Solid state switch based pulsers for the injection system of the collider VEPP-2000
We describe high voltage pulsers for supplying the kickers of the collider VEPP-2000 injection system. The high voltage pulse is formed as a result of a sharp break of a high current, accumulated previously in storage elements, by means of a SOS-diode The generator scheme is described too.
Збережено в:
Дата: | 2004 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2004
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/79329 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Solid state switch based pulsers for the injection system of the collider VEPP-2000 / B.I. Grishanov, F.V. Podgorny, A.S. Kasaev // Вопросы атомной науки и техники. — 2004. — № 2. — С. 57-59. — Бібліогр.: 5 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-79329 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-793292015-04-01T03:01:52Z Solid state switch based pulsers for the injection system of the collider VEPP-2000 Grishanov, B.I. Podgorny, F.V. Kasaev, A.S. Элементы ускорителей We describe high voltage pulsers for supplying the kickers of the collider VEPP-2000 injection system. The high voltage pulse is formed as a result of a sharp break of a high current, accumulated previously in storage elements, by means of a SOS-diode The generator scheme is described too. Описано генератори високовольтних імпульсів для живлення кикеров системи інжекції коллайдера ВЕПП-2000 БИЯФ З РАНЕЙ. Формування імпульсів відбувається в результаті різкого обриву струму в індуктивному накопичувачі за допомогою зборки з напівпровідникових SOS-діодів, включеної паралельно навантаженню. Приведено схему генератора. Описаны генераторы высоковольтных импульсов для питания кикеров системы инжекции коллайдера ВЭПП-2000 БИЯФ СО РАН. Формирование импульсов происходит в результате резкого обрыва тока в индуктивном накопителе при помощи сборки из полупроводниковых SOS-диодов, включенной параллельно нагрузке. Приведена схема генератора. 2004 Article Solid state switch based pulsers for the injection system of the collider VEPP-2000 / B.I. Grishanov, F.V. Podgorny, A.S. Kasaev // Вопросы атомной науки и техники. — 2004. — № 2. — С. 57-59. — Бібліогр.: 5 назв. — англ. 1562-6016 PACS: 29.20.Dh http://dspace.nbuv.gov.ua/handle/123456789/79329 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Элементы ускорителей Элементы ускорителей |
spellingShingle |
Элементы ускорителей Элементы ускорителей Grishanov, B.I. Podgorny, F.V. Kasaev, A.S. Solid state switch based pulsers for the injection system of the collider VEPP-2000 Вопросы атомной науки и техники |
description |
We describe high voltage pulsers for supplying the kickers of the collider VEPP-2000 injection system. The high
voltage pulse is formed as a result of a sharp break of a high current, accumulated previously in storage elements, by
means of a SOS-diode The generator scheme is described too. |
format |
Article |
author |
Grishanov, B.I. Podgorny, F.V. Kasaev, A.S. |
author_facet |
Grishanov, B.I. Podgorny, F.V. Kasaev, A.S. |
author_sort |
Grishanov, B.I. |
title |
Solid state switch based pulsers for the injection system of the collider VEPP-2000 |
title_short |
Solid state switch based pulsers for the injection system of the collider VEPP-2000 |
title_full |
Solid state switch based pulsers for the injection system of the collider VEPP-2000 |
title_fullStr |
Solid state switch based pulsers for the injection system of the collider VEPP-2000 |
title_full_unstemmed |
Solid state switch based pulsers for the injection system of the collider VEPP-2000 |
title_sort |
solid state switch based pulsers for the injection system of the collider vepp-2000 |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2004 |
topic_facet |
Элементы ускорителей |
url |
http://dspace.nbuv.gov.ua/handle/123456789/79329 |
citation_txt |
Solid state switch based pulsers for the injection system of the collider VEPP-2000 / B.I. Grishanov, F.V. Podgorny, A.S. Kasaev // Вопросы атомной науки и техники. — 2004. — № 2. — С. 57-59. — Бібліогр.: 5 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT grishanovbi solidstateswitchbasedpulsersfortheinjectionsystemofthecollidervepp2000 AT podgornyfv solidstateswitchbasedpulsersfortheinjectionsystemofthecollidervepp2000 AT kasaevas solidstateswitchbasedpulsersfortheinjectionsystemofthecollidervepp2000 |
first_indexed |
2025-07-06T03:24:37Z |
last_indexed |
2025-07-06T03:24:37Z |
_version_ |
1836866368058687488 |
fulltext |
SOLID STATE SWITCH BASED PULSERS FOR THE INJECTION
SYSTEM OF THE COLLIDER VEPP-2000
B.I. Grishanov, F.V. Podgorny, A.S. Kasaev
The Budker Institute of Nuclear Physics SB RAS
630090, Novosibirsk, Lavrentieva av., 11 RUSSIA
E-mail: grishanov@inp.nsk.su
We describe high voltage pulsers for supplying the kickers of the collider VEPP-2000 injection system. The high
voltage pulse is formed as a result of a sharp break of a high current, accumulated previously in storage elements, by
means of a SOS-diode The generator scheme is described too.
