Acceleration of charged particles by elliptic polarized waves of large amplitude

In this paper the results of investigations on the charged particle dynamics in the homogeneous constant magnetic field and in the field of a flat wave of arbitrary intensity are presented. When the magnetic field is absent the particle trajectory is defined. It is shown, that a particle can be effe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2004
Hauptverfasser: Buts, A.V., Buts, V.A., Kuzmin, V.V.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2004
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/79371
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Acceleration of charged particles by elliptic polarized waves of large amplitude / A.V. Buts, V.A. Buts, V.V. Kuzmin // Вопросы атомной науки и техники. — 2004. — № 2. — С. 144-146. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-79371
record_format dspace
spelling irk-123456789-793712015-04-01T03:02:17Z Acceleration of charged particles by elliptic polarized waves of large amplitude Buts, A.V. Buts, V.A. Kuzmin, V.V. Динамика пучков In this paper the results of investigations on the charged particle dynamics in the homogeneous constant magnetic field and in the field of a flat wave of arbitrary intensity are presented. When the magnetic field is absent the particle trajectory is defined. It is shown, that a particle can be effectively drawn along the wave vector of the wave. Average speed of this drawing is proportional to the square of the wave force parameter. The trajectories of particles are significantly dependent on initial conditions. In the presence of constant external magnetic field the particles can be effectively accelerated by the wave field. The particle dynamics is always chaotic if the wave force parameter is enough large. This dynamic is characterized by the alternation. Викладені результаті дослідження динаміки заряджених часток у однорідному постійному магнітному полі та в полі плоскої хвилі довільної напруженості. За відсутності постійного магнітного поля вигляд траєкторії частки був визначений. Показано, що частка може ефективно захоплюватися полем зовнішньої хвилі. Середня швидкість захоплення пропорційна квадрату параметру сили хвилі. При наявності постійного магнітного поля. частки можуть ефективно прискорюватись полем хвилі. При великих напруженостях поля динаміка часток завжди хаотична. Динаміка характеризується перемежністю. Изложены результаты исследования динамики заряженных частиц в однородном постоянном магнитном поле и в поле плоской волны произвольной напряженности. В отсутствии магнитного поля определен вид траектории частиц. Показано, что частицы могут эффективно увлекаться полем внешней волны. Средняя скорость увлечения пропорциональна квадрату параметра силы волны. Вид траектории существенно зависит от начальных условий. При наличии постоянного магнитного поля частицы могут эффективно ускоряться полем волны. При больших напряженностях поля динамика частиц всегда хаотична. Динамика характеризуется перемежаемостью. 2004 Article Acceleration of charged particles by elliptic polarized waves of large amplitude / A.V. Buts, V.A. Buts, V.V. Kuzmin // Вопросы атомной науки и техники. — 2004. — № 2. — С. 144-146. — англ. 1562-6016 PACS: 29.17.+w http://dspace.nbuv.gov.ua/handle/123456789/79371 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Динамика пучков
Динамика пучков
spellingShingle Динамика пучков
Динамика пучков
Buts, A.V.
Buts, V.A.
Kuzmin, V.V.
Acceleration of charged particles by elliptic polarized waves of large amplitude
Вопросы атомной науки и техники
description In this paper the results of investigations on the charged particle dynamics in the homogeneous constant magnetic field and in the field of a flat wave of arbitrary intensity are presented. When the magnetic field is absent the particle trajectory is defined. It is shown, that a particle can be effectively drawn along the wave vector of the wave. Average speed of this drawing is proportional to the square of the wave force parameter. The trajectories of particles are significantly dependent on initial conditions. In the presence of constant external magnetic field the particles can be effectively accelerated by the wave field. The particle dynamics is always chaotic if the wave force parameter is enough large. This dynamic is characterized by the alternation.
format Article
author Buts, A.V.
Buts, V.A.
Kuzmin, V.V.
author_facet Buts, A.V.
Buts, V.A.
