Numerical simulation of 3D ion ribbon beam dynamics in RF undulator linac

The ion ribbon beam can be bunched and accelerated in linear accelerator with RF undulator (UNDULAC-RF). The acceleration and focusing of beam are realized without using a synchronous wave in such an accelerator. The results of numerical simulation of 3D self-consistent ribbon ion beam dynamics ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2004
Hauptverfasser: Masunov, E.S., Polozov, S.M
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2004
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/79370
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Numerical simulation of 3D ion ribbon beam dynamics in RF undulator linac / E.S. Masunov, S.M. Polozov // Вопросы атомной науки и техники. — 2004. — № 2. — С. 141-143. — Бібліогр.: 4 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-79370
record_format dspace
spelling irk-123456789-793702015-04-01T03:02:35Z Numerical simulation of 3D ion ribbon beam dynamics in RF undulator linac Masunov, E.S. Polozov, S.M Динамика пучков The ion ribbon beam can be bunched and accelerated in linear accelerator with RF undulator (UNDULAC-RF). The acceleration and focusing of beam are realized without using a synchronous wave in such an accelerator. The results of numerical simulation of 3D self-consistent ribbon ion beam dynamics are presented. The limit current and current transmission coefficients are calculated. Стрічковий іонний пучок може бути згрупований і прискорений у лінійному високочастотному ондуляторному прискорювачі (UNDULAC-RF). У UNDULAC-RF прискорення і фокусування відбуваються при відсутності в системі синхронної з пучком гармоніки. Було проведено чисельне моделювання самоузгодженої тривимірної динаміки стрічкового іонного пучка в UNDULAC-RF. Визначено граничний струм пучка і максимальний коефіцієнт струмопроходження. Ленточный ионный пучок может быть сгруппирован и ускорен в линейном высокочастотном ондуляторном ускорителе (UNDULAC-RF). В UNDULAC-RF ускорение и фокусировка происходят при отсутствии в системе синхронной с пучком гармоники. Было проведено численное моделирование самосогласованной трехмерной динамики ленточного ионного пучка в UNDULAC-RF. Определен предельный ток пучка и максимальный коэффициент токопрохождения. 2004 Article Numerical simulation of 3D ion ribbon beam dynamics in RF undulator linac / E.S. Masunov, S.M. Polozov // Вопросы атомной науки и техники. — 2004. — № 2. — С. 141-143. — Бібліогр.: 4 назв. — англ. 1562-6016 PACS: 41.75.L, 41.85.E, 29.27.F http://dspace.nbuv.gov.ua/handle/123456789/79370 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Динамика пучков
Динамика пучков
spellingShingle Динамика пучков
Динамика пучков
Masunov, E.S.
Polozov, S.M
Numerical simulation of 3D ion ribbon beam dynamics in RF undulator linac
Вопросы атомной науки и техники
description The ion ribbon beam can be bunched and accelerated in linear accelerator with RF undulator (UNDULAC-RF). The acceleration and focusing of beam are realized without using a synchronous wave in such an accelerator. The results of numerical simulation of 3D self-consistent ribbon ion beam dynamics are presented. The limit current and current transmission coefficients are calculated.
format Article
author Masunov, E.S.
Polozov, S.M
author_facet Masunov, E.S.
Polozov, S.M
author_sort Masunov, E.S.