PACS: 29.20.Dh
1. TECHNICAL SPECIFICATION
Generators are designed for a kicker system feeding of
injection electrons and positrons in the collider VEPP-2000
in the Budker Institute of Nuclear Physics, SB RAS.
The injection system kickers are elements of the ac-
celerator itself and are placed together with it in the ra-
diation-protected hall. Structurally kickers are executed
as asymmetrical strip lines and operate in the matched
mode on the counter traveling wave (in relation to a par-
ticle movement direction). The feeding pulse is supplied
to one end of a plate of the kicker; the matched load is
connected to another end. Kicker's plates having the
length of about 1.5 m are placed directly in the vacuum
chamber of the storage ring VEPP-2000. The plates are
fastened on the ends of the feedthroughs [1].
The injection system includes two kickers, and both
of them are used alternatively for injection and storage
of electrons and positrons. As the kickers operate in the
counter traveling wave mode, at changeover from the
electron storage mode to the positron storage mode and
back it is necessary to change both the polarity of puls-
es, and the wave direction. Such switching is carried out
operatively from the complex main control panel by
electromechanical devices. The kickers have a 50-Ohm
wave resistance; designed pulse amplitude on kicker in-
puts is 50 kV.
Pulser's specifications
Output pulse amplitude 30-50 kV
Rise/fall time ≤ 30 ns
Flat-top duration ≥ 15 ns
Flap-top nonuniformity < 10 %
Pulse amplitude instability < 0.5 %
Jitter < 1 ns
Load 50 Ohm
Repetition rate ≤ 2 Hz
2. PULSE FORMING TECHNIQUES
There are some variants of the task solution. Their
basic difference from each other consists in a mode of
an energy accumulation. One of them is a switching of a
preliminary charged forming line to the load. Thyratrons
or spark-gap switches are used in this scheme as the
switch usually. There is a wide experience in develop-
ment of such generators in the Institute [2].
Other variant consists of energy accumulation in the
inductance of the forming line (or in the lumped induc-
tance) and using of a current breaker. Thus the broken-
off current is thrown in the load. The description of this
process is given below.
Fig.1Circuit with current breaker
The energy from a preliminary charged capacitor C1
is swapped in the inductance L1 through switches S1
and S2. The switch S2 is turn-off at the maximal current
moment. As a result the pulse with an exponential tran-
sient time constant L1/R1 appears on the load. It is pos-
sible to use a so-called SOS-diode as the switch S2. The
real circuit with the SOS-diode is a little more complex
then above-mentioned one and is described below.
The theory of the phenomenon, which has named
SOS-effect is described in detail in papers [3,4]. These
works were executed in the Institute of Electrophysics,
Ural Branch the Russian Academy of Science. Besides
this institute is the developer of the SOS-diodes. The
SOS-diodes allow operate over a wide range both of the
current, and of the voltage. Initially the SOS-diodes
have been optimized to obtain the sharp edges and to
have an opportunity of operating in a frequency mode.
For our experiments S.N.Rukin has kindly given us two
devices, which differed by the diodes junction area.
One of variants of the scheme, allowing one to pro-
vide an operating mode of the SOS-diode, is presented
below.
Fig.2. Two-circuit scheme
Fig.3. The SOS-diode current and the load pulse
___________________________________________________________
PROBLEMS OF ATOMIC SIENCE AND TECHNOLOGY. 2004. № 2.
Series: Nuclear Physics Investigations (43), p.57-59. 57
mailto:grishanov@inp.nsk.su
Capacitors C1 and С2 are preliminary charged to an
opposite polarity voltage. The switch S1 is turned-on at
first. The sine wave current in C1-L1-D1 circuit is
formed. The first half wave of this current runs through
the SOS-diode in a forward direction. When the SOS-
diode current is crossing a zero-level, the SOS-diode re-
mains open during a short time, therefore the inverse
current half wave runs through the SOS-diode also.
When the SOS-diode current is crossing a zero-level the
switch S2 starts the similar process in the circuit C2-L2-
D1. From this time the diode currents of both circuits
run in the same direction and are summarized. On this
half wave the current through the diode is the opposite.
