Numerical study of the centre region acceleration for the RIC-30 cyclotron
The RIC-30 cyclotron was designed for acceleration of protons up to 30 MeV [1]. Since 1994 it has been used for production of radionuclides on internal target installed at a radius of 580 mm, where the beam energy equals 22 MeV. Final radius of acceleration is 655 mm. At present, in the long-time...
Збережено в:
Дата: | 2004 |
---|---|
Автори: | , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2004
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/79352 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | НазваниеNumerical study of the centre region acceleration for the RIC-30 cyclotron / Z.A. Andreeva, Yu.A. Svistunov, S.A. Silaev, A.V. Stepanov // Вопросы атомной науки и техники. — 2004. — № 2. — С. 126-128. — Бібліогр.: 3 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-79352 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-793522015-04-01T03:02:25Z Numerical study of the centre region acceleration for the RIC-30 cyclotron Andreeva, Z.A. Svistunov, Yu.A. Silaev, S.A. Stepanov, A.V. Элементы ускорителей The RIC-30 cyclotron was designed for acceleration of protons up to 30 MeV [1]. Since 1994 it has been used for production of radionuclides on internal target installed at a radius of 580 mm, where the beam energy equals 22 MeV. Final radius of acceleration is 655 mm. At present, in the long-time irradiation mode the beam current on target is 190...200 µA [2]. The main objective of the work is to attain a higher beam current due to optimizing configuring of components forming the central ion-optical system of the cyclotron. RIC-30 циклотрон був розроблений для прискорення протонів до 30 МеВ. З 1994 p. він використовувався для виробництва радіонуклідів на внутрішній мішені, встановленої на радіусі 580 мм, де енергія пучка дорівнювала 22 МеВ. Кінцевий радіус прискорення дорівнює 655 мм. В даний час при тривалому режимі опромінення струм пучка на мішені – 190...200 мкА. Основною метою роботи є одержання більш високого струму пучка внаслідок оптимізації конфігурації компонент, що формують центральну іон-оптичну систему циклотрона. RIC-30 циклотрон был разработан для ускорения протонов до 30 МэВ. С 1994 г. он использовался для производства радионуклидов на внутренней мишени, установленной на радиусе 580 мм, где энергия пучка равнялась 22 МэВ. Конечный радиус ускорения равен 655 мм. В настоящее время при длительном режиме облучения ток пучка на мишени – 190...200 мкА. Основной целью работы является получение более высокого тока пучка вследствие оптимизации конфигурации компонент, формирующих центральную ион-оптическую систему циклотрона. 2004 Article НазваниеNumerical study of the centre region acceleration for the RIC-30 cyclotron / Z.A. Andreeva, Yu.A. Svistunov, S.A. Silaev, A.V. Stepanov // Вопросы атомной науки и техники. — 2004. — № 2. — С. 126-128. — Бібліогр.: 3 назв. — англ. 1562-6016 PACS: 29.20.Hm http://dspace.nbuv.gov.ua/handle/123456789/79352 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Элементы ускорителей Элементы ускорителей |
spellingShingle |
Элементы ускорителей Элементы ускорителей Andreeva, Z.A. Svistunov, Yu.A. Silaev, S.A. Stepanov, A.V. Numerical study of the centre region acceleration for the RIC-30 cyclotron Вопросы атомной науки и техники |
description |
The RIC-30 cyclotron was designed for acceleration of protons up to 30 MeV [1]. Since 1994 it has been used
for production of radionuclides on internal target installed at a radius of 580 mm, where the beam energy equals
22 MeV. Final radius of acceleration is 655 mm. At present, in the long-time irradiation mode the beam current on
target is 190...200 µA [2]. The main objective of the work is to attain a higher beam current due to optimizing configuring of components forming the central ion-optical system of the cyclotron. |
format |
Article |
author |
Andreeva, Z.A. Svistunov, Yu.A. Silaev, S.A. Stepanov, A.V. |
author_facet |
Andreeva, Z.A. Svistunov, Yu.A. Silaev, S.A. Stepanov, A.V. |
author_sort |
Andreeva, Z.A. |
title |
Numerical study of the centre region acceleration for the RIC-30 cyclotron |
title_short |
Numerical study of the centre region acceleration for the RIC-30 cyclotron |
title_full |
Numerical study of the centre region acceleration for the RIC-30 cyclotron |
title_fullStr |
Numerical study of the centre region acceleration for the RIC-30 cyclotron |
title_full_unstemmed |
Numerical study of the centre region acceleration for the RIC-30 cyclotron |
title_sort |
numerical study of the centre region acceleration for the ric-30 cyclotron |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2004 |
topic_facet |
Элементы ускорителей |
url |
http://dspace.nbuv.gov.ua/handle/123456789/79352 |
citation_txt |
НазваниеNumerical study of the centre region acceleration for the RIC-30 cyclotron / Z.A. Andreeva, Yu.A. Svistunov, S.A. Silaev, A.V. Stepanov // Вопросы атомной науки и техники. — 2004. — № 2. — С. 126-128. — Бібліогр.: 3 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT andreevaza numericalstudyofthecentreregionaccelerationfortheric30cyclotron AT svistunovyua numericalstudyofthecentreregionaccelerationfortheric30cyclotron AT silaevsa numericalstudyofthecentreregionaccelerationfortheric30cyclotron AT stepanovav numericalstudyofthecentreregionaccelerationfortheric30cyclotron |
first_indexed |
2025-07-06T03:25:41Z |
last_indexed |
2025-07-06T03:25:41Z |
_version_ |
1836866435315400704 |
fulltext |
NUMERICAL STUDY OF THE CENTRE REGION ACCELERATION
FOR THE RIC-30 CYCLOTRON
Z.A. Andreeva, Yu.A. Svistunov, S.A. Silaev, A.V. Stepanov
The Scientific Research Institute of Electrophysical Apparatus, Scientific Production Complex
of Linear Accelerators and Cyclotrons, Saint-Petersburg, Russia,
E-mail: npkluts@niiefa.spb.su
The RIC-30 cyclotron was designed for acceleration of protons up to 30 MeV [1]. Since 1994 it has been used
for production of radionuclides on internal target installed at a radius of 580 mm, where the beam energy equals
22 MeV. Final radius of acceleration is 655 mm. At present, in the long-time irradiation mode the beam current on
target is 190...200 µA [2]. The main objective of the work is to attain a higher beam current due to optimizing con-
figuring of components forming the central ion-optical system of the cyclotron.