title Numerical simulation of 3D ion ribbon beam dynamics in RF undulator linac
title_short Numerical simulation of 3D ion ribbon beam dynamics in RF undulator linac
title_full Numerical simulation of 3D ion ribbon beam dynamics in RF undulator linac
title_fullStr Numerical simulation of 3D ion ribbon beam dynamics in RF undulator linac
title_full_unstemmed Numerical simulation of 3D ion ribbon beam dynamics in RF undulator linac
title_sort numerical simulation of 3d ion ribbon beam dynamics in rf undulator linac
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2004
topic_facet Динамика пучков
url http://dspace.nbuv.gov.ua/handle/123456789/79370
citation_txt Numerical simulation of 3D ion ribbon beam dynamics in RF undulator linac / E.S. Masunov, S.M. Polozov // Вопросы атомной науки и техники. — 2004. — № 2. — С. 141-143. — Бібліогр.: 4 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT masunoves numericalsimulationof3dionribbonbeamdynamicsinrfundulatorlinac
AT polozovsm numericalsimulationof3dionribbonbeamdynamicsinrfundulatorlinac
first_indexed 2025-07-06T03:26:30Z
last_indexed 2025-07-06T03:26:30Z
_version_ 1836866486458646528
fulltext NUMERICAL SIMULATION OF 3D ION RIBBON BEAM DYNAMICS IN RF UNDULATOR LINAC E.S. Masunov, S.M. Polozov Moscow Engineering Physics Institute, Russia, masunov@dinus.mephi.ru The ion ribbon beam can be bunched and accelerated in linear accelerator with RF undulator (UNDULAC-RF). The acceleration and focusing of beam are realized without using a synchronous wave in such an accelerator. The results of numerical simulation of 3D self-consistent ribbon ion beam dynamics are presented. The limit current and current transmission coefficients are calculated. PACS: 41.75.L, 41.85.E, 29.27.F 1. INTRODUCTION The ribbon ion beam acceleration is one of possible methods of beam current increasing. The linac called Ribbon Radiofrequency Focusing (RRF) accelerator [1] and some types of linear undulator accelerators [2] were proposed for this goal. The ribbon ion beam can be ac- celerated in linear undulator accelerators with electro- static undulator (UNDULAC-E) [2,3] and radio-fre- quency undulator (UNDULAC-RF) [4]. The bunching, acceleration and focusing can be realized in the undula- tor linac without using the RF field synchronous space harmonic. The accelerating force is to be driven by a combination of two non-synchronous waves (two RF field space harmonics of periodical resonator, Fig.1) in UNDULAC-RF and by a combination of RF field space harmonic and space harmonic of electrostatic undulator field in UNDULAC-E. 2. 3D DYNAMICS FOR UNDULAC-RF The investigation of beam dynamics in undulator linacs can be done using both the analytical methods and the numerical simulation. The results of such inves- tigations are considered in. [2,3]. Fig. 1. The plane structure of UNDULAC-RF UNDULAC-RF was studied using analytical averag- ing methods in. [4]. The Hamiltonian form of the mo- tion equation was obtained by this method. This equa- tion includes the effective potential function effU , de- pending only on the particle phase in the combined wave field and slowly varying transverse coordinates. The acceleration, transverse focusing conditions and the coupling between transverse and longitudinal motions can be studied using effU . The analytical study was done in assumption that the beam interacts with only two space harmonics of RF field. It was shown that the ribbon ion beams can be accelerated in UNDULAC-RF using the transverse or longitudinal RF field with 0=µ and π=µ modes. The rate of energy gain in UNDU- LAC-RF is proportional to ( )s,vϕ2sin but not ( )s,vϕcos as in conventional accelerators. This peculiarity pro- vides formation of two bunches on one RF field period. The rate of an energy gain in UNDULAC-RF using π=µ RF field mode is two times higher as for RF field with 0=µ mode. The analytical study of particles lon- gitudinal motion shows that the optimal ratio of RF field harmonics amplitudes 01 E/E=χ is realized in UN- DULAC-RF. This ratio is equal 0.3-0.4 for UNDULAC- RF using π=µ mode and 0.6-0.7 for 0=µ mode. The influence of fast oscillations of RF field is the lowest at these χ values. The transverse focusing conditions can be obtained by means of effective potential function. It was shown that the transverse focusing is realized inde- pendently of χ value for UNDULAC-RF using π=µ mode RF field. This result shows an advantage of this type of undulator linac from RRF accelerator. It should be noted that ≈χ 10 value is necessary to obtain the ef- fective focusing in the RRF accelerator [1]. The ampli- tudes