Parameters of the scheme and charge voltage set a
mode of appearance of a SOS-effect. During the moment
when the current value is close to a maximum, in the
diode there is a sharp breakage of the current, and on the
load the pulse is formed. The current can break not only
at the moment of a maximum, but also at other moments.
In order to produce conditions for appearance of the pro-
cess named as a SOS-effect, it is necessary to create the
required density of the direct excitation current and the
inverse excitation current during certain time.
In such a scheme by selection of the parameters of
circuits' elements it is turns out that the break-off cur-
rent exceeds sufficiently the direct excitation current.
Thus it is possible to obtain on the load pulse amplitude
greatly more than the charge voltage. So, to get the high
voltage pulses of the set amplitude it is possible to do it
at a lower charge voltage. Besides, the switches S1and
S2 can be not high-voltage ones.
The SOS-diode is characterized by several parame-
ters. They are: direct and inverse excitation currents, di-
rect and inverse excitation duration, the maximum bro-
ken off inverse current and the maximum voltage,
which can hold the diode after current breakage. The in-
verse excitation duration influences on the current
breakage speed and on the formed pulse rise time conse-
quently. Direct excitation duration can be changed in
more wide limits and is restricted above by electron-
hole plasma recombination effects in the diode. In detail
it is described in [4].
From very beginning we have a single sample of the
SOS-diode for our experiments. This diode allowed one to
break-off the inverse current of up to 4 kA in a pulse mag-
nitude. The direct excitation duration could be changed
within the limits of 200-500 nanoseconds, and inverse ex-
citation duration within the limits of 80-150 nanoseconds.
In accordance with developer’s recommendations, the
maximum speed of the current breakage could be reached
at the inverse excitation duration of about 100 ns. The
formed pulse rise time could reach a few nanoseconds.
To obtain a rectangular pulse, it is possible to use
two ways. The first one consists in using the energy
storage in the pulse forming line inductance. The second
one consists in using the lumped inductance and appli-
cation of correction circuits. The last approach to ob-
taining a quasi-rectangular pulse was written in [5].
3. EXPERIMENTS
3.1. 4-KA DIODE
Our first experiments with 4-kA-diode have shown,
that we "see" the SOS-effect in the scheme submitted
below. This scheme differs from the scheme in fig.2, we
call its scheme with consecutive excitation. Oscillo-
grams of the diode D1 current and a pulse on the load
R1 are presented in fig.5.
Fig.4. Two-circuit scheme with pulse forming line
Fig.5. The load pulse oscillograms
The dual-circuit scheme has two switches. As a switch
S1 we use the Russian hydrogen thyratron TGI1-1000/25,
and as a S2 – the magnetic switch. The permalloy core
50NP having the size 70х40х15 was used. The operating
cycle looks as follows. Capacitor С1 is charged up to an
operating voltage, then the thyratron S1 is turned on. The
current is running on the contour C1-L1-L2-C2-D1 and
charges capacitor С2 up to the voltage proportional to the
initial capacitor С1 voltage. The switch S2 core is saturated
to this moment, the current starts to run on the circuit S2-
L2-C2-D1. The second circuit parameters and the initial
capacitor С1 voltage define this current amplitude. The
diode current breaks at the moment close to its maximum.
As a result the pulse on the load is formed.
We use the KVI-3 type capacitor for С1 and C2.
Values of scheme elements are the following: the capac-
ity С1=6,6 nF, the capacity С2=5,5 nF, inductance
L1=5,5 µH. Inductance L2 is the inductance of the
3 meters length piece of RK50-9 type cable, L2=0.75 µ
H. The SOS-diode is placed in a coffee-bank. The mag-
netic switch is seen at the left. Degaussing circuit is
placed in the cardboard cylinder.
As the magnetic switch does not allow adjusting the
charge voltage level within a wide range, the magnetic
switch S2 has been replaced by the thyratron TGI1-
1000/25 with the grounded anode. Feeding of the cath-
ode heater and the driver pulse is supplied via a special
decoupling choke. The further experiments with this
scheme and this SOS-diode showed that the pulse shape
on load varies with the increase in the excitation level
very strong. The pulse shape becomes nonrectangular. It
means, that the switching characteristic of the SOS-
diode strongly changes with charge voltage changing.
58
Fig.6. Test stand
To reveal correlations between the scheme parameters
and the pulse shape a series of experiences using the
Latin square method has been carried out. A measure of
significance of each of factors was determined and, that is
more important, the required pulse shape of the necessary
amplitude was received at the certain set of parameters.
