Investigation of system for external injection of H⁻ ion beam on cyclotrons

The article presents results of experimental studies carried out at an installation (“SVITS”) simulating a system for external injection of H⁻ions with the beam current of up to 2 mA and energy up to 30 keV for cyclotrons. The beam characteristics (current, current density distribution over cross-se...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2004
Hauptverfasser: Veresov, O.L., Grigorenko, S.V., Strokach, A.P., Udovichenko, S.Yu., Tsygankov, S.S., Zuev, Yu.V.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2004
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/79330
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Investigation of system for external injection of H⁻ ion beam on cyclotrons / O.L. Veresov, S.V. Grigorenko, A.P. Strokach, S.Yu. Udovichenko, S.S. Tsygankov, Yu.V. Zuev // Вопросы атомной науки и техники. — 2004. — № 2. — С. 60-63. — Бібліогр.: 8 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-79330
record_format dspace
spelling irk-123456789-793302015-04-01T03:01:52Z Investigation of system for external injection of H⁻ ion beam on cyclotrons Veresov, O.L. Grigorenko, S.V. Strokach, A.P. Udovichenko, S.Yu. Tsygankov, S.S. Zuev, Yu.V. Элементы ускорителей The article presents results of experimental studies carried out at an installation (“SVITS”) simulating a system for external injection of H⁻ions with the beam current of up to 2 mA and energy up to 30 keV for cyclotrons. The beam characteristics (current, current density distribution over cross-section, phase diagrams) as well as gas pressure were measured in three points along the beam axis. The influence of the compensation and de-compensation of the beam space charge on the beam dynamics in the plasma produced under beam transportation was studied. Приводяться результати експериментальних досліджень, виконаних на установці, що моделює систему зовнішньої інжекції Н⁻ зі струмом пучка до 2 мА й енергією до 30 кеВ для циклотрону. Вимір характеристик пучка (струму, розподілу густини струму по перетині, фазових діаграм), а також тиску газу провадиться в трьох точках уздовж осі пучка. Відзначено вплив на динаміку пучка в інжекторі ефекту компенсації власного просторового заряду пучка іонами плазми, що напрацьовується при русі пучка в залишковому газі. Приводятся результаты экспериментальных исследований, выполненных на установке, моделирующей систему внешней инжекции Н⁻ с током пучка до 2 мА и энергией до 30 кэВ для циклотрона. Измерение характеристик пучка (тока, распределения плотности тока по сечению, фазовых диаграмм), а также давления газа производится в трех точках вдоль оси пучка. Отмечено влияние на динамику пучка в инжекторе эффекта компенсации собственного пространственного заряда пучка ионами плазмы, нарабатываемой при движении пучка в остаточном газе. 2004 Article Investigation of system for external injection of H⁻ ion beam on cyclotrons / O.L. Veresov, S.V. Grigorenko, A.P. Strokach, S.Yu. Udovichenko, S.S. Tsygankov, Yu.V. Zuev // Вопросы атомной науки и техники. — 2004. — № 2. — С. 60-63. — Бібліогр.: 8 назв. — англ. 1562-6016 PACS: 29.20.Hm, 29.25.Ni http://dspace.nbuv.gov.ua/handle/123456789/79330 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Элементы ускорителей
Элементы ускорителей
spellingShingle Элементы ускорителей
Элементы ускорителей
Veresov, O.L.
Grigorenko, S.V.
Strokach, A.P.
Udovichenko, S.Yu.
Tsygankov, S.S.
Zuev, Yu.V.
Investigation of system for external injection of H⁻ ion beam on cyclotrons
Вопросы атомной науки и техники
description The article presents results of experimental studies carried out at an installation (“SVITS”) simulating a system for external injection of H⁻ions with the beam current of up to 2 mA and energy up to 30 keV for cyclotrons. The beam characteristics (current, current density distribution over cross-section, phase diagrams) as well as gas pressure were measured in three points along the beam axis. The influence of the compensation and de-compensation of the beam space charge on the beam dynamics in the plasma produced under beam transportation was studied.
format Article
author Veresov, O.L.
Grigorenko, S.V.
Strokach, A.P.
Udovichenko, S.Yu.
Tsygankov, S.S.
Zuev, Yu.V.
author_facet Veresov, O.L.
Grigorenko, S.V.
Strokach, A.P.
Udovichenko, S.Yu.
Tsygankov, S.S.
