93 3.96 3.97 TFTR #76778 Stationary Magnetic Perturbation n=1 Ip (M A ) G au ss 0 -5 5 0 Phase lock level M in or di sr up tio n 3.9512 3.9515 3.9518 0 180 360 B (t )a s br ig ht ne ss P lo id al an gl e (d eg re es ) Time (sec) Locked mode Fig. 4 (a) (b) (c) Ip=2.43 MA dΦk  t  dt =ω0 q 1/2Q Im  Ainjected sum /Aout q  Fig.4 In the moment (t=3.9516 s) the stationary dominant mode m=3/n=1 changes the rotational dominant mode m=4/n=1 or “rotational Locked mode” m=4/n=1 transforms into stationary locked mode m=3/n=1. Transition is accompanied by minor disruption and lasts 150-200 µs. (Toroidal rotation of the plasma column apparently lasts out.). The dynamics of minor disruption was described in details in [12] but it was not clear the reason of stationary Locked mode. Above discussed mechanism of phase velocities alignment (similarly to Adler ratio) by dominant mode fills this gap. Note, in the case of a stationary error field it is difficult to observe the amplification of error field directly using magnetic probes which produces a false impression of precursor absence in some disruptions. Amplification of a pulsed error field is easily observed in RWM stabilization experiments [13]. The modes synchronization with externally applied active perturbation and amplification of this perturbation was observed in T-10 [14], [15]. We thank to Ken Young (PPPL), Martin Peng (PPPL), Ted Strait (GA), for help, fruitful discussions and TFTR, NSTX and DIIID data. This work was done under “US-RF program of cooperation in fusion”. REFERENCES 1.I. Semenov et al.//Proc. of 30th EPS Conference on Controlled Fusion and Plasma Physics, St. Petersburg, Russia. 2003, P-3.158. 2.I. Semenov et al.//MHD workshop “Control of MHD stability by rotation”, San Diego, 2001. 3.S. Mirnov et al.//Phys. of Plasmas, 1998, v 5(11), p.3950. 4.V.D. Pustovitov//Pis’ma v ZhETPh (78). 2003, N 5, p. 727-730. 5.H. Gujgens. Tree memuara po mekhanike. Мoscow: AN SSSR, 1951. 6.M.I. Rabinovich, D.I. Trubetskov. Vvedenie v teoriyu kolebanij I voln. М.: “Nauka”, 1992 (in Russian). 7.Ye.I. Minaev. Osnovy radiophisiki. М.: "Radio I Svyaz’", 1990 (in Russian). 8.J. L. Summers, J. Brindley, P. H. Gaskell, et al. The Role of Poincare-Andronov-Hopf Bifurcations in the Application of Variable-Coefficient Harmonic Balance to Periodically Forced Nonlinear Oscillators // Savage Philosophical Transactions: Mathematical, Physical and Engineering Sciences. Vol. 354, No. 1704, Jan. 15, 1996, Jstor, pp. 143-168. 9.R. Adler // Proc. IRE 34, 351 (1946), [reprinted in Proc IEEE 61, 1380 (1973)]. 10.V. Pustovitov. Analytical Model of the Resonant Field Amplification in Tokamak. // Proc. of 30th EPS Conference on Controlled Fusion and Plasma Physics, St. Petersburg, Russia, 2003. 11.A. Boozer // Phys. Plasmas (10). 2003, p.1458. 12.I. Semenov, et al.// Phys. of Plasmas (10). 2003, n. 3, p. 664. 13.E.J. Strait, et al. // Proc. of 19th IAEA Fusion Energy Conference, Lyon, France, 2002. EA-CN-94/EX/S2-1 14.Chudnovskiy et al. // Proc. of 30th EPS Conference on Controlled Fusion and Plasma Physics, St. Petersburg, Russia, 2003. P-3.11. 15.N. Ivanov, et al. // Proc. of 19th IAEA Fusion Energy Conference, Lyon, France, 2002. EX/S2-3. ЭФФЕКТЫ ОБРАТНОЙ СВЯЗИ МЕЖДУ РЕЗОНАНСНЫМИ ПОВЕРХНОСТЯМИ И ПРОСТРАНСТВЕННЫМИ ГАРМОНИКАМИ ВНЕШНИХ ВОЗМУЩЕНИЙ В ТОКАМАКЕ И.Б. Семенов, С.В. Мирнов, Е.Д. Фредриксон, В.А. Вознесенский Резонансная магнитная поверхность в токамаке может усиливать пространственные гармоники возмущений других резонансных поверхностей, возмущения пространственных гармоник обмоток полоидального и тороидального полей (Error field) или обмоток обратных связей (Feedback field). Поведение этой активной резонансной среды грубо можно аппроксимировать системой связанных генераторов Ван дер Поля. Эффект захвата частоты (или захвата пространственных гармоник возмущений в системе координат, связанной с плазмой), является типичным для подобных нелинейных систем. Он происходит в том случае, когда амплитуда одной из мод увеличивается и эта мода становится доминантной модой. Переход в состояние захвата (синхронизации) частоты происходит за времена ~ 50 -100 µsec. В этот момент устойчивое состояние крупномасштабных МГД-возмущений может скачком стать неустойчивым вследствие появления положительной обратной связи между резонансными поверхностями (или между резонансными поверхностями и системой обратных связей). Этот эффект возможно определяет взрывной характер развития неустойчивости срыва. ЕФЕКТИ ЗВОРОТНОГО ЗВ'ЯЗКУ МІЖ РЕЗОНАНСНИМИ ПОВЕРХНЯМИ І ПРОСТОРОВИМИ ГАРМОНІКАМИ ЗОВНІШНІХ ЗБУРЮВАНЬ У ТОКАМАЦІ І.Б. Семенов, С.В. Мирнов, Е.Д. Фредріксон, В.А. Вознесенський Резонансна магнітна поверхня в токамаці може підсилювати просторові гармоніки збурювань інших резонансних поверхонь, збурювання просторових гармонік обмоток полоідального і тороідального полів (Error field) або обмоток зворотних зв'язків (Feedback field). Поводження цього активного резонансного середовища грубо можна апроксимувати системою зв'язаних генераторів Ван дер Поля. Ефект захоплення частоти (або захоплення просторових гармонік збурювань у системі координат, зв'язаної з плазмою), є типовим для подібних нелінійних 13 http://links.jstor.org/sici?sici=1364-503X(19960115)354%3A1704<143%3ATROPBI>2.0.CO%3B2-J http://links.jstor.org/sici?sici=1364-503X(19960115)354%3A1704<143%3ATROPBI>2.0.CO%3B2-J http://links.jstor.org/sici?sici=1364-503X(19960115)354%3A1704<143%3ATROPBI>2.0.CO%3B2-J систем. Він відбувається в тому випадку, коли амплітуда однієї з мод збільшується і ця мода стає домінантною модою. Перехід у стан захоплення (синхронізації) частоти відбувається за часи ~ 50 -100 µsec. У цей момент стійкий стан великомасштабних МГД-збурювань може стрибком стати нестійким унаслідок появи позитивного зворотного зв'язку між резонансними поверхнями (або між резонансними поверхнями і системою зворотних зв'язків). Цей ефект можливо визначає вибуховий характер розвитку нестійкості зриву. 14