Kuzmin, V.V.
author_sort Buts, A.V.
title Acceleration of charged particles by elliptic polarized waves of large amplitude
title_short Acceleration of charged particles by elliptic polarized waves of large amplitude
title_full Acceleration of charged particles by elliptic polarized waves of large amplitude
title_fullStr Acceleration of charged particles by elliptic polarized waves of large amplitude
title_full_unstemmed Acceleration of charged particles by elliptic polarized waves of large amplitude
title_sort acceleration of charged particles by elliptic polarized waves of large amplitude
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2004
topic_facet Динамика пучков
url http://dspace.nbuv.gov.ua/handle/123456789/79371
citation_txt Acceleration of charged particles by elliptic polarized waves of large amplitude / A.V. Buts, V.A. Buts, V.V. Kuzmin // Вопросы атомной науки и техники. — 2004. — № 2. — С. 144-146. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT butsav accelerationofchargedparticlesbyellipticpolarizedwavesoflargeamplitude
AT butsva accelerationofchargedparticlesbyellipticpolarizedwavesoflargeamplitude
AT kuzminvv accelerationofchargedparticlesbyellipticpolarizedwavesoflargeamplitude
first_indexed 2025-07-06T03:26:32Z
last_indexed 2025-07-06T03:26:32Z
_version_ 1836866489176555520
fulltext ACCELERATION OF CHARGED PARTICLES BY ELLIPTIC POLAR- IZED WAVES OF LARGE AMPLITUDE A.V. Buts, V.A. Buts, V.V. Kuzmin National Scientific Center “Kharkov Institute of Physics & Technology” 61108 Akademicheskaya st.1, Kharkov, Ukraine E-mail: vbuts@kipt.kharkov.ua In this paper the results of investigations on the charged particle dynamics in the homogeneous constant magnet- ic field and in the field of a flat wave of arbitrary intensity are presented. When the magnetic field is absent the par- ticle trajectory is defined. It is shown, that a particle can be effectively drawn along the wave vector of the wave. Average speed of this drawing is proportional to the square of the wave force parameter. The trajectories of particles are significantly dependent on initial conditions. In the presence of constant external magnetic field the particles can be effectively accelerated by the wave field. The particle dynamics is always chaotic if the wave force parameter is enough large. This dynamic is characterized by the alternation. PACS: 29.17.+w 1. INTRODUCTION Interaction of charged particles (electrons) with fields of electromagnetic waves underlies in the theory of accelerators, amplifiers and generators. At present the time dynamics of particles at such interaction in details is investigated, when intensity of electromagnetic wave fields is small enough. Under the value smallness we understand a smallness of /eE mcω==E , which some- times is named as a parameter of a wave force or param- eter of nonlinearity. For 10 cm radiation this parameter is of about unit when the intensity of an electric field of a wave reaches 105V/cm. For laser radiation the ( 410 −≈λ cm) intensity of a field should by higher than 1010V/cm. In majority of experiments this parameter is small. In this case the significant exchange of energy between particles and electromagnetic waves occurs for times considerably large then the period, i.e. interaction of particles with a field should be long. Therefore the special role conditions of synchronism of the charged particle with phases of electromagnetic waves play. These conditions look like resonant conditions. As the field intensity is sufficiently high that a particle gets a velocity close to the velocity of light during the period of an electromagnetic wave, i.e. the exchange of energy may be very fast, as compared with resonant conditions in this case lose the exclusiveness. We shall note the im- portant feature of interaction of a flat transverse electro- magnetic wave with particles in vacuum. If parameter E is small, the particle in main