Zuev, Yu.V.
author_sort Veresov, O.L.
title Investigation of system for external injection of H⁻ ion beam on cyclotrons
title_short Investigation of system for external injection of H⁻ ion beam on cyclotrons
title_full Investigation of system for external injection of H⁻ ion beam on cyclotrons
title_fullStr Investigation of system for external injection of H⁻ ion beam on cyclotrons
title_full_unstemmed Investigation of system for external injection of H⁻ ion beam on cyclotrons
title_sort investigation of system for external injection of h⁻ ion beam on cyclotrons
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2004
topic_facet Элементы ускорителей
url http://dspace.nbuv.gov.ua/handle/123456789/79330
citation_txt Investigation of system for external injection of H⁻ ion beam on cyclotrons / O.L. Veresov, S.V. Grigorenko, A.P. Strokach, S.Yu. Udovichenko, S.S. Tsygankov, Yu.V. Zuev // Вопросы атомной науки и техники. — 2004. — № 2. — С. 60-63. — Бібліогр.: 8 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT veresovol investigationofsystemforexternalinjectionofhionbeamoncyclotrons
AT grigorenkosv investigationofsystemforexternalinjectionofhionbeamoncyclotrons
AT strokachap investigationofsystemforexternalinjectionofhionbeamoncyclotrons
AT udovichenkosyu investigationofsystemforexternalinjectionofhionbeamoncyclotrons
AT tsygankovss investigationofsystemforexternalinjectionofhionbeamoncyclotrons
AT zuevyuv investigationofsystemforexternalinjectionofhionbeamoncyclotrons
first_indexed 2025-07-06T03:24:41Z
last_indexed 2025-07-06T03:24:41Z
_version_ 1836866373118066688
fulltext INVESTIGATION OF SYSTEM FOR EXTERNAL INJECTION OF H-ION BEAM ON CYCLOTRONS O.L.Veresov, S.V.Grigorenko, A.P.Strokach, S.Yu.Udovichenko, S.S.Tsygankov, Yu.V. Zuev The Scientific Research Institute of Electrophysical Apparatus, Scientific Production Complex of Linear Accelerators and Cyclotrons, Saint-Petersburg, Russia, E-mail: npkluts@niiefa.spb.su The article presents results of experimental studies carried out at an installation (“SVITS”) simulating a system for external injection of H-ions with the beam current of up to 2 mA and energy up to 30 keV for cyclotrons. The beam characteristics (current, current density distribution over cross-section, phase diagrams) as well as gas pressure were measured in three points along the beam axis. The influence of the compensation and de-compensation of the beam space charge on the beam dynamics in the plasma produced under beam transportation was studied. PACS: 29.20.Hm, 29.25.Ni INTRODUCTION The system for external injection of negative H- ions into a cyclotron-type accelerator is intended for forming a beam with a current of more than 1mA and energy of 10-30 keV and its transport for a distance of several me- ters. The system contains: a plasma source of ions, elec- trostatic beam-forming optics, a beam-transportation channel with elements of magnet focusing system and an inflector required to bend the beam to the cyclotron median plane. The “SVITS” installation (the system of H- beam ex- ternal injection into cyclotron) was constructed at the D.V. Efremov Institute, NIIEFA in the middle 90-ies. [1 ]. The facility is intended for try-out and optimization of separate elements of the external injection system and production of output H- beam with specified parameters optimal for injection to the central area of cyclotron. The problem of negative ion beam transportation un- der gas leaking from the ion source to the transportation channel is highly topical but it is rather far from being solved. There is a series of works on this problem [2-5]. Collective processes causing excitation of a spectrum of plasma oscillations result in heating of fast ions and dy- namic de-compensation of the space beam charge. The effect of strong de-compensation of negative ion beam with a current density of 50 mA/cm2 was discovered by the authors [6]. In ref. [5] is suggested a theoretical model describing the process of dynamic de-compensa- tion of space charge of ion beam due to developing ion beam-plasma instability; analytic expressions for plas- ma ion density and stationary electric field distribution in partially compensated beam are obtained. Numerical solution of the equation of beam motion in self electric field and external magnetic field allowed us to deter- mine the effect of plasma charged particles on the trans- portation of the 30 mA, 30 keV negative ion beam through the cyclotron injector (ref. [5]). This report presents results of numerical simulation of ion beam dynamics in the channel of external injec- tion in comparison with results obtained on the “SVITS” installation with the H-beam of ≈1.5 mA and energies of 12 and 24 keV. EXPERIMENTAL EQUIPMENT Fig.1 presents a schematic of the “SVITS” installa- tion. ___________________________________________________________ PROBLEMS OF ATOMIC SIENCE AND TECHNOLOGY. 