PACS: 29.20.Hm
SOURCE DATA
The accelerating system of the RIC-30 cyclotron is a
single 180° dee, to which RF voltage with amplitude of
48 kV and fixed frequency of 17.4 MHz is applied. Up to
R=250 mm, the accelerating gap between the dee and the
dummy dee is 30 mm. The discharge channel of the ion
source and the extracting slit of the puller are 20 mm
shifted along the dee edge relative to the pole center
Computations of three-dimensional electric field dis-
tribution have been done for several configurations of ac-
celerating electrodes. The first version (“initial”, the dee
aperture-34 mm and dummy dee aperture-62 mm) corre-
sponded to the working position of electrodes in the cen-
tral area of acceleration. The second version (“symmet-
ric”, both the dee and dummy dee apertures-34 mm) dif-
fered from the first one in reduction of the dummy dee
aperture to the aperture of the dee.
During optimizing computations of particle initial
motion, we studied a version called “My-2”, which dif-
fered from the “symmetric” one in the smaller dee aper-
ture (20 mm) at the beam output from the dee. Radial
length of the area of the dee reduced aperture was 50 mm
(from R=20 mm, the puller edge, to R=70 mm).
Radial trajectories and vertical motion of particles with
different start phases were computed during 6-7 beam
turns in the uniform magnetic field. This approximation
corresponds to the actual magnetic field of the RIC-30 cy-
clotron, in the central area of which the flatter starts to rise
only at a radius of 80-100 mm [3]. Thus, till this radius
vertical motion of particles on the RIC-30 cyclotron com-
pletely depends on the electric field.
RESULTS OF COMPUTATIONS
The most effective way to affect the vertical motion
of ions in the center of the cyclotron is the change of
electric field spatial distribution in the accelerating gap
by varying the dee and dummy dee apertures. Focusing
(at the dee and dummy dee outputs) and defocusing (at
the dee and dummy dee inputs) effects of electric field
dominate during initial turns in the direct vicinity of the
ion source and the puller. In this area the electric field is
of complicated spatial distribution. Therefore, to pro-
vide a higher reliability of results, it is important to ap-
ply a three-dimensional code for computation of the
electric field distribution in the accelerating gap.
Fig.1 demonstrates, as an example, equipotentials of
electric field (14 mm from the puller) for the initial ver-
sion of the accelerating structure.
In this place the beam after the first half-turn leaves
the dee, as is demonstrated in Fig.2. The figure shows
orbits of the protons first turn in the median plane for
the “initial“ version. The initial start interval is 45°,
from -31° to +14°.
Protons with start phases less than -31°and more
than +14° has dropped out of the acceleration process.
They arrive either to the puller or to the source. Fig.3
shows the initial orbits of protons with zero start phase
for “initial” and “symmetric” versions.
The motion of the orbit curvature center area and
area A with the strongest effect of electric field forces is
displayed. It is seen that the “symmetric” version has
some advantage in the orbit radius rise, i.e. energy gain.
For these versions of the accelerating structure Fig.4
demonstrates distribution of vertical Ey and accelerating
Ez components of electric field in the area A.
Despite an appreciable reduction of electric field de-
focusing effect in the “initial” structure, further compu-
tations have demonstrated that this structure does not of-
fer any serious advantages over the “symmetric’ one.