Being based on the results obtained, we came to a
conclusion, that it is necessary to have a lower current
density in the diode for our pulse specifications. As a re-
sult of discussion of these experiments with S.N.Rukin, it
became clear, that it is meaningful to repeat these experi-
ments with the diode of the essentially greater junction
area, i.e. to proceed in a mode with a lower excitation
current density. Such diode has been given to us.
3.2. LOW DENSITY CURRENT DIODE
Having repeated the series of experiments with the
new diode, it has been found out, that the parameters of
this diode practically do not influence the pulse shape in
a wide range of modes. It confirmed the assumption
made before. The pulse shape depends only on elements
parameters of the scheme.
The inverse excitation circuit inductance consists of
the 1.2 meters length piece of RK50-9 type cable. As a
result we formed the pulse on the 50-Ohm load, corre-
sponding to the technical specification. The pulse ampli-
tude is over 50 kV. The oscillograms are shown in fig.7.
The charge voltage is 17 kV, a measure divider coeffi-
cient is equal to 13000.
Close results were obtained with the lumped induc-
tance as the energy storage element in the inverse exci-
tation circuit. In these experiments the pulse amplitude
reached 70 kV. The pulse shape was not so rectangular,
but it may be improved by means of correction circuits.
Fig.7. The load pulse oscillograms
4. RESULTS
The experimental results obtained are the base for
the design of a working variant of the kicker feeding
pulsers for the collider VEPP-2000.
CONCLUSIONS
Authors thank to S.N.Rukin for the given samples of
diodes and useful discussions and consultations
REFERENCES
1. B.I. Grishanov, F.V. Podgorny. Injection in the
storage ring VEPP-2000. HEACC-2001.
2. M.G. Bakharev, B.I.Grishanov, F.V. Podgorny.
High-voltage short pulse generator. PAC-2001.
3. S.K.Lyubutin, G.A.Mesyats, S.N.Rukin,
B.G.Slovikovskii, A.M.Turov New solid state open-
ing switches for repetitive pulsed power technology
// Proc.: XI Int. Conf. on High Power Particle
Beams., Prague, Czech Republic. 1996, v.1, p.135-
138.
4. S.A.Darznek, G.A.Mesyats, S.N.Rukin, S.N. Tsira-
nov. Theoretical model of the SOS effect // Proc.: XI
Int. Conf. on High Power Particle Beams. Prague,
Czech Republic. 1996, v.2, p.1241-1244.
5. S.K.Lyubutin, G.A.Mesyats, S.N.Rukin,
B.G.Slovikovskii, S.N.Tsiranov Generator of quasi-
rectangular pulses on the low ohmic load with an semi-
conductor current interrupter // PTE. 2000, No.1, p.74-
81.
ИМПУЛЬСНЫЕ ГЕНЕРАТОРЫ НА ОСНОВЕ ТВЕРДОТЕЛЬНЫХ КОММУТАТОРОВ ДЛЯ
СИСТЕМЫ ИНЖЕКЦИИ КОЛЛАЙДЕРА ВЭПП-2000
Б.И. Гришанов, Ф.В. Подгорный, А.С. Касаев
Описаны генераторы высоковольтных импульсов для питания кикеров системы инжекции коллайдера
ВЭПП-2000 БИЯФ СО РАН. Формирование импульсов происходит в результате резкого обрыва тока в ин-
___________________________________________________________
PROBLEMS OF ATOMIC SIENCE AND TECHNOLOGY. 2004. № 2.
Series: Nuclear Physics Investigations (43), p.57-59. 59
дуктивном накопителе при помощи сборки из полупроводниковых SOS-диодов, включенной параллельно
нагрузке. Приведена схема генератора.
ІМПУЛЬСНІ ГЕНЕРАТОРИ НА ОСНОВІ ТВЕРДОТІЛЬНИХ КОМУТАТОРІВ ДЛЯ СИСТЕМИ
ІНЖЕКЦІЇ КОЛЛАЙДЕРА ВЕПП-2000
Б.І. Гришанов, Ф.В. Підгорський, А.С. Касаев
Описано генератори високовольтних імпульсів для живлення кикеров системи інжекції коллайдера
ВЕПП-2000 БИЯФ З РАНЕЙ. Формування імпульсів відбувається в результаті різкого обриву струму в
індуктивному накопичувачі за допомогою зборки з напівпровідникових SOS-діодів, включеної паралельно
навантаженню. Приведено схему генератора.
60
B.I. Grishanov, F.V. Podgorny, A.S. Kasaev
The Budker Institute of Nuclear Physics SB RAS
Б.И. Гришанов, Ф.В. Подгорный, А.С. Касаев
|