makes transverse (con- cerning a direction of wave distribution) oscillation. If the parameter of nonlinearity is great (E >>1), the parti- cle makes a basic movement along the direction of wave distribution. In the same direction it gets also the maxi- mum velocity, therefore, the period of a wave, which is perceived by a particle, is essentially increased. Some results of research on particle dynamics in in- tense ( 1≥E ) electromagnetic waves are represented. The basic models of interaction of the charged particles with electromagnetic waves are formulated in section 2, the equations describing these models, and also some integrals are written out. Some features of the charged particle dynamics in the field of a transverse electro- magnetic wave with linear polarization in vacuum are analyzed in section 3. The basic result of this section consists in that the particles quickly scatter in the cross direction. In section 4 the particle dynamics in the trans- verse electromagnetic wave with elliptic polarization is considered. In Section 5 the dynamics of particles in a field of an electromagnetic wave with linear polariza- tion at presence of a constant homogeneous magnetic field are considered. In this case the dynamics of parti- cles has alternated character. The average energy of the particles grows. However this growth is not monotonous, i.e. the particle in the casual moments of time can gain or loss energy. 2. THE BASIC EQUATIONS AND INTE- GRALS Let us consider the movement of the charged parti- cle in the field of a flat electromagnetic wave with any polarization. Components of electric and magnetic fields of such a wave can be presented as Re( )0 ie ψ=Ε Ε , [ ]1Re 0k    =    Η kE , (1) where krtψ ω≡ − , 0 0Eα=Ε r ; }{ , ,i zx yα α α α=r – a vector of polarization of a wave; /0k cω= ; ω , k – frequency and a wave vector of a wave. We shall enter the following dimensionless variables: /1 mc=p p , /1 0k=k k , tτ ω= , 1 0k=r r , /0e mcω= EE , /1 c=v v , / /1 c kcph phυ υ ω= = . In these variables the equation of movement gets a form (the index "1" is omitted) ( ) ( ){ }Re 1 +d ie d ψ τ ≡ = −   pp kv k v& E E . (2) It is convenient to add to equations (2) the equation which defines the particle energy and may be obtained from system (2): ( )Re ie ψγ = v& E , (3) ___________________________________________________________ PROBLEMS OF ATOMIC SIENCE AND TECHNOLOGY. 2004. № 2. Series: Nuclear Physics Investigations (43), p.144-146. 144 where 21 pγ = + is the dimensionless energy of a par- ticle (measured in terms of 2mc ). Equations (2) and (3) have the integrals: Re 0 0 0Re const ii e i i e ψγ γ ψ  − + = − +     + = =    p k p k C E E , (4) Here the index "0" designates initial variables. Further, without restriction of a generality, we shall consider, that the wave travels along the axis z , i.e. {0,0, }k=k . 3. DYNAMICS OF PARTICLES AT INTER- ACTION WITH THE WAVE OF LINEAR PO- LARIZATION If the particle moves in the field of only one wave then the dynamics of its movement may be expressed by analytical expressions. So, for values of the pulses and values of its energy, one can obtain such expressions (the solving of system of equations (2)): ( ) ( ) ( ) ( ) 0 0 2 2 0 0 0 0 sin sin , , 2 , x x x x x z z z z p p p p p p p p ψ ψ γ ψ γ γ = + − − = ± = ± − & E (5) where 0 /x eE mcω≡E ; The upper sign (+) in the ex- pressions for γ and zp corresponds to the case 1k = . The inferior sign (–) corresponds to the case 1k = − . Let us look at the particles which originally were in rest: From formulas (5) it follows that the value of a trans- verse pulse essentially depends on the initial position of a particle concerning a wave, i.e. from 0ψ . Really, even if originally the particle has no transverse velocity ( 0xp = ), depending on of an initial phase 0ψ , the maxi- mal values of the module of a transverse pulse vary from xE up to 2 xE . Besides, in an initial phase, the size of