2004. № 2. Series: Nuclear Physics Investigations (43), p.60-63.60 mailto:npkluts@niiefa.spb.su Fig.1. Schematic of the “SVITS” installation: 1-ion source; 2-vacuum chamber; 3-vacuum gate valve; 4-turbomolecular pump (750 l/s); 5-solenoid magnetic lens; 6- beam emittance, current and current density distri- bution sensor; 7--“pepper-pot” current collector; 8-bellows; 9-ion channel; 10-diagnostic chamber of ion beam; 11-capacity probe The “cusp”-type volume-plasma ion source (1) with transverse magnetic filter is described in ref. [7]. At dis- charge current of 20 A this source (with the emission electrode aperture 5mm in diameter) produced an H- ion beam with a current of more than 2 mA, energy of 30 keV and normalized emittance of 0.3 π mm mrad. The 80 mm long solenoidal magnetic lens (5) provides maximum induction of axial magnetic field up to 0.4 T. The emittance scanner (6) also functions as a beam total current meter and meter of radial current density distribution. The method of the beam emittance determi- nation is based on measuring the divergence of elemen- tary sheet beams cut off from the main beam with a nar- row slit diaphragm. The measurements being complet- ed, the emittance scanner sensor is removed out of the beam. The “pepper-pot” type current collector (7) is fixed in vacuum chambers for the period of the beam align- ment. Behind the current collector, there is placed a quartz glass, which provides visual information about the beam structure and sizes. The chamber of ion beam diagnostics (10) is located at the output of the ion channel. It is equipped with a moving sensor, which serves to measure the beam total current, current density distribution over the radius and beam emittance. The capacitive probe (11), of the design similar to that in [6], serves to measure the potential distribution in the beam cross-section. All vacuum chambers, including the diagnostic chamber, are equipped with vacuum pressure gauges. RESULTS OF MEASUREMENTS AND CALCULATIONS When measuring the beam characteristics, we kept constant the operating mode of the ion source with the following parameters: discharge current-15 A; discharge voltage-100 V; extraction voltage-2.8 kV; current of ex- tracting electrode-50mA, H2 pressure in the source-10-2 torr, pressure in the first chamber- 1.2×10–4 torr, pres- sure in the second chamber-3.5×10-5 torr, pressure in the diagnostic chamber-4.0×10-5 torr. The beam parameters in the first chamber were mea- sured to form a beam with matched phase volume at the magnetic lens input. In this case at an energy of Wb=24 kev the current of H-beam was Ib=1.7 mA, radius-Rb=7 mm, divergence–R’=20 mrad and normalized emit- tance-εn=0.32 π mm·mrad. Fig.2 (“a” and “b”) demonstrate measured distribu- tions of current density and diagrams of the beam emit- tance in the second chamber for two versions: 1) Wb=24 keV, Ib=1.5 mA, induction in the center of the lens - Bmax=0.26 T; 2) Wb=12 keV, Ib=1.35 mA, Bmax=0.18 T. In the second case the beam was initially accelerated up to 19 keV and then decelerated down to 12 keV. The lens field induction was chosen in such a way as to minimize the beam sizes at the system output. In ref. [5] we obtained an expression for critical gas density at which the de-compensation of the ion beam occurs. In this expression transverse ion-plasma oscilla- tions were taken into account: ngs ≈ vs/3σivbxb, where: vb and xb are the beam longitudinal velocity and beam transverse dimension, respectively, σi is the cross-sec- tion of a gas molecule ionized with a beam ion, vs=(Te/mi)1/2 is the ion sound velocity. -3 -2 -1 0 1 2 3 0 1 2 3 4 5 J H -, µA /m m2 R, cm E b =12 keV E b =24 keV Fig.2a. Distribution of the beam current density in the second chamber ___________________________________________________________ PROBLEMS OF ATOMIC SIENCE AND TECHNOLOGY. 