of RF field harmonics must be equal for effective transverse focusing in UNDULAC-RF using еру 0=µ mode RF field ( ≈χ 1). However the smaller χ values can be used in UNDULAC-RF with the 0=µ mode RF field. The effective potential function has a local maxi- mum in this case and a cross-section of ion beam will have a hollow form. The acceptance of UNDULAC channel and frequencies of phase and transverse oscilla- tions can be obtained by means of the effective potential function. The undulator linac includes two sections for beam bunching and acceleration. The synchronous phase of the combined wave s,vϕ will decrease linearly and am- plitudes of RF field harmonics increases as a sine in the first part (buncher). In the second part (accelerator) the amplitudes of harmonics and s,vϕ are constant. It is shown that the current transmission coefficient Kt for UNDULAC-RF with π=µ mode RF field is equal to 90...95% and 85...90% for 0=µ mode. The investigation of beam dynamics in smooth ap- proximation does not take into account the fast oscilla- tions of a particle velocity and phase. That is why the numerical simulation of the beam dynamics in a full polyharmonic field is necessary to find the optimum ac- celerator parameters. An influence of a space charge field on the beam dynamics can also be studied by means of this model. ___________________________________________________________ PROBLEMS OF ATOMIC SIENCE AND TECHNOLOGY. 2004. № 2. Series: Nuclear Physics Investigations (43), p.141-143. 141 3. UNDULAC-RF USING LONGITUDINAL RF FIELD (π MODE) The numerical simulation was done for ribbon beam of deuterium ions with the following parameters: initial velocity of deuterium ions Win=150 keV ( inβ =0.013), accelerator channel length 2.5 m, accelerator channel cross-section size 2a×2b=0.8×20 cm, wave length λ =1.5 m. The effective amplitude of combined wave was chosen constant and equal 30 2 10 0 = βπ λ= EE W eEeff kV/cm and the output beam energy equal to 1.3...1.5 MeV for this amplitude. It should be noted that for the ion beam under acceleration in smooth approxi- mated field the current transmission coefficient may be as high as Кt=90...95% for the beam with the initial size 2l×2t=10×0.4 cm2. The loss of particles takes place due to not optimum synchronous phase and RF field ampli- tude functions. The current transmission coefficient is appreciably reduced if the beam dynamics simulation is done for the fast oscillating RF field. The current transmission coef- ficient is equal to 75...80% for the paraxial injected beam (2l×2t=1×0.04 cm2) and the optimum value of χ is 0.3...0.4 (see Fig.2, curve 1) that coincides with the analytically founded value. This ratio can be easily real- ized. It was found that Kt significantly decreases if the beam size is larger than the critical value (along 2l×2t=5 ×0.3 cm2). The size of accelerator channel can be re- duced to 2a×2b=0.7×10 cm. The particle loss is caused by fast oscillations of particle phases and longitudinal velocities. The figure 2 (curve 2) shows the current transmission coefficient versus χ with the initial beam size equal 2l×2t=5×0.3 cm2. It is clear that Kt does not exceed 60 % in this case. It can be shown that Kt de- creases with the large initial RF field amplitude E(z=0): Kt=50% if E0,1,in=0,2E0,1,max (see Fig.2, curve 3). The op- timal length of bunching section equals to the accelera- tor half length. Fig.2. Current transmission coefficient versus ratio of RF field space harmonic amplitudes χ Numerical simulation of beam dynamics in the full RF field and in the space charge field shows that the limiting current in UNDULAC-RF is lower than the an- alytically predicted value and its value is Imax=0.2...0.25 A (limiting current density Jmax=0.12 A/cm2) with 2l×2t =5×0.3 cm2. Fig.3. Initial and output beam cross-section (a), nor- malized transverse emittance Ey (b), phase (c) and energy (d) spectra. (“points” – initial values, “×” – output) The initial and output beam cross-section (a), nor- malized transverse emittance ε y (b), phase (c) and ener- gy (d) spectra are plotted on figure 3. This figure illus- trates the two bunches formation on one RF field period. The output normalized emittance is two times lager than the initial one. The limit initial emittance is equal ε y=0,7π mm⋅mrad, ε x=30π mm⋅mrad, ε ϕ=25 keV⋅mrad. 4. UNDULAC-RF USING TRANSVERSE RF FIELD (π MODE) The parameters of simulation are the same for UN- DULAC-RF using transverse and longitudinal RF field for π=µ mode. In smooth approximation the current 142 transmission coefficient is equal 75...80% for UNDU- LAC-RF using transverse