an average transverse pulse varies too. The average pulse is equal to 0, for particles, which are located in phases nπ . Such particles are not displaced in a trans- verse direction concerning the initial position. The aver- age value of a longitudinal pulse, which the particles get during interaction with a wave, reaches the value 2 / 4xE . For particles which are located in phases 0 ( 1/ 2)nψ π= + , the maximal values of a transverse pulse on the module reach the value 2 xE . And the aver- age value of the transverse pulse for such particles is not equal to 0 and also reaches value xE . 0 20 40 60 80 0 0.45 0.9 1.35 1.8 2.25 2.7 3.15 3.6 4.05 4.5 A Pzn Tn 0 20 40 60 80 100 4 3.2 2.4 1.6 0.8 0 0.8 1.6 2.4 3.2 4 B Py n T n Fig 1. Pulses of particles taking place in an initial phase nπ , at 3x =E . A) a longitudinal pulse, B) a transverse pulse 0 20 40 60 80 0 1.8 3.6 5.4 7.2 9 10.8 12.6 14.4 16.2 18 A Pzn T n 0 20 40 60 80 1000 0.6 1.2 1.8 2.4 3 3.6 4.2 4.8 5.4 6 B Pyn Tn Fig 2. Pulses of particles taking place in an initial phase 0 ( 1/ 2)nψ π= + , at 3x =E . A) a longitudinal pulse, B) a transverse pulse The average size of a longitudinal pulse of such parti- cles reaches size 2 xE . Thus, all particles, except for those which are located in initial phases nπ , will run up quickly in the transverse direction. Clearly, that such a scheme of laser acceleration of the charged particles will be not effective. 4. INTERACTION OF PARTICLES WITH THE WAVE OF CIRCULAR POLARIZA- TION As is shown above, if a charged particle is accelerat- ed by the wave with linear polarization, the particles run up in the transverse direction, and for the purpose of ac- celeration it is necessary to find conditions at which their run up will be limited. One of the simplest way of restriction of run up, apparently, may be acceleration of particles by a wave with circular polarization. Under this condition we can expect, that the trajectory of run- ning up particles will be a spiral trajectory. Below we shall show that indeed it takes place. Really the dynam- ics of particles in the elliptic polarized wave may be ex- pressed by analytical formulas which can be obtained from equation (2): ( ) ( ) ( ) ( ) ( ) sin sin ,0 0 cos cos ,0 0 2 2 2 2 0 0 ,0 2 ,0 0 p px xx p py yy p p p px y x yp pz z p pz z ψ ψ ψ ψ γ ψ γ γ = + − = + − + − + = ± = ± − & E E (6) Despite of simplicity of these formulas, they de- scribe dynamics in a rather complex manner. It is caused by that decisions (6) are submitted in an implicit form since a phase ψ itself is a function of a pulse. For a more detailed investigation of particle dynam- ics in a wave with elliptic polarization the system of equations (2) was investigated by numerical methods. In figures the most typical examples of this dynamics are given. As follows from the analytical research and the nu- merical analysis the main feature of movement of a par- ticle in a wave with elliptic polarization consists in that its trajectory represents a spiral with an wave axis di- rected along the wave propagation and with the radiusE in space of pulses (see figure 3). ___________________________________________________________ PROBLEMS OF ATOMIC SIENCE AND TECHNOLOGY. 2004. № 2. Series: Nuclear Physics Investigations (43), p.144-146.145 Thus, acceleration of particles by a field elliptic po- larization may remove a part of the difficulties connect- ed with the run up of electrons in the transverse direc- tion that is characteristic for the scheme of interaction with a linearly polarized wave. 0 60 120 180 240 300 4 3.2 2.4 1.6 0.8 0 0.8 1.6 2.4 3.2 4 Pxn T n 0 60 120 180 240 300 6 5.4 4.8 4.2 3.6 3 2.4 1.8 1.2 0.6 0 Py n T n 0 60 120 180 240 300 4 3.2 2.4 1.6 0.8 0 0.8 1.6 2.4 3.2 4 Pxn Tn 0 60 120 180 240 300 6 5.4 4.8 4.2 3.6 3 2.4 1.8 1.2 0.6 0 Py n Tn 0 60 120 180 240 300 0 2 4 6 8 10 12 14 16 18 20 Pzn Tn Fig.3. Dynamics of a particle at interaction with a wave of circular polarization, at 3=E Really, in the space of transverse pulses the trajecto- ry of a particle describes by circle. The equation of this circle can be presented as: ( ) ( ) 22 2 x x y yP A P A− + − = E (7) where 2 0 0cosx x xA P ψ= + E , 2 0 0siny y yA P ψ= + E It is visible, that if initial particle pulses (pulses of com- ing particles in area of interactions with a wave) will be large than 2E ( 2 2 0 0,x x y yP P> > > >E E ), all particles will get an average transverse pulse which differs insignifi- cantly from the initial particle pulse. In this case accel- erated particles practically will not be run up since their average pulses will not depend on the arrangement of particles with respect to the wave phase 0ψ . 5. DYNAMICS OF PARTICLES IN FIELD OF THE WAVE IN PRESENCE OF THE СONSTANT HOMOGENEOUS MAGNETIC FIELD In the presence of a constant magnetic field 0H , hav- ing components { }00, ,0yH=0H , the equation of move- ment (2) will become: ( ) ( ){ } [ ]Re 1 + id e d ψ τ = − ⋅ ⋅ +   0 p k v k v vBE E , (8) where 0 0 /e mcω=B H The system of equations (8) was analyzed by numerical methods. Characteristic results of calculations are given in figure 4. 0 500 1000 1500 50.58 39.76 28.93 18.11 7.29 3.54 14.36 25.19 36.01 46.83 Pz n Tn 0 400 800 1200 1600 2000 60 48 36 24 12 0 12 24 36 48 60 Py n T n Fig.4. Dynamics of particles in a wave field with lin- ear polarization in the presence of a constant homo- geneous magnetic field. 3=E , 1=0B A feature of movement of a particle in a wave, follow- ing from the numerical analysis in the presence of a constant homogeneous magnetic field, consists in that the dynamics has alternated character. Under these con- ditions the particle receives the average energy which is lower than it can receive as a result of diffusion in space of energy. Really, all conditions for stochastic accelera- tion of charged particles in this case are satisfied. As it is known, under this condition, the particle should get the energy under the law ~γ τ∆ ⋅E . Numerical calcu- lations show, that there are intervals of time at which the particle gets the energy considerably more quickly, however, on a whole, for rather large times its energy is lower than it follows from the law of diffusion. Discus- sion of this fact is contained in other our paper submit- ted at this conference. УСКОРЕНИЕ ЗАРЯЖЕННЫХ ЧАСТИЦ ЭЛЛИПТИЧЕСКИ ПОЛЯРИЗОВАННЫМИ ВОЛНАМИ БОЛЬШОЙ АМПЛИТУДЫ А.В. Буц, В.А. Буц, В.В. Кузьмин Изложены результаты исследования динамики заряженных частиц в однородном постоянном магнитном поле и в поле плоской волны произвольной напряженности. В отсутствии магнитного поля определен вид траектории частиц. Показано, что частицы могут эффективно увлекаться полем внешней волны. Средняя скорость увлечения пропорциональна квадрату параметра силы волны. Вид траектории существенно зави- сит от начальных условий. При наличии постоянного магнитного поля частицы могут эффективно ускорять- ся полем волны. При больших напряженностях поля динамика частиц всегда хаотична. Динамика характе- ризуется перемежаемостью. ПРИСКОРЕННЯ ЗАРЯДЖЕНИХ ЧАСТОК ЄЛЕПТИЧНО ПОЛЯРІЗОВАНИМИ ХВИЛЯМИ ВЕЛИКОЇ АМПЛІТУДИ О.В.Буц, В.О. Буц, В.В. Кузьмін Викладені результаті дослідження динаміки заряджених часток у однорідному постійному магнітному полі та в полі плоскої хвилі довільної напруженості. За відсутності постійного магнітного поля вигляд траєкторії частки був визначений. Показано, що частка може ефективно захоплюватися полем зовнішньої хвилі. Середня швидкість захоплення пропорційна квадрату параметру сили хвилі. При наявності постійного магнітного поля. частки можуть ефективно прискорюватись полем хвилі. При великих напруженостях поля динаміка часток завжди хаотична. Динаміка характеризується перемежністю. 146 A.V. Buts, V.A. Buts, V.V. Kuzmin УСКОРЕНИЕ ЗАРЯЖЕННЫХ ЧАСТИЦ ЭЛЛИПТИЧЕСКИ ПОЛЯРИЗОВАННЫМИ ВОЛНАМИ БОЛЬШОЙ АМПЛИТУДЫ А.В. Буц, В.А. Буц, В.В. Кузьмин О.В.Буц, В.О. Буц, В.В. Кузьмін