Fig.5 depicts particle losses against the number of turns
under acceleration in the “initial” and “symmetric”
structures. Results have been obtained from integration
of the motion equations for 600 particles uniformly dis-
tributed in an ellipse with y=7 mm, Ay =40 mrad semi-
axes (the initial beam emittance is 280 π×mm×mrad)
and phase interval of ±30°. As is seen from the present-
ed data, somewhat lower beam losses during several
first turns in the “initial” version are compensated in the
“symmetric“ version by reduced losses at subsequent
beam turns. After the 7th turn, the number of particles
fell out of the acceleration process was the same as in
both the versions and amounted to 250. Thus, only 58%
of the initial amount of particles have passed the initial
7 turns.
As has been mentioned above, the “ My2” version is
characterized with a reduction of the dee output aperture
to 20 mm, that results in more than twice increase of the
electric field focusing component. Fig.6 demonstrates
results of computations of particle losses under acceler-
ation for the “My2” version. All data and conditions in-
___________________________________________________________
PROBLEMS OF ATOMIC SIENCE AND TECHNOLOGY. 2004. № 2.
Series: Nuclear Physics Investigations (43), p.126-128.126
mailto:npkluts@niiefa.spb.su
volved in the computations are completely identical to
those shown in Fig.5 except electric field configuration.
It is seen from the presented data that the amount of par-
ticles dropped out of the acceleration process decreased
to 80. Thus, 87% of the initial amount of particles have
passed 7 initial turns.
Fig.1. Equipotentials of electric field (14 mm from the puller).
”Initial” version of the accelerating structure
Fig.2. Orbits of the “initial” version of the
accelerating structure.
The dee accelerating voltage-48 kV
Fig.4,a. Distribution of electric field vertical compo-
nents for “initial’ and “symmetric” versions of the ac-
celerating structure
Fig.3. Orbits of protons with zero start phase for
“initial” and “symmetric” versions of the accelerat-
ing structure. Dee voltage is 48 kV
___________________________________________________________
PROBLEMS OF ATOMIC SIENCE AND TECHNOLOGY. 2004. № 2.
Series: Nuclear Physics Investigations (43), p.126-128.127
Fig.4,b. Distribution of electric field accelerating
components for “initial’ and “symmetric” versions of
the accelerating structure
Fig.5a. Losses under acceleration in the “initial” ver-
sion of the accelerating structure. At the input there
are 600 particles with an emittance
of 280 π × mm× mrad; the start interval is ± 30°
Fig.5,b. Losses under acceleration in the “symmetric”
version of the accelerating structure. At the input there
are 600 particles with an emittance
of 280 π× mm×mrad;the start interval is ± 30°
Fig. 6. Losses under acceleration for the “My2” ver-
sion of the accelerating structure. At the input there
are 600 particles with an emittance of
280 π × mm× mrad, the start interval is ± 30°
REFERENCES
1. P.V.Bogdanov et al. Design parameters of radioiso-
topic cyclotron RIC // Proceed. of the 6th All-Union
Conference on Charged Particle Accelerators,
Dubna,1978. Dubna: OIYAI, 1979, v.2, p.330-333.
2. A.V.Stepanov et al. Status of works on the RIC-30
cyclotron // Proceed. of the 10th International Con-
ference on Applied Charged Particle Accelerators
in medicine and Industry. St. Petersburg, 2001.
Moscow: TSNIIatominform, 2001, p.149-153.
3. A.V.Galchuk et al. Magnetic field shaping on the
RIC cyclotron. NIIEFA report, 1987, p.24.
ЧИСЛЕННОЕ ИЗУЧЕНИЕ ЦЕНТРАЛЬНОЙ ОБЛАСТИ УСКОРЕНИЯ RIC-30 ЦИКЛОТРОНА
З.А. Андреева, Ю.А. Свистунов, С.А. Силаев, А.В. Степанов
RIC-30 циклотрон был разработан для ускорения протонов до 30 МэВ. С 1994 г. он использовался для
производства радионуклидов на внутренней мишени, установленной на радиусе 580 мм, где энергия пучка
равнялась 22 МэВ. Конечный радиус ускорения равен 655 мм. В настоящее время при длительном режиме
облучения ток пучка на мишени – 190...200 мкА. Основной целью работы является получение более высоко-
го тока пучка вследствие оптимизации конфигурации компонент, формирующих центральную ион-оптиче-
скую систему циклотрона.
ЧИСЛОВЕ ВИВЧЕННЯ ЦЕНТРАЛЬНОЇ ОБЛАСТІ ПРИСКОРЕННЯ RIC-30 ЦИКЛОТРОНА
З.А. Андрєєва, Ю.А. Свистунов, С.А. Сілаев, А.В. Степанов
RIC-30 циклотрон був розроблений для прискорення протонів до 30 МеВ. З 1994 p. він використовувався
для виробництва радіонуклідів на внутрішній мішені, встановленої на радіусі 580 мм, де енергія пучка
дорівнювала 22 МеВ. Кінцевий радіус прискорення дорівнює 655 мм. В даний час при тривалому режимі
опромінення струм пучка на мішені – 190...200 мкА. Основною метою роботи є одержання більш високого
струму пучка внаслідок оптимізації конфігурації компонент, що формують центральну іон-оптичну систему
циклотрона.
128
Source Data
Results of Computations
|