2004. № 2. Series: Nuclear Physics Investigations (43), p.60-63.61 -2 -1 0 1 2 -15 -10 -5 0 5 10 15 R ', m ra d. R, cm Eb=12 keV Eb=24 keV Fig.2b. Diagram of the beam emittance in the second chamber Values of H2 critical pressure, which can be derived from this expression, are: 8.4×10–5 torr (for 24 keV) and 6×10–5 torr (for 12 keV). Thus, in compliance with the theory, conditions for de-compensation of the beam space discharge in the second vacuum chamber are pro- vided in both the cases. However, increment and ampli- tude of oscillations are rather small and the degree of de-compensation is close to zero due to large (∼2cm) ra- dius of the beam. Further, as the beam moves to the di- agnostic chamber, the beam radius is decreased and negative potential near the beam axis should be in- creased due to larger amplitude of plasma transverse ion oscillations and larger ejection of positive ions to the walls of the ion guide. Under these conditions the mode of the space charge weak overcompensation is main- tained at the beam periphery. In [8] the positively and negatively charged areas in the H-beam cross-section at ng < ngc were experimentally discovered. Fig.3 (a,d) demonstrate calculated beam trajectories for two versions: Wb=24 keV, Ib=1.5 mA, Bmax=0.26 T, εn=0.4 π mm mrad. 2) Wb=12 keV, Ib=1.35 mA, Bmax=0.18 T, εn=0.25 π mm mrad. Envelopes calculated in the approximation of uniformly charged beam with a de-compensation degree of 0.0, 0.1 and 0.2 are also shown on the same figures. Fig.3 (b,e) shows calculated diagrams of emittance at the system output for versions1 and 2, respectively. Fig.3 (c,f) shows photos of the beam cross-section in the diagnostic chamber for the same two versions. a) (ver. 1) b) (ver. 1) c) (ver. 1) d) (ver. 2) e) (ver. 2) f) (ver. 2) Fig.3(a,d). Calculated beam trajecto- ries and envelopes with different de- compensation degree Fig.3(b,e). Calculated diagram of beam emittance at the injector out- put Fig.3(c,f).Photos of the beam at the injector output. In the calculations we assumed that the beam space charge was fully compensated at the section from the ion source to the emittance scanner in the second cham- ber. Trajectories (z=0) were started from this emittance scanner and ended in the diagnostic chamber (the drift part was 163 cm long). 300 trajectories were involved in the calculation. Initial distribution of particles in the 4- dimensional phase space was specified uniform. In the point z=0, the amplitude of plasma potential oscillations was assumed to be 1 V. From Fig.3 it is seen that for the version with Wb=24 keV the de-compensation effect is rather weak and at a given emittance practically is not seen. With twice reduction of the beam energy (Wb=12 keV) and with constant current magnitude, the de-compensation effect is appreciably heightened. Distribution of particles over the beam cross-section at the output of the system becomes non-uniform. The effective emittance is more than 1.5 times increased. Results of probe measurements in the second cham- ber at beam energy of 12 keV have demonstrated the 62 following. The ne/ni ratio (where ne, ni are the electron and ion concentrations in plasma), obtained as a result of the analysis of probe characteristics, was in the range of (2-5)·10–3. Such a low concentration of electrons is indicative of the de-compensated state of the beam. Po- tential fluctuations with an amplitude of 0.2-0.5 V and frequency of∼ϖpi (ϖpi is the Langmuir frequency of ions) were observed in the beam. Floating potential of the capacitive probe on the beam axis was 0.45 V. When the probe is moved from the beam axis to the chamber wall, its potential smoothly rises up to 0.82 V and then drops. The potential has its maximum at a dis- tance of 1.7 cm from the axis that corresponds to the beam effective radius. With 1.5 times higher induction of the magnetic field of the lens, the beam effective ra- dius is reduced to 0.5 cm. In this case the potential on the beam axis is 0.68 V and the potential on the beam radius is 1,3 V, respectively. The capacitive probe po- tential is higher than that of the beam by an average en- ergy of secondary electrons knocked out of the probe under the beam action. If the probe is made of tungsten with 0,5% of Tho, the average energy of secondary electrons is lower than 1 eV. Thus, in the area near the beam axis, the potential is minimum and can acquire negative values. On the beam periphery, weak overcom- pensation of the space charge and positive potential are observed. CONCLUSIONS The experimentally obtained results confirm that compensation and partial de-compensation of the space charge of the beam of negative ions occurs under gas leaking to the transportation channel from the ion source. These results agree with experimental data of other authors[6-8] as well as with analytical studies of potential distribution in a partially de-compensated beam [5]. The dynamics of the beam moving under plasma ion oscillations was calculated by the method of large parti- cles by solving the motion equation. The results were compared with the results obtained by the method of en- velopes with different degrees of compensation. Differences in the beam dynamics of these two mod- els have been observed, which are due to non-linear character of the stationary electric field distribution over the beam radius in the first case. Experimentally found positively and negatively charged areas in the cross-section of H- beam affect its dynamics and results in an increase of its effective emit- tance. We should note that in a low current beam (Ib≤ 1 mA) the effect of the space charge de-compensation and changes in the beam dynamics are weak. With high- er beam current, they will have increased their impor- tance. The carried out investigations are aimed at the con- struction of H- ion injector for new-generation cy- clotrons intended for production of medical isotopes nowadays designed in the D.V. Efremov Institute, NI- IEFA. REFERENCES 1. Yu.V.Afanasiev, M.F.Vorogushin, S.V. Grig- orenko, A.P. Strokach // Theses of 8th Conference on Applied Charged Particle Accelerators in Medicine and Industry. St.Petersburg. 1995, p.150. 2. S.Yu. Udovichenko // ZhTF. 1995, № 4, p.31-39 (in Russian). 3. N.G. Vaganov, V.P. Sidorov, S.Yu. Udovchenko // VANT. Series “Thermonuclear Fusion”. 1955, №4, p.36-39. 4. S.Yu.Udovichenko // ZhTF. 1994, № 8, p.104-112 (in Russian). 5. S.V. Grigorenko, S.Yu. Udovichenko // ZhTF. 2003, № 7, p.119-124. 6. M.D. Gabovich, D.G. Dzhabbarov, A.P. Naida // Pisjma v ZHETF. 1979, v.29, № 9, p. 536-539 (in Russian). 7. Yu.V. Afanasiev, O.L. Veresov, S.V. Grigorenko, A.P. Strokach, S.Yu. Udovichenko // Proceedings of 10thMeeting on Applied Charged Particle Accel- erators in Medicine and Industry. St.Petersburg, 2001. 8. V.P. Goretsky, A.P. Naida // Fizika Plasmy. 1985, v.11, № 4, p.394-399 (in Russian). ИССЛЕДОВАНИЕ СИСТЕМЫ ВНЕШНЕЙ ИНЖЕКЦИИ ПУЧКА ИОНОВ Н- ДЛЯ ЦИКЛОТРОНА О.Л. Вересов, С.В. Григоренко, Ю.В. Зуев, А.П. Строкач, С.Ю. Удовиченко, С.С. Цыганков Приводятся результаты экспериментальных исследований, выполненных на установке, моделирующей систему внешней инжекции Н- с током пучка до 2 мА и энергией до 30 кэВ для циклотрона. Измерение ха- рактеристик пучка (тока, распределения плотности тока по сечению, фазовых диаграмм), а также давления газа производится в трех точках вдоль оси пучка. Отмечено влияние на динамику пучка в инжекторе эффек- та компенсации собственного пространственного заряда пучка ионами плазмы, нарабатываемой при движе- нии пучка в остаточном газе. ДОСЛІДЖЕННЯ СИСТЕМИ ЗОВНІШНЬОЇ ІНЖЕКЦІЇ ПУЧКА ІОНІВ Н- ДЛЯ ЦИКЛОТРОНУ О.Л. Вересов, С.В. Григоренко, Ю.В. Зуєв, А.П. Строкач, С.Ю. Удовиченко, С.С. Циганков Приводяться результати експериментальних досліджень, виконаних на установці, що моделює систему зовнішньої інжекції Н- зі струмом пучка до 2 мА й енергією до 30 кеВ для циклотрону. Вимір характеристик пучка (струму, розподілу густини струму по перетині, фазових діаграм), а також тиску газу провадиться в ___________________________________________________________ PROBLEMS OF ATOMIC SIENCE AND TECHNOLOGY. 2004. № 2. Series: Nuclear Physics Investigations (43), p.60-63.63 трьох точках уздовж осі пучка. Відзначено вплив на динаміку пучка в інжекторі ефекту компенсації власного просторового заряду пучка іонами плазми, що напрацьовується при русі пучка в залишковому газі. 64 Introduction Experimental equipment Results of Measurements and Calculations ConclusionS