RF field. It is higher than one for longitudinal RF field. The optimal RF field harmon- ics amplitudes ratio is equal 0.35 (see Fig.4, curve 1) and bunching section length is equal to the half of accel- erator length too. The limit initial beam size is bigger than for UNDULAC-RF using longitudinal field: 2l×2t =7×0,3 cm. The current transmission coefficient is equal 65% (see Fig.4, curve 2) for this initial beam size. The limit current equals 300...350 mA for this type of undu- lator linac. In a buncher there are no loses due to a phase motion and all loses are caused by transverse mo- tion. The transverse emittance increases 3-4 times and increases the transverse particles velocity and beam size. The halo is not forming. The limit initial emittance ε y is significantly smaller that for UNDULAC-RF us- ing longitudinal field: ε y=0.06π mm⋅mrad and ε х=45π mm⋅mrad, ε ϕ=25 keV⋅mrad. Fig.4. Current transmission coefficient versus ratio of RF field space harmonic amplitudes χ 5. UNDULAC-RF USING LONGITUDINAL AND TRANSVERSE RF FIELD (0 MODE) The numerical simulation of ribbon ion beam dy- namics in the polyharmonic field of UNDULAC-RF for 0=µ mode RF field shows that the current transmis- sion coefficient is very low. The simulation in the smooth approximated field shows that the current trans- mission coefficient equals 85...90% for the paraxially injected beam. If the simulation is done a polyharmonic field, Kt decreases to 55...60% for paraxial injected beam. For larger beam cross-sections the current trans- mission coefficient reduces to 30...35% (UDULAC-RF using longitudinal field) and to 5...10% (using trans- verse field). These results are in conformity with the an- alytical investigation which was done earlier [5]. It should be noted that the transverse focusing is provided by the first RF field harmonic only for this type of UN- DULAC-RF. The optimum value of the combined wave effective amplitude is equal to 20=effE kV/cm and the output energy equals to 0.9...1.1 MeV. The limiting cur- rent was not calculated for this type of undulator linac because the current transmission coefficient is low. 6. CONCLUSIONS The results of numerical simulation of beam dynam- ics in the UNDULAC-RF accelerator are discussed. It was shown that the UNDULAC-RF using π=µ mode RF field is more preferable for the further design. The ribbon beam of deuterium ions can be bunched and ac- celerated to the output energy of 1...1.5 MeV with a lim- iting current up to 350 mA and the current transmission coefficient Kt=65% in this type of undulator linac. It is supposed that the coefficient of current transmission can be increased by means of numerical optimization of the synchronous phase function and the RF field harmonic amplitude variation. REFERENCES 1. E.S. Masunov, S.M. Polozov, N.E. Vinogradov. Space charge effects and RF focusing of ribbon beam in ion linac // Problems of Atomic Science and Technolog. 2001, № 5, p.71–73. 2. E.S. Masunov // Sov. Phys Tech. Phys. 1990, v.35, №8, p.962-965. 3. E.S. Masunov, S.M. Polozov, A.S. Roshal, N.E. Vinogradov // Problems of Atomic Science and Technology. 2001, № 5, p.51–53. 4. E.S. Masunov // Technical Physics. 2001, v.46, No.11, p.1433-1436. ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ТРЕХМЕРНОЙ ДИНАМИКИ ЛЕНТОЧНОГО ИОННОГО ПУЧКА В ЛИНЕЙНОМ ВЫСОКОЧАСТОТНОМ ОНДУЛЯТОРНОМ УСКОРИТЕЛЕ Э.С. Масунов, С.М. Полозов Ленточный ионный пучок может быть сгруппирован и ускорен в линейном высокочастотном ондуля- торном ускорителе (UNDULAC-RF). В UNDULAC-RF ускорение и фокусировка происходят при отсутствии в системе синхронной с пучком гармоники. Было проведено численное моделирование самосогласованной трехмерной динамики ленточного ионного пучка в UNDULAC-RF. Определен предельный ток пучка и мак- симальный коэффициент токопрохождения. ЧИСЕЛЬНЕ МОДЕЛЮВАННЯ ТРИВИМІРНОЇ ДИНАМІКИ СТРІЧКОВОГО ІОННОГО ПУЧКА В ЛІНІЙНОМУ ВИСОКОЧАСТОТНОМУ ОНДУЛЯТОРНОМУ ПРИСКОРЮВАЧІ Е.С. Масунов, С.М. Полозов Стрічковий іонний пучок може бути згрупований і прискорений у лінійному високочастотному ондуляторному прискорювачі (UNDULAC-RF). У UNDULAC-RF прискорення і фокусування відбуваються при відсутності в системі синхронної з пучком гармоніки. Було проведено чисельне моделювання самоузгодженої тривимірної динаміки стрічкового іонного пучка в UNDULAC-RF. Визначено граничний струм пучка і максимальний коефіцієнт струмопроходження. ___________________________________________________________ PROBLEMS OF ATOMIC SIENCE AND TECHNOLOGY. 2004. № 2. Series: Nuclear Physics Investigations (43), p.141-143. 141 пучка в линейном высокочастотнОм